Clases Amplificadores Operacionales

Preview:

Citation preview

AMPLIFICADOR OPERACIONAL AMP OP

-

++

+

+

-- -

−e+e oe

- Entrada inversora

Entrada no inversora+

Tensiones en el amp op, e+ y e- son tensiones de entrada, y

eo es la tensión de salida

e

-

++

+

+

-- -

CARACTERISTICAS IDEALES DEL AMP OP

−e

−+ −=

ee

eK o

+e oe

El voltaje entre las terminales + y – vale cero (tierra virtual o corto virtual

La corriente entre + y – vale cero = Impedancia de entrada infinita.

La impedancia de salida vale cero.

Tiene una ganancia K que tiende a infinito.

−e

El voltaje entre las terminales + y – vale cero (tierra virtual o corto virtual)

La corriente entre + y – vale cero = Impedancia de entrada infinita.

La impedancia de salida vale cero.

Tiene una ganancia K que tiende a infinito.

K

-

++

+

+

-- -

¿Por qué es tan importante el AMP OP?

+e oe

El AMP OP ofrece una forma conveniente de construir, implantar o realizar funciones de transferencia en el dominio de s o en el dominio del tiempo.

En sistemas de control se emplean a menudo para implantar controladores obtenidos del proceso de diseño del sistema de control.

Con el AMP OP es posible obtener funciones de transferencia de primer orden o de orden superior.

−e

K

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

∫++= dt)t(eKdt

)t(deK)t(eK)t(u IDp

Regresemos al PID: Cómo podemos obtenerlo con AMP OP

)s(Es

K)s(sEK)s(EK)s(U I

Dp ++=

Circuitos obtenidos a partir del AMP OP

Circuitos obtenidos a partir del AMP OP

COMPARADOR

0−inV refVinV −VoutV entonces , inV Si 100 ≈⟩

VoutV entonces , inV Si 100 −≈⟨

VoutV entonces ,refV inV Si 10≈⟩

V outV entonces ,refV inV Si 0≈⟨

Características del AMP OP

Tensiones offset: En los amplificadores reales aparecen en su salida tensiones del orden de decenas a centenas de milivotios en ausencia de una señal de entrada.

Causas: disimetrías en la etapa diferencial…

Modelo de las tensiones offeset: tensión off-set de entrada o Vos (input offset voltage)

¿Cómo eliminar el offset? Se usan potenciómetros (offset null)

Características del AMP OP

Características del AMP OP

Características del AMP OP

Modelo de las corrientes bias: IBIAS

¿Cómo reducir el efecto de la corriente bias? Usando amplificadores CMOS o FET, en lugar de BJT.

Corriente bias o corrientes de polarización: Corriente necesaria para la operación de un AMP OP.

Características del AMP OP

Características del AMP OP

Características del AMP OP

Parámetros de frecuencia: Los AMP OP tienen alta ganancia y un gran ancho de banda; pero tienen tendencia a inestabilidad (polos en el lado derecho del plano complejo).

Cómo se corrige la inestabilidad: se utilizan técnicas de compensación internas y/o externas que limitan su operación: Un capacitor para compensación, por ejemplo, puede provocar una drástica reducción de la frecuencia de corte..

Relación en el AMP OP: La ganancia multiplicada por la frecuencia de corte es igual a la frecuencia f1, siendo ésta el ancho de banda de ganancia unidad

1fCfpK =

Características del AMP OP

Slew rate:. Refleja la capacidad del AMP OP para manejar señales variables en el tiempo. El SR se define como la máxima variación de la tensión de salida con el tiempo que puede proporcionar la etapa salida del AMP, se mide en V/µs.

Efecto: Si hay un exceso sobre el valor del SR, el amplificador pierde sus características de linealidad y provoca distorsión en la señal que entrega.

toVSR

∆∆

=

Características del AMP OP

Otros parámetros del AMP OP

Rango de tensión de entrada:. Máxima tensión de entrada. Ej: 13 V.

Máxima variación de rango de tensión de salida: o maximun peak output voltage swing. Máxima tensión esperada a la salida de el AMP, si su alimentación es de 15 V, su máxima tensión de salida es aproximadamente ± 14 V.

Resistencia y capacitancia de entrada: (input resistance and capacitance). Resistencia y capacitancia equivalente de lazo abierto vista a través de los terminales de entrada del AMP. Ej 2MΩ y 1.4 µF.

Resistencia de salida: resistencia de salida del AMP que puede ser de unos 75 Ω)

Otros parámetros del AMP OP

Consumo de potencia: Potencia DC, para una alimentación de unos ±15 V, su valor es de 50 mW.

Corriente de cortocircuito de salida: Corriente máxima de salida limitada por el dispositivo de protección; ej: 25 mA.

Variación máxima de la tensión de salida: (output voltage swing). Es la amplitud pico-pico máxima que se puede conseguir sin que se produzca corte, para VCC = ±15 V, ésta es de ±13 V a ± 14 V.

Comparación de amplificadores operacionales

Parámetro Ideal Tipo Veloz Bajo Ruido 741 715 5534

=================================================================Ao (dB) ∞ 100 90 100Rsa (Ω) 0 75 75 0.3Ren (Ω) ∞ 2 Meg 1 Meg 0.1 MegIdes (nA) 0 20 250 300Vdes (mV) 0 2 10 5GBW (Hz) ∞ 1 Meg 65 Meg 10 MegSR (V/mseg) ∞ 0.7 100 13CMRR (dB) ∞ 90 90 90PSRR (µV/V) 0 30 30 30PSRR(dB) dB(V/µV) ∞ 90 90 90=================================================================

Configuraciones básicasTabla 3.2: Características de las configuraciones retroalimentadas

Amplificador no inversor Amplificador inversor

Rentrada 21

RGR

R Rmcen

F A+ RA

Rsalida RR G

R R

sa

A

F A

1++

RR G

R R

sa

A

F A

1++

Ancho

de Banda

GBW

R RF A1+

GBW

R RF A1+

Ganancia

de Voltaje 1+RRF

A

−R

RF

A Nomenclatura adicional: Rmc=Resistencia de entrada en modo común, GBW = Producto Ganancia Ancho de Banda, y G = Ganancia en Lazo Abierto

Acondicionamiento Lineal de Señales: Amplificador Inversor

• V+ está conectada a tierra (V+=0).• (V+) ­ (V­)=0, la terminal inversora (negativa) esta al

mismo potencial que la no­inversora y se denomina: tierra virtual.

• La corriente I1 se encuentra usando la ley de Ohm. La corriente I1 fluye solamente hacia R2. Esto es I1=I2.

• La resistencia presentada a Vi es R1.• Entonces: (V­) = (V+) Vo = ­(R2/R1) Vi

I1 = ViR1

I2 = −Vo

R2

I1 = I2 ⇒Vo = −

R2

R1

Vi

Acondicionamiento Lineal de Señales:

Amplificador SumadorSumador Inversor

• (V+) esta conectado a tierra, o (V+)=0.• Debido a que (V­) = (V+), la señal inversora tiene un

potencial de cero y se le denomina tierra virtual.• Las corrientes I1, I2 e I3 se calculan usando la ley de

Ohm.

I1=V1

R1

I2 =V 2

R2

I3 = −Vo

R3

I3 = I1+ I2 ⇒ Vo = −R3

R2V2 +

R3

R1V1

Acondicionamiento Lineal de Señales

Amplificador No Inversor• Ahora (V+) está conectada a Vi.• (V+) = (V­) = Vi• De nuevo, la corriente I1 se calcula usando la

ley de Ohm. I1 fluye a través de R2 e I1=I2.

• El circuito presenta una resistencia muy grande a Vi

I1= − ViR1

I2 =Vi − Vo

R2

I1= I2 ⇒ Vo = 1+R2

R1

Vi

Acondicionamiento Lineal de Señales

El amplificador diferencial• (V+) se obtiene de la división de voltajes: (V+) = [R2/

(R2 + R1)]V2• Las corrientes IA e IB se calculan usando la ley de

Ohm.• IA = IB y (V+) = (V­) • Vo se obtiene de una substitución sencilla.

IA =V1− R2

R2 +R1V2

R1

IB =

R2

R2 +R1V2 − Vo

R2

IA = IB ⇒ Vo =R2R1

V2 − V1( )

Acondicionamiento Lineal de Señales:

Amplificador de Instrumentación• Este amplificador es una herramienta poderosa para

medir señales análogas de bajo nivel que se originan en sensores remotos y que se transmiten a través de un par

de alambres.

Amplificador de Instrumentación Integrado

Usando 3 amplificadores operacionales

Acondicionamiento Lineal de Señales:

Circuito Integrador• (V+) está conectado a tierra, (V+) = 0• Otra vez, (V­) = (V+) y la terminal inversora tiene un

potencial de cero.• IR se calcula usando la ley de Ohm. IR fluye a través

de C. Esto es IR = Ic.

IR = ViR

Ic = −CdVodt

IR = Ic ⇒ Vo = −1

RCVi(λ )dλ∫

Convertidor de Voltaje a Corriente

Convertidor del tipo V­I (carga flotada)

• (V+) esta conectado a Vi.

• (V­) = (V+), de tal forma que la terminal inversora tiene el mismo potencial que Vi.

• La corriente a través de R1 es IL. La corriente IL no depende de la resistencia RL.

• Notar que la carga esta flotada.

Otro convertidor de Voltaje a Corriente

Convertidor V­I con carga aterrizada• IL no depende de RL. Sólo depende de VIN y VREF.• 1/R1 determina laconstante de proporcionalidad

entre V y I.• Notar que la carga esta referenciada a tierra.

IL = 1R1

VIN −VREF( )

Convertidor de Corriente a Voltaje

Convertidor I­V inversor• (V+) está conectado a tierra, o (V+) = 0• (V­) = (V+) = 0, La terminal inversora es tierra

virtual• I fluye solamente a través de R.

• R determina la constante de proporcionalidad entre la curriente y el voltaje.

Otro convertidor de corriente a voltaje

Convertidor I­V no inversor• Si R1 >> Rs, IL fluye casi totalmente a través de Rs.

Acondicionamiento Lineal: Ejemplo

• Usando Amp. Operacionales, diseñar el siguiente circuito aritmético:

Solución• Usar un amplificador sumador con entradas Vi y 5

Volts, ajustar la ganancia a 3.4 y 1, respectivamente.

Acondicionamiento Lineal de Señales:Ejemplo

• Diseñar un circuito con Amp. Operacional que tenga una ganancia de 42 y que tenga una resistencia de entrada muy grande.

Solución• Usar la configuración no inversora, ya que posee la

inherente característica de su resistencia de entrada grande.

Acondicionamiento Lineal de Señales: Ejemplo

• Diseñar un circuito basado en amplificadores operacionales que convierta un rango de voltajes de 20 a 250 mV a un rango de 0 a 5 V.

Acondicionamiento Lineal de SeñalesEjemplo

• Diseñar un circuito basado en amplificadores operacionales para convertirun rango de señales de

[4 to 20 mA] a un rango de voltaje de [0 to 10 V].

Solución.

Amplificadores Operacionales

Introducción a los amplificadores operacionales:

Indice• Introducción• Aplicaciones lineales básicas

• Adaptador de niveles• Amplificadores de instrumentación• Conversión I-V y V-I• Derivador e integrador• Resumen

Introducción• Circuito integrado de bajo coste• Multitud de aplicaciones• Mínimo número de componentes discretos necesarios:

» Resistencias » condensadores.

• Aplicaciones: Cálculo analógicoConvertidores V-I e I-VAmplificadores InstrumentaciónFiltros Activos

Amplificador Operacional

AO

Conceptos básicos de AO

-

+ Vo

V1

V2

Vd

-

+

+Vcc

-Vcc

Vcc

Vcc

-Vcc≤Vo≤+Vcc

Amplificador diferencial

Tensión de salida V0 acotada

Amplificador de continua

Conceptos básicos de AO (I)Encapsulado:

Inserción SMD

Conceptos básicos de AO (II)Circuito equivalente real

-

+

Vo

V1

V2

Vd

0,5·Rd

0,5·Rd Rcx+

+

-

-

Ad·Vd

Ac·Vc Ro

Rd – Impedancia de entrada diferencial

Rcx – Impedancia de entrada de modo común

Ro – Impedancia de salida

Ad – Ganancia diferencial

Ac – Ganancia de modo común

Vo=Ad·Vd+Ac·Vc

Vd=V2-V1 y

Vc=(V1+V2)/2

Conceptos básicos de AO (III)Circuito equivalente ideal

Rd – Infinita

Rcx – Infinita

Ro – Nula

Ad – Infinita

Ac – nula

Vo=Ad·Vd;

Vd=V2-V1

-Vcc≤Vo≤+Vcc

Tensión de salida V0 acotada

-

+

Vo

V1

V2

Vd

+-

Ad·Vd

+Vcc

-Vcc

Conceptos básicos de AO (IV)

Realimentación negativaCon Ad finita

-

+ Vo

V1 V2

Vd

Vi

R2R1 i i Vi+Vd=i·R1

Vi-Vo=i·(R1+R2)

Vo=Ad·Vd

21

1d

1

2

i

o

RRR

A

11

1

R

R

V

V

+⋅

+⋅−=

Conceptos básicos del AO (V)

1

2

i

o

R

R

V

V −=

Con Ad finita

Con Ad infinita21

1d

1

2

i

o

RRR

A

11

1

R

R

V

V

+⋅

+⋅−=

Amplificador de ganancia negativa

-

+ Vo

V1 V2

Vd

Vi

R2R1

Conceptos básicos de AO (VI)

Realimentación negativa

-

+ Vo

V1V2

Vd

Vi

R2R1

0Vd =

Con Ad finita

Con Ad infinita

+⋅

+−⋅

+=

21

1d

21

2id

RRR

A

11

11

RR

RVV

Tensión diferencial nula Vd=0; V1=V2

Conceptos básicos de AO (VII)

La tensión diferencial nula Vd=0 (V1=V2) y su modo de funcionamiento es lineal si:

-Existe un camino de circulación de corriente entre la salida y la entrada inversora

- El valor de la tensión de salida , Vo, no sobrepasa los limites de la tensión de alimentación, ±Vcc

En caso contrario:

-Vd≠0 y por tanto su modo de funcionamiento es no lineal

Conceptos básicos de AO (VIII)

1

2

i

o

R

R1

V

V +=

Realimentación negativa Con Ad finita

Con Ad infinita21

1d

1

2

i

o

RRR

A

11

1

R

R1

V

V

+⋅

+⋅

+=

Amplificador de ganancia positiva ≥ 1

-

+ Vo

V1

V2

Vd

Vi

R2R1

Conceptos básicos de AO (IX)Punto de partida: circuito lineal, Vd=0

-

+

Vo

ViR2R1

Vd

-

+

Vo

Vi

R2R1

Vd

i i i i

1

i

R

Vi =

20 RiV ⋅−= 2i0 RiVV ⋅+=

+ - +-V i0

1

2i2

1

i0 R

RVR

R

VV ⋅−=⋅−=

+⋅=⋅+=

1

2i

1

2ii0 R

R1V

R

RVVV

1

2

i

o

R

R1

V

V +=1

2

i

o

R

R

V

V −=

Aplicaciones lineales básicas del AO

¿Que podemos hacer con un AO?

Multiplicar por Vi·(-1): Cambiador signo o inversor

- Multiplicar por Vi·(-k) o Vi·(1+k) Cambiador de escala

- Multiplicar por Vi·(1) Seguidor de emisor

- Cambiar el desfase entre la

entrada y salida Cambiador de fase

- Sumar de tensiones

±(k1·v1+k2*V2+...kn·Vn) Sumador

- Resta de dos tensiones

(k1·V1-k2*V2) A. Diferencial o Restador

Aplicaciones lineales básicas del AO

1

2

i

ovni Z

Z1

V

VA +==

-Capacidad de realizar operaciones matemáticas, de ahí su nombre (Amplificador operacional)

1

2

i

ovi Z

Z

V

VA −==

Amplificador Inversor

Amplificador no Inversor

-

+

Vo

ViZ2Z1

-

+

Vo

Vi

Z2Z1

Cambiador de signo o inversor

1

2

i

ovi Z

Z

V

VA −==

-Si en el circuito de la figura Z1=Z2 entonces:

- Circuito inversor, la tensión de salida está desfasada 180º respecto a la de entrada

Avi=-1 es decir V0=-Vi-

+

Vo

ViZ2Z1

Cambiador de escala

1

2

i

ovi Z

Z

V

VA −==

-Si en el circuito de la figura Z2=k·Z1

Negativo

Avi=-k es decir V0=-k·Vi

-

+

Vo

ViZ2Z1

Cambiador de escala

-Si en el circuito de la figura Z2=k·Z1

1

2

i

ovni Z

Z1

V

VA +==

Positivo

Avi=1+k es decir V0=(1+k)·Vi

-

+

Vo

Vi

Z2Z1

1

2

i

ovni Z

Z1

V

VA +==

Seguidor de emisor-Si en el circuito de la figura Z1=∞

-Impedancia de salida nula

-Impedancia de entrada infinita

-

+

Vo

Vi

Avni=1

-

+

Vo

Vi

Z2Z1

-

+

Vo

Vi

Z2

Seguidor de emisor

Ejemplo de aplicación: Adaptación de impedanciasVauxR1=10k

Re=100 ohmVaux=1Vpp

VRe=0,01Vpp

-

+

VoVauxR1=10k

Re=100 ohmVaux=1Vpp

VRe=1Vpp

Cambiador de fase

( )( )

1CR1

CR1

V

VA

2

2

i

ov =

⋅⋅ω+

⋅⋅ω+==

-Si R2=R1

CRj1

CRj1

V

VA

i

ov ⋅⋅ω⋅+

⋅⋅ω⋅−==-

+

Vo

Vi

R2R1

R

C

( )

( ) )CR(arctg2A

)CR(arctg

)CR(arctgA

v

v

⋅⋅ω+⋅−=ϕ⋅⋅ω+⋅⋅ω−=ϕ

-Ganancia Av=1

-Desfase

-Para ω=cte, ϕ es función de R y C

Sumador (I)

Sumador inversor

-

+

Vo

V1R´R1

Rn

R2

Vn

V2

i

Vd

i n

n

2

2

1

1

R

V

R

V

R

Vi +⋅⋅⋅++=

Al ser Vd=0

Como Vo=-R´·i

⋅+⋅⋅⋅+⋅+⋅−= n

n2

21

1o V

R

´RV

R

´RV

R

´RV

Si R1=R2=…=Rn

-Vo es la combinación lineal de las tensiones de entrada.

( )n211

o VVVR

´RV +⋅⋅⋅++⋅−=

Sumador (II)Sumador no

inversorLa tensión de salida Vo es:

+⋅

+= V

R

´R1Vo

-

+

VoV´1

R´1

R´n

R´2

V´n

V´2

Vd

R

V+´n

´2

´1

´n

´n

´2

´2

´1

´1

R1

R1

R1

RV

RV

RV

V+⋅⋅⋅++

+⋅⋅⋅++=+

Aplicando Millman, V+ será:

Si R´1=R´2=…=R´n

( )´n´2

´1 VVV

n1

V +⋅⋅⋅++⋅=+

Sumador (III)Sumador no

inversor

-

+

VoV´1

R´1

R´n

R´2

V´n

V´2

Vd

R

V+

( )n21 ´V...´V´Vn

1V +++⋅=+

La tensión V+ en función de todas las tensiones de entrada es:

Y la tensión de salida Vo es:

( )

+⋅+++⋅=

R

´R1´V...´V´V

n

1Vo n21

-Vo es la combinación lineal de las tensiones de entrada.

1

21

1

2

43

42o R

RV

R

R1

RR

RVV ⋅−

+⋅

+

⋅=

Amplificador diferencial: Restador

Aplicando superposición:

( )121

2o VVR

RV −⋅=

La tensión de salida es proporcional a la diferencia de las tensiones

de entrada

-

+

Vo

V1

R3V2

R4

R1 R2

V+

Si hacemos R1=R3 y R2=R4

Adaptación de niveles (I)

-

+

Vo

V1

R3V2

R4

R1 R2

V+

1

21

1

2

43

42o R

RV

R

R1

RR

RVV ⋅−

+⋅

+

⋅=

Aplicando superposición:

Sensores:-Temperatura

- Presión- Humedad

Equipos de medida

Adaptación de niveles (II)

1

2T

1

2

43

4DC0 R

RV

R

R1

RR

RVV ⋅−

+⋅

+

⋅=

Ejemplo: [+12 a -12V] -> [0V a 5V]

-

+

V0

VT

R3VDC

R4

R1 R2

V+

Representa la ecuación de la recta

Adaptación de niveles (II)

1

2T

1

2

43

4DC0 R

RV

R

R1

RR

RVV ⋅−

+⋅

+

⋅=

Ejemplo: [+12 a -12V] -> [0V a 5V]

-

+

V0

VT

R3VDC

R4

R1 R2

V+

Representa la ecuación de la recta

Adaptación de niveles (II)

1

2T

1

2

43

4DC0 R

RV

R

R1

RR

RVV ⋅−

+⋅

+

⋅=

Ejemplo: [+12 a -12V] -> [0V a 5V]

-

+

V0

VT

R3VDC

R4

R1 R2

V+

Representa la ecuación de la recta

Amplificadores de instrumentación (I)

-

+

VoR1

R2

R1 R2

V+

V1

V2

Amplificación de señales débiles de transductores

( )1

212o R

RVVV ⋅−=

V1

V2

Ra

Ra Ra

Ra+∆Ra

V

Problema: Adaptación de impedancias

Amplificadores de instrumentación (II)

-

+Vi

V1

R1

V2R2

R1 R2

V+

-

+

-

+

R´R´

V1

V2

Ra

Ra Ra

Ra+∆Ra

V

( )1

212o R

RVVV ⋅−=

- Impedancia de entrada alta

- La ganancia depende de varias resistencias (R1 y R2)

Amplificadores de instrumentación (III)

( ) ( )12d1

212o VV´A

R

´R21

R

RVVV −⋅=

⋅+⋅⋅−=

V1

V2

Ra

Ra Ra

Ra+∆Ra

V

- Impedancia de entrada alta

- La ganancia depende de una resistencia (R)

-

+Vi

V1

R1

V2R2

R1 R2

V+

-

+

-

+

R´R´

R

Conversión corriente-tensión (I)

R)t(i)t(Vo ⋅=

Objetivo: obtener una tensión V(t) proporcional a una corriente i(t)

Circuito simple

i(t)

V(t)R

Ze=R

Circuito mejorado

-

+

Vo(t)

Ri(t) i(t)

Vd

VR(t)

Ze=0

R)t(i)t(V)t(V Ro ⋅−=−=

Convertidor tensión-corriente (I)Objetivo: obtener una corriente i(t) proporcional a una tensión V(t).

Carga flotante

R

)t(V)t(i i=

Amplif icador no inversor Amplif icador

inversor

-

+

Vo

Vi

ZR i i

-

+

Vo

ViZR i i

Convertidor tensión-corriente (II)

( )12s VVf)t(i −=

21

1o

21

1o

RZR

ZR)t(V)t(V

RR

R)t(V)t(V

+⋅=

+⋅=

+

Objetivo: obtener una corriente i(t) proporcional a una tensión V(t).

Carga no flotanteSiempre y cuando:

-Vcc ≤Vo≤+Vcc

-

+

Vo

V1R1

is

R2

R1 R2V2

Z

V-

V+

+⋅= +

1

20 R

R1)t(V)t(V

y (V-)>(V+)

Convertidor tensión-corriente (III)

-

+

Vo

V1R1

is

R2

R1 R2V2

Z

i i

i´-is

Carga no flotante

ZiVRiVVR

VVi so ⋅=⋅−=−= ´;´;

´2

1

1

)1(1 11

2

1

2 VR

R

R

RZiV so −

+⋅⋅=

Convertidor tensión-corriente (IV)

)2(1 221

2

1

2 RiVR

R

R

RZiV sso ⋅+−

+⋅⋅=

-

+

Vo

V1R1

is

R2

R1 R2V2

Z

i i

i´-is

Carga no flotante

( ) ZiVRiiVVR

VVi sso ⋅=⋅−−=−= ´;´´;

´´ 2

1

2

Convertidor tensión-corriente (V)

)1(1 11

2

1

2 VR

R

R

RZiV so −

+⋅⋅=

)2(1 221

2

1

2 RiVR

R

R

RZiV sso ⋅+−

+⋅⋅=

-

+

Vo

V1R1

is

R2

R1 R2V2

Z

i i

i´-is Igualando las ecuaciones (1) y (2):

1

12)(R

VVtis

−=

Carga no flotante

Circuito integrador (I)

R

)t(V)t(i i=

+⋅=

+⋅=

t

0

ci

c

t

0

cc

)0(VdtR

)t(V

C

1)t(V

)0(Vdt)t(iC

1)t(V

Dado que Vd=0

La tensión Vc es:-

+

Vo

Vi CR i i

Vd

Vc

Como Vo(t)=-Vc(t) entonces ∫ −⋅⋅

−=t

0

cio )0(Vdt)t(VCR

1)t(V

Circuito integrador (II)

-

+

Vo

Vi CR i i

Vd

Vc

Formas de onda

∫ −⋅⋅

−=t

0

cio )0(Vdt)t(VCR

1)t(V

Circuito integrador (III)

Problema: Saturación de AO

-

+

Vo

ViR i i

Vd

UDi

+-

R1

C

Causas:

• Asimetría en los caminos de entrada-salida.

Efecto:

• Sin tensión de entrada, en régimen permanente, el AO se satura. V0=Ad·UDi=±Vcc

Solución:

• Limitar la ganancia del AO con R1. V0=UDi·(1+R1/R)

+Vcc

-Vcc

Circuito integrador (V)Conversor V-I:

Carga no flotante

-

+

Vo

V1R1

is

R2

R1 R2V2

C

i i

i´-isVc

∫ +⋅=t

0

ci

c )0(VdtR

)t(V

C

1)t(V

+⋅=

1

2c0 R

R1)0(V)t(V

1

2s R

V)t(i =

∫ +⋅=t

0

csc )0(Vdt)t(iC

1)t(V

Circuito derivador (I)

dt

)t(dVC)t(i i=

R)t(i)t(VR ⋅=

dt

)t(dVRC)t(V i

o −=

Dado que Vd=0

La tensión VR es:

Como Vo(t) es:-

+

Vo

Vi

C Ri i

Vd

Vc VR

)t(V)t(V Ro −=

entonces:

Circuito derivador (II)

-

+

Vo

Vi

C Ri i

Vd

Vc VR

Formas de onda

dt

)t(dVRC)t(V i

o −=

• El AO es un circuito integrado de bajo coste capaz de realizar multitud de funciones con pocos componentes discretos.

• Ejemplos de funciones lineales: Calculo analógico, convertidores V-I e I-V, amplificadores de instrumentación y filtros activos.

• El AO se comporta de forma lineal si:– Hay camino de circulación de corriente entre la salida y

la entrada negativa– La tensión de salida no supera los limites de la tensión

de alimentación

Resumen (I)

• Es posible realizar funciones matemáticas, de ahí su nombre : Amplificador Operacional.– Sumador– Restador– Integrador

– Diferenciador

– Amplificadores de instrumentación

– Adaptadores de niveles

Resumen (II)