93
PLANIFICACIÓN Y ADMINISTRACIÓN DE REDES - 1º CFGS ASIR PROFESORA: Angélica Fernández Roza UNIDAD 3. El nivel físico. 1

Ud3

Embed Size (px)

Citation preview

Page 1: Ud3

PLANIFICACIÓN Y ADMINISTRACIÓN DE REDES - 1º CFGS ASIR

PROFESORA: Angélica Fernández Roza

UNIDAD 3. El nivel físico. 1

Page 2: Ud3

Índice:① Introducción. ② Funciones y servicios del nivel físico. ③ Datos y señales. ④ Características de los medios de transmisión.⑤ Limitaciones a la transmisión. ⑥ Adaptación al medio de transmisión: modulación. ⑦ Tipos de transmisiones. ⑧ Medios de transmisión.⑨ Cableado estructurado.

UNIDAD 3. El nivel físico. 2

Page 3: Ud3

①Introducción.

UNIDAD 3. El nivel físico. 3

Page 4: Ud3

②Funciones y servicios del nivel físico.

¿Qué medios de transmisión? ¿Qué velocidades? ¿Qué niveles de tensión para representar 0

y 1? ¿Qué pines usar? ¿Qué datos viaja por cada pin? ¿Qué limitaciones a la transmisión?

UNIDAD 3. El nivel físico. 4

Page 5: Ud3

③Datos y señales. Para poder transmitir datos señales. Señal: f(t) Señal analógica:

Señal digital:

UNIDAD 3. El nivel físico. 5

Page 6: Ud3

Datos y señales.Señal analógica aperiódica.

Señal analógica periódica.

Aperiódicas.

UNIDAD 3. El nivel físico. 6

F(t+T)=F(t)

Page 7: Ud3

Datos y señales.Señales analógicas periódicas

UNIDAD 3. El nivel físico. 7

Page 8: Ud3

Datos y señales.Señales analógicas periódicas: armónico

UNIDAD 3. El nivel físico. 8

Frecuencia: f (Hz o s^-1)Número de ciclos(repeticiones) por segundo.

Fase: fi (radianes)Situación instantánea de una onda periódica.

Amplitud: A (Voltios)Valor máximo que toma la señal.

Periodo: T=1/f (segundos)Tiempo que dura un ciclo.

Frecuencia: f (Hz o s^-1)Número de ciclos(repeticiones) por segundo.

Fase: fi (radianes)Situación instantánea de una onda periódica.

Amplitud: A (Voltios)Valor máximo que toma la señal.

Periodo: T=1/f (segundos)Tiempo que dura un ciclo.

Page 9: Ud3

Datos y señales.Fase. Amplitud.

UNIDAD 3. El nivel físico. 9

Page 10: Ud3

Datos y señales.

UNIDAD 3. El nivel físico. 10

1 GHz = 1000 MHz

1 MHz = 1000 KHz

1 KHz = 1000 Hz

La frecuencia de una señal se mide en Hz.

Existen equivalencias: KHz, MHz, GHz.

Período.

Page 11: Ud3

Datos y señales.Transformada de

Fourier (TDF).“Toda señal analógica

periódica se puede expresar como suma de armónicos.

Si la función es “aperiódica”, se necesitarán infinitos armónicos.

UNIDAD 3. El nivel físico. 11

Page 12: Ud3

Datos y señales.TDF. Señales digitales y TDF.

Las señales digitales, tiene infinitos armónicos (ancho de banda es infinito).

Se pueden considerar aproximaciones, tomando un número finito de armónicos.

Más armónicos, mejor aproximación. ¿Cuántos armónicos aproximación

buena? Las frecuencias más altas están

siempre en los primeros términos, disminuyendo según obtenemos más.

Los términos más significativos

serán los primeros.

UNIDAD 2. Arquitecturas de red. 12

Page 13: Ud3

④Características de los medios de transmisión.

1. Ancho de banda.Rango de frecuencias que acepta un

determinado medio. (Hz). 1. Velocidad de transmisión (o de

modulación)Número de bits representados por elemento de

señal. 1. Capacidad del canal.Bits por segundo que se envían a través de un

medio de transmisión. (bps) UNIDAD 3. El nivel físico. 13

Page 14: Ud3

⑤Limitaciones a la transmisión.

1. Atenuación. Degradación de la señal a

medida que avanza en el medio. dB

Atenuación = 10* log (pot_entrada/pot_salida)

¿Qué se necesita para evitarla?

UNIDAD 3. El nivel físico. 14

Potencia Salida=Potencia Entrada log1= 0

NºdB=0  Potencia Salida>Potencia

Entrada Nºdb>0 Amplificador

 Potencia Salida<Potencia Entrada NºdB<0

Atenuador.

Page 15: Ud3

⑤Limitaciones a la transmisión.

EJERCICIO: Interpreta las tablas que

aparecen en este link: http://www.testdevelocidad.es/ruido-

atenuacion.html

UNIDAD 3. El nivel físico. 15

Page 16: Ud3

Repaso clase anterior. ¿Cuáles eran las funciones del nivel físico?¿Qué tipos de señales hemos visto?¿Qué características tenía una señal?¿Qué era la transformada de Fourier?¿Qué características tenían los medios de

transmisión?¿Qué limitaciones se podían presentar?

UNIDAD 2. Arquitecturas de red. 16

Page 17: Ud3

⑤Limitaciones a la transmisión.

2. Ruido.

Señales externas que modifican la señal enviada. Ruido térmico

Diafonía: Ruido intermodular:

Picos de tensión en la señal.

UNIDAD 3. El nivel físico. 17

Page 18: Ud3

⑤Limitaciones a la transmisión.

1. Distorsión por retardo. Las frecuencias extremas sufren un mayor

retardo en su transmisión que las que tienen valores intermedios. (Ver diapositiva 12)

UNIDAD 3. El nivel físico. 18

Page 19: Ud3

⑤Limitaciones a la transmisión.

1. Diafonía.

Es una interferencia que se produce entre dos medios de transmisión paralelos del mismo tipo.

Al estar paralelos, cada medio induce en el otro una parte de la señal que se mezcal con la señal que realmente se quiere transmitir por el medio.

La diafonía puede evitarse trenzando los cables.

UNIDAD 3. El nivel físico. 19

Page 20: Ud3

⑤Limitaciones a la transmisión.

UNIDAD 3. El nivel físico. 20

Capacidad del medio: Es la velocidad máxima de transmisión de datos digitales en un canal.

Teorema de Nyquist caracteriza la velocidad en bps para un canal sin ruido

frecuencia y la velocidad están directamente relacionados

MWC 2log..2W: ancho de bandaM: Número de niveles o estados de la señal

Page 21: Ud3

⑤Limitaciones a la transmisión.

UNIDAD 3. El nivel físico. 21

Teorema de Shanon: la ausencia de ruido es imposible. Por eso Shanon intentó encontrar la relación entre ancho de banda y velocidad máxima de transmisión en bps en un canal con ruido.

Si un canal tiene un S/N=1, es decir, es un canal totalmente ruidoso, V=0bps, es decir, no se puede

transmitir.

N

SWC 1log. 2

W: ancho de bandaS: potencia de la señalN:potencia del ruido

Page 22: Ud3

⑦Tipos de transmisiones.1. Según naturaleza de la señal: analógica y

digital. 2. Según el número de señales enviadas: serie

y paralelo.3. Según dirección de la transmisión: simplex,

semi-dúplex, full-dúplex. 4. Según el tipo de medio: guiada o no guiada. 5. Según el tipo de sincronización: síncrona y

asíncrona.

UNIDAD 3. El nivel físico. 22

Page 23: Ud3

EMISOR

En este apartado veremos diferentes tipos de transmisión de señales.

Utilizaremos las señales eléctricas como ejemplos para caracterizar cada uno de los tipos.

En señales digitales supondremos que un nivel alto de señal representa 1 y un nivel bajo de señal representa 0.

Debemos considerar que para transmitir una señal eléctrica se necesita una conexión con dos cables entre los dispositivos conectados (circuito cerrado).

En este apartado veremos diferentes tipos de transmisión de señales.

Utilizaremos las señales eléctricas como ejemplos para caracterizar cada uno de los tipos.

En señales digitales supondremos que un nivel alto de señal representa 1 y un nivel bajo de señal representa 0.

Debemos considerar que para transmitir una señal eléctrica se necesita una conexión con dos cables entre los dispositivos conectados (circuito cerrado).

3 Tipos de transmisión (I)3 Tipos de transmisión (I)

EMISORV RECEPTORV

Page 24: Ud3

Transmisión de una señal digitalTransmisión de una señal digital

3 Tipos de transmisión (II)3 Tipos de transmisión (II)

Page 25: Ud3

Recepción lectura de una señal digitalRecepción lectura de una señal digital

3 Tipos de transmisión (III)3 Tipos de transmisión (III)

1 0 1 1 0 1

Page 26: Ud3

Transmisión síncrona y asíncrona

En una transmisión síncrona:

Emisor y receptor usan una misma señal de reloj.

Esta señal de reloj se puede generar en cada dispositivo o generarse en uno de ellos y transmitirse al otro por una línea independiente de la línea de transmisión de datos (base de tiempos común).

Cuando se usa una base de tiempos común, se suelen utilizar caracteres especiales para evitar problemas de pérdida de sincronía, son los denominados caracteres SYN que es una combinación de 0 y 1 que permiten resincronizar la base de tiempo de los terminales.

Para los bloques de datos que sean de suficiente tamaño, la transmisión síncrona es mucho más eficiente que la asíncrona

Transmisión síncrona y asíncrona

En una transmisión síncrona:

Emisor y receptor usan una misma señal de reloj.

Esta señal de reloj se puede generar en cada dispositivo o generarse en uno de ellos y transmitirse al otro por una línea independiente de la línea de transmisión de datos (base de tiempos común).

Cuando se usa una base de tiempos común, se suelen utilizar caracteres especiales para evitar problemas de pérdida de sincronía, son los denominados caracteres SYN que es una combinación de 0 y 1 que permiten resincronizar la base de tiempo de los terminales.

Para los bloques de datos que sean de suficiente tamaño, la transmisión síncrona es mucho más eficiente que la asíncrona

3 Tipos de transmisión (IV)3 Tipos de transmisión (IV)

Page 27: Ud3

Transmisión-recepción síncronaTransmisión-recepción síncrona

3 Tipos de transmisión (V)3 Tipos de transmisión (V)

1 0 1 1 0 1

Page 28: Ud3

Transmisión síncrona y asíncrona

En una transmisión asíncrona:

Emisor y receptor usan una misma señal de reloj (pero independientes).

Para cada byte se establece una sincronización.

Entre la transmisión de cada byte se produce un estado de no transmisión o reposo con la línea en estado alto.

Cada byte va precedido de una transición a estado bajo (bit de START).

Tras está transición se envían los bits del byte a la velocidad del reloj.

Tras estos bits se envía necesariamente una transición a estado alto (bit de STOP) tras lo cual la línea permanece en ese estado hasta que se envía el siguiente byte.

Transmisión síncrona y asíncrona

En una transmisión asíncrona:

Emisor y receptor usan una misma señal de reloj (pero independientes).

Para cada byte se establece una sincronización.

Entre la transmisión de cada byte se produce un estado de no transmisión o reposo con la línea en estado alto.

Cada byte va precedido de una transición a estado bajo (bit de START).

Tras está transición se envían los bits del byte a la velocidad del reloj.

Tras estos bits se envía necesariamente una transición a estado alto (bit de STOP) tras lo cual la línea permanece en ese estado hasta que se envía el siguiente byte.

3 Tipos de transmisión (VI)3 Tipos de transmisión (VI)

Page 29: Ud3

Recepción asíncronaRecepción asíncrona

3 Tipos de transmisión (VII)3 Tipos de transmisión (VII)

Page 30: Ud3

⑥Adaptación al medio de transmisión.

1. Modulación. 2. Datos digitales en señal digital. 3. Datos digitales en señal analógica.4. Datos analógicos en señal digital. 5. Datos analógicos en señal analógica.

UNIDAD 3. El nivel físico. 30

Page 31: Ud3

⑥Adaptación al medio de transmisión.

1. Modulación. Consiste en la modificación de la señal para

un mejor aprovechamiento del canal. En realidad consiste en enviar datos en un determinado tipo de señal.

Pueden existir todas las combinaciones. Módem: dispositivo que realiza la

adaptación (modulador/demodulador)

UNIDAD 3. El nivel físico. 31

Page 32: Ud3

⑥Adaptación al medio de transmisión.

1. Datos digitales en señal digital.

Transmisión en banda base.

UNIDAD 3. El nivel físico. 32

Page 33: Ud3

⑥Adaptación al medio de transmisión.

1. Datos digitales en señal analógica.

Se modifica alguna característica de la señal portadora.

- ASK: amplitud.- FSK: frecuencia.- PSK: fase.

UNIDAD 3. El nivel físico. 33

Page 34: Ud3

⑥Adaptación al medio de transmisión.

1. Datos analógicos en señal analógica. FM, cuando variamos la frecuencia. AM, cuando queremos variar la amplitud. PM, cuando queremos una fase distinta.

UNIDAD 3. El nivel físico. 34

Page 35: Ud3

⑥Adaptación al medio de transmisión.

Multiplexación. Enviar varias señales con orígenes o destinos distintos (usuarios,

aplicaciones, …) pero tenemos un único medio de transmisión. Hay dos maneras:

- por división de tiempo (TDM), consiste en dividir cada unidad de tiempo en un número fijo de intervalos, tantos como señales queramos enviar, de modo que cada señal se enviara en la ranura de tiempo asignada,

- por división de frecuencia (FDM), modulando cada señal sobre portadoras con frecuencias distintas, lo suficientemente alejadas como para evitar diafonías, etc.

UNIDAD 3. El nivel físico. 35

Page 36: Ud3

Ejemplo:Pensar un ejemplo de una tecnología que use

algún tipo de multiplexación. ¿Qué modulación utiliza esa tecnología?¿Cómo funciona?¿Para qué hace eso?

UNIDAD 2. Arquitecturas de red. 36

Page 37: Ud3

⑧Medios de transmisión.Tipos de medios guiados: Están confinados al medio. Los datos se transmiten mediante señales

eléctricas u ópticas. Pueden ser de tres tipos:

Par de cobre. Cable coaxial. Fibra óptica.

UNIDAD 3. El nivel físico. 37

Page 38: Ud3

⑧Medios de transmisión.Tipos de medios no guiados: Los datos se transmiten mediante señales

electromagnéticas o luminosas. No están confinados a un espacio. Viajan por el aire. Por ejemplo:

Ondas radio. Infrarrojos. Transmisión vía satélite. Wifi. Bluetooth.

UNIDAD 3. El nivel físico. 38

Page 39: Ud3

⑧Medios de transmisión.Los medios de transmisión cumplen unas

determinadas características en cuanto a:- Velocidad de transmisión de los datos. - Ancho de banda que pueda soportar. - Espacio entre repetidores. - Fiabilidad en la transmisión. - Costo. - Facilidad de instalación.

UNIDAD 3. El nivel físico. 39

Page 40: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Composición. Conectores. Tipos. Categorías. Características. Velocidades y anchos de banda. Utilización.

UNIDAD 3. El nivel físico. 40

Page 41: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Composición. Físicamente está formado por dos hilos de

cobre envueltos en una cubierta de PVC y trenzados helicoidalmente.

El trenzado: evitar diafonía. Mejor calidad según trenzados Suelen aparecen agrupados en Mangueras de 4 pares.

UNIDAD 3. El nivel físico. 41

Page 42: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Conectores. Utilizan como conector el RJ45 Cada uno de las líneas del RJ45 albergan un

cable de cada par. Cada uno de ellos recibe el nombre de pines.

UNIDAD 3. El nivel físico. 42

RJ45 Macho

RJ45 Hembra

Page 43: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Tipos. Dependiendo de la forma en que se agrupen:

UTP Unshielded Twisted Pair. No apantallado. Son los más simples.

STP Shielded Twisted Pair. Apantallado.Cada par rodeado de una malla metálica.

FTP Full Shielded Twisted Pair. Totalmente apantallado.Una pantalla rodea a todos los pares.

UNIDAD 3. El nivel físico. 43

Page 44: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Categorías. Dependiendo del número de pares, de las vueltas del trenzado por metro y de

los materiales utilizados, los cables de par trenzado se clasifican en categorías.

Las categorías que se definen en los diferentes estándares de cableado estructurado (Ej..: ISO 11901, EN 50173, EIA/TIA 568) son: Categoría 2, Categoría 3,Categoría 4, Categoría 5, Categoría 5E, Categoría 6 y Categoría 7.

Los cables UTP de categoría 3 se utilizan frecuentemente en telefonía y los cables UTP categoría 5 y 5E para transmisión de datos (Ej..: redes de área local).

UNIDAD 3. El nivel físico. 44

Page 45: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Características. Transmiten señales analógicas y digitales. Las velocidades de transmisión van desde los 2 Mbps hasta los 100

Mbps. A cortas distancias pueden llegar a 1 Gbps. En cuánto a los anchos de banda, se agrupan los cables en clases.

Cada clase especifica la longitud máxima y las frecuencias. Son los más baratos y fáciles de manejar por eso los más extendidos. Permite la transmisión de voz y datos.

UNIDAD 3. El nivel físico. 45

Page 46: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Velocidades y anchos de banda: depende de la sección del cable y de las distancias.

UNIDAD 3. El nivel físico. 46

Page 47: Ud3

⑧Medios de transmisión guiados: El par trenzado.

Utilización. Se utiliza en redes de área local. Se utiliza en telefonía.

UNIDAD 3. El nivel físico. 47

Page 48: Ud3

⑧Medios de transmisión guiados: El cable coaxial.

Composición. Conectores. Tipos. Características. Velocidades y anchos de banda. Utilización.

UNIDAD 3. El nivel físico. 48

Page 49: Ud3

⑧Medios de transmisión guiados: La fibra óptica.

Composición. Conectores. Tipos. Categorías. Características. Velocidades y anchos de banda. Utilización.

UNIDAD 3. El nivel físico. 49

Page 50: Ud3

⑧Medios de transmisión no guiados.

Composición. Conectores. Tipos. Categorías. Características. Velocidades y anchos de banda. Utilización.

UNIDAD 3. El nivel físico. 50

Page 51: Ud3

No utilizan cables para establecer la conexión entre emisor y receptor.El medio de transmisión es el espacio libre. Utilizan señales electromagnéticas o señales luminosas.Todos los sistemas inalámbricos por ondas de radio utilizan antenas como dispositivos emisores y receptores.

⑧Medios de transmisión no guiados: características.

Page 52: Ud3

Ondas de radio.Microondas terrestres.Microondas por satélites artificiales.Ondas infrarrojas.Wifi.Bluetooth.

⑧Medios de transmisión no guiados: tipos.

Page 53: Ud3

Permiten transmitir a largas distancias.Se propagan en todas las direcciones (omnidireccional).Cuando se propagan sobre la superficie terrestre se habla de ondas de radio terrestres (onda media). Cuando se propagan hacia la capa de la ionosfera para que esta las refleje nuevamente hacia la tierra se habla de ondas de radio ionosféricas (onda corta) de ancho de banda hasta 20 MHz. La transmisión por ondas de radio a largas distancia están controladas por los gobiernos de los estados y necesitan de los permisos adecuados para poder realizarse.En las transmisiones usadas por las actuales redes locales inalámbricas (wifi, bluetooth) no se necesita de esos permisos.

⑧Medios de transmisión no guiados: ondas radio.

Page 54: Ud3

⑧Medios de transmisión no guiados.

Page 55: Ud3

Las microondas son señales electromagnéticas con frecuencias comprendidas entre 1 GHz y 10 GHz con velocidades de transmisión del orden de 10 Mbps.Estas señales son altamente direccionales, es decir, se propagan en una única dirección.Las antenas emisoras y receptoras son parabólicas. Emiten toda la energía en un haz unidireccional. Reciben la señal concentrando toda la energía recibida en el plato de la antena.Las microondas no pueden atravesar los obstáculos. No debe haber materiales sólidos o líquidos entre las antenas.

⑧Medios de transmisión no guiados: microondas.

Page 56: Ud3

La antena emisora emite señal en la dirección en la que puede recibir señal la antena receptora. Deben estar alineadas.Se usan para transmitir señal entre puntos de la tierra que se vean entre si (máximo de 50 Km.).Generalmente se usan para comunicar edificios formando una red de campus.

⑧ Medios de transmisión no guiados: microondas terrestres.

Page 57: Ud3

La antena emisora emite señal con la dirección hacia el punto en el que está situado el satélite.El satélite actúa de reemisor enviando las señales hacia la tierra (una zona de cobertura).Sobre la zona de cobertura pueden situarse parabólicas receptoras orientadas hacia el satélite para recibir la señal.

⑧Medios de transmisión no guiados: satélite.

Page 58: Ud3

Son señales electromagnéticas de mayor frecuencia que la de la luz visible y menor frecuencia que las microondasSon señales muy direccionales y no pueden atravesar objetos sólidos (se reflejan en ellos). Esto hace que en sistemas que se usen ondas infrarrojas no haya problemas de seguridad debidos a que las señales se propaguen fuera del edificio.No pueden usarse en exteriores ya que la luz solar emite radiaciones infrarrojas.Pueden usarse en el conexionado de redes locales aunque no es una conexión habitual ya que exige que el emisor emita en la dirección en que recibe el receptor.Son muy utilizadas en los mandos a distancia.

⑧Medios de transmisión no guiados: infrarrojos.

Page 59: Ud3

⑧Medios de transmisión no guiados: infrarrojos.

Page 60: Ud3

Es una tecnología para conexionado de redes locales mediante ondas electromagnéticas.Utiliza una frecuencia de 2.4 GHz con velocidades de transmisión de 54 Mbps (IEEE 802.11g). El alcance de las señales wifi de los productos comercializados es bastante limitado. Puede potenciarse con antenas amplificadoras.Presenta problemas de seguridad ya que la señal que se genera dentro de un edificio se propaga hacia el exterior pudiendo ser capturada y tratada por dispositivos externos a la red.

⑧Medios de transmisión no guiados: Wifi.

Page 61: Ud3

⑨Cableado estructurado.

UNIDAD 3. El nivel físico. 61

A los edificios se les ha ido dotando distintos servicios de mayor o menor nivel tecnológico.

Calefacción, aire acondicionado, suministro eléctrico, megafonía, seguridad, etc (edificio automatizado)

Nueva necesidad: telefonía, tv, conexiones a internet, etc.

Page 62: Ud3

Es el sistema colectivo de: Cables, Canalizaciones, Conectores,

Etiquetas, Espacios, Y demás dispositivos

que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus.

Las características e instalación de estos elementos se debe hacer en cumplimiento de estándares para que califiquen como cableado estructurado

⑨Cableado estructurado.

Page 63: Ud3

Uso del cableado estructuradoLas técnicas de cableado estructurado se aplican en• Edificios donde la densidad de puestos

informáticos y teléfonos es muy alta: oficinas, centros de enseñanza, tiendas, etc.

• Donde se necesite gran calidad de conexionado así como una rápida y efectiva gestión de la red: Hospitales, Fábricas automatizadas, Centros Oficiales, edificios alquilados por plantas, aeropuertos, terminales y estaciones de autobuses, etc.

• Donde a las instalaciones se les exija fiabilidad debido a condiciones extremas: barcos, aviones, estructuras móviles, fábricas que exijan mayor seguridad ante agentes externos

Page 64: Ud3

Ventajas.Trazados homogéneos. Fácil traslado de equipos. Convivencia de distintos sistemas sobre el

mismo soporte físico. Transmisión a altas velocidades para redes. El costo inicial es alto pero hará ahorrar

dinero a largo plazo. La administración, gestión y mantenimiento

de a red es sencilla.

Page 65: Ud3

Si no se usa cableado estructurado …Diferentes trazados de cableado. Reinstalación en cada traslado. Cable viejo acumulado y no reutilizable. Incompatibilidad de sistemas. Interferencias entre distintos tipos de cable. Mayor dificultad para localización de averías.

Page 66: Ud3

Organismos con estándares de cableado estructurado.ANSI, American National Standards Institute. EIA, Electronics Industry Assosiation.TIA, Telecomunications Industries

Assosiations. ISO, International Standards, OrganizationIEEE, Institute of Electric and Electronic

Engineers

Page 67: Ud3

Organismos con estándares de cableado estructurado.TIA/EIA-568 A Cableado de

telecomunicaciones en edificios comerciales (1991)

TIA/EIA-568 B extiende al anteriorTIA/EIA-568 B.1 Requisitos generales.TIA/EIA-568 B.2 Requisitos PTTIA/EIA-568 B.3 Requisitos FO

Page 68: Ud3

Componentes.Cableado Horizontal. Cableado Vertical o Backbone.Cuarto de Telecomunicaciones. Cuarto de Equipo (CPD). Cuarto de Entrada de Servicios.

Page 69: Ud3

Componentes.

1. Área de trabajo (WA)2. Cableado Horizontal.3. Cuarto de

telecomunicaciones (TC).

4. Cableado Vertical o Backbone.

5. CPD.6. Cuarto de entrada de

servicios.7. Cuarto de equipos (ER)

Page 70: Ud3
Page 71: Ud3
Page 72: Ud3

Definición: los componentes de WA se extienden desde el equipo donde están instaladas las aplicaciones (ordenador) hasta la terminación del

cableado horizontal.

Área de Trabajo (WA)

Page 73: Ud3

Área de trabajo: Componentes.Latiguillos (cables rectos) o patch cord.

Cable de par trenzado de cobre terminado con dos conectores RJ45 de 8 pines cada uno.

La categoría del cable debe ser igual o superior a la del cableado horizontal.

Longitud máxima: 3 metros. Los latiguillos se construyen siguiendo la

norma T568A o T568B (código de colores) (Ver cables.ppt).

Page 74: Ud3

Área de trabajo: Componentes.Rosetas o terminales de base RJ45

Son las tomas a las que se conectan por un lado los latiguillos. De ese lado son RJ45 Hembra.

Por detrás contienen las terminaciones según colores de los cables que vienen del panel de parcheo (cableado horizontal).

En las oficinas suele haber una toma para la red (RJ45) y otra para teléfono (RJ11).

Page 75: Ud3

Área de trabajo: Componentes.Rosetas (ver Libro pag. 52)

Page 76: Ud3

Definición: es la parte del cableado estructurado que conecta el área de trabajo con el armario de telecomunicaciones. El

nombre horizontal viene de cómo se distribuye dentro de un edificio. Posee gran cantidad de cables individuales.

Cableado Horizontal

Page 77: Ud3

Cableado Horizontal: Componentes. Cables de par trenzado conectados a las

rosetas por un lado y al patch panel o panel de parcheo por otro.

Patch panel. Canaletas, bandejas, falso suelo o falso techo. Armario de comunicaciones o rack (ubicado

en el Cuarto de Telecomunicaciones)

Page 78: Ud3

También reciben el nombre de patch panel. Se trata de una serie de módulos semejantes a las rosetas. A partir de él se unirán mediante latiguillos los equipos al

switch. IMPORTANTE: es muy importante el etiquetado. Cada cable que llega debe identificarse

de acuerdo a unos estándares.

Cables y Patch Panel

Entre estos dos están las canaletas, regletas, falso suelo, etc

Page 79: Ud3

Canaletas y bandejas

Page 80: Ud3

También reciben el nombre de suelo y techo técnico. Mejoran la limpieza y la ordenación del cableado horizontal. Además los protegen del polvo y la

suciedad.

Falso suelo y falso techo.

Page 81: Ud3

Armarios de comunicaciones.•Tienen medidas estándar. •Se instalan banejas o patch panesl •La anchura es de 19 pulgadas. •La altura se mide en U. Cada equipo que se instala en un rack ocupará un cierto número de Us. •Cada U tiene en cada lateral unos tornillos para la fijación de los equipos.•Se encuentran en los cuartos de telecomunicaciones de cada planta.

Page 82: Ud3

Distancias máximas.

Page 83: Ud3

Distancias máximas.

Page 84: Ud3

Etiquetado del cableado.La norma EIA/TIA-606

especifica que cada terminación de hw deber tener alguna etiqueta que lo identifique.

Cada terminador del cable ha de tener una etiqueta.

¿Cómo etiquetar?

Page 85: Ud3

Se trata de la interconexión entre los distintos armarios de conexiones. Cableado que recorre los distintos pisos a través de una conducción vertical, uniendo los cuartos de telecomunicaciones de cada planta.

Cableado Vertical

Page 86: Ud3

Es una sala grande donde se encuentran todos los servidores que utilizados en una organización. No se suele trabajar directamente en ella,

sino que se configuran accesos remotos a los equipos. El aire acondicionado es importante.

CPD Centro de Proceso de Datos

Page 87: Ud3

La instalación de una red consiste en la ejecución ordenada de un conjunto de tareas que tienen como objetivo proporcionar el servicio que

el cliente solicitó.

Proyecto de una red

Page 88: Ud3

Diseño del cableado.Cuántos equipos hay que conectar. Distribución física: distancia que los separa,

si hay un solo edificio o varios.Qué ancho de banda se necesita. Existen ya redes montadas o equipos con

aprovechables. Condiciones ambientales de humedad,

temperatura, etc.

Page 89: Ud3

Diseño del cableado. Elección del cable: UTP cat 5. Elección de las rosetas: compatibles con cat

5. Elección del panel de parcheo: que sea

ampliable. Elección del recorrido: evitar interferencias,

humedad, y minimizar la cantidad de cable: cables más cortos, mayor capacidad de transmisión.

Page 90: Ud3

Diseño del cableado. Respecto al recorrido, algunas

recomendaciones:Los cables han de estar al menos a 2 m de los

ascensores. Al menos a 30 cm de luces fluorescentes. Al menos a 30 cm de cables de corriente (que

se crucen perpendicularmente) Recorridos para compartir canaletas. Las canaletas lo menos visibles (estética).Poco visibles en la medida de lo posible.

Page 91: Ud3

Documentación. Se debe establecer una nomenclatura de

documentación para los distintos componentes a señalizar.

Todos los cables, paneles y salidas deben estar etiquetados tanto a simple vista, como en su interior.

Deben realizarse esquemas lógicos claros de las instalaciones con todas las indicaciones de los distintos componentes.

Se confeccionarán planos de los edificios donde se han instalado con indicación de los recorridos, situación de cajas, armarios, y todo lo que influya en la red.

Page 92: Ud3

Certificación del cableado.

CERTIFICACIÓN DE CABLEADO ESTRUCTURADO

•Una vez concluída la instalación del cableado, es necesario realizar su certificación, es decir, garantizar que todos y cada de los cables funcionan correctamenTe. •Se compara la calidad del cable con unos patrones propuestos por un estándar: EIA/TIA 568 o ISO IS11801

Page 93: Ud3

-CE es necesario en todas las instalaciones pero especialmente en las complejas. -Existen normas internacionales que se deben complejas. --Importante inversión inicial, pero compensa a largo plazo.

Conclusión.