45
PROCESOS BIOTECNOLÓGICOS Y BIOTECNOLOGIA Biotecnología. Conceptos Interdisciplinariedad Campos de aplicación “Herramientas” de producción. Característica biológicas

1elementos de Biol Celular

Embed Size (px)

DESCRIPTION

Elementos biologia celular

Citation preview

  • PROCESOS BIOTECNOLGICOS Y BIOTECNOLOGIABiotecnologa. ConceptosInterdisciplinariedadCampos de aplicacinHerramientas de produccin. Caractersticas biolgicas

  • BIOTECNOLOGIA:Uso integrado de la Ingeniera, bioqumica y microbiologa para conseguir la aplicacin tecnolgica (industrial) de las capacidades de los microorganismos, clulas de tejidos y sus partes . Fed. Eu. Biotecnologia

  • AREAS DE INTERES DE LA BIOTECNOLOGIA

  • todo lo que es cientfico y tcnicamente posible no es necesariamente rentable, productivo y ticamente aceptado

  • ALGUNAS DEFINICIONES DE BIOTECNOLOGIA

    La aplicacin de los principios cientficos y de ingeniera al tratamiento de los materiales, por los agentes biolgicos, para producir bienes y servicios" (Bull, Holt y Lilly 1982)

    La utilizacin de molculas obtenidas biolgicamente, estructuras, clulas u organismos para llevar a cabo procesos especficos (Wiseman, Wasserman,1988)

    Es la aplicacin de principios cientficos e ingeniera para el procesamiento de materiales por agentes biolgicos para crear bienes y servicios". Agentes biolgicos: microorganismos, clulas de plantas y animales y enzimas. Los bienes y servicios incluyen los productos de industrias relacionados a los alimentos, bebidas, productos farmacuticos y biomdicos (Economic Cooperation and Development (OECD), Sasson, 1989).

  • El uso integrado de la bioqumica, la microbiologa y la ingeniera para lograr aplicaciones tecnolgicas de las capacidades de los microorganismos, los cultivos de tejidos y partes derivadas de ellos" (Fed. Europea de Biotec., Scragg, 1996).

    Toda aplicacin tecnolgica que utilice sistemas biolgicos y organismos vivos o sus derivados para la creacin o modificacin de productos o procesos para usos especficos (Convencin de Rio, 1992).

  • Herramientas de la BiotecnologaAPLICACIN DE ORGANISMOS SISTEMAS Y PROCESOS BIOLOGICOS A LA INDUSTRIA MANUFACTURERA Y DE SERVICIOS

  • Desde una perspectiva bioqumica, tres caractersticas distinguen a las clulas vivas de otros sistemas qumicos:

    la capacidad para duplicarse generacin tras generacin; la presencia de enzimas, las protenas complejas que son esenciales para las reacciones qumicas de las que depende la vida, y una membrana que separa a la clula del ambiente circundante y le permite mantener una identidad qumica distinta. Cmo surgieron estas caractersticas? Cul de ellas apareci primero e hizo posible el desarrollo de las otras?El comienzo de la vida

  • Oparin y Haldane previa "evolucin qumica": 1- poco o nada de oxgeno presente y 2-elementos primarios de la materia viva ( H, O, C, N) disponibles la atmsfera y en las aguas de la Tierra primitiva. 3-energia

    Oparin: coacervados (reacciones en interior) metabolismo sencillo, punto de partida de todo el mundo viviente

    Evolucin prebiolgicaS. Miller formacin de tipos de molculas orgnicas caractersticas de los sistemas vivos. Otros experimentos han sugerido el tipo de procesos por los cuales agregados de molculas orgnicas pudieron haber formado estructuras semejantes a clulas, separadas de su ambiente por una membrana y capaces de mantener su integridad qumica y estructuralEl comienzo de la vida

  • LOS ORGANISMOS VIVOS3500 3800 millones de aos: Aparicin de la primera clula viva1500 millones de aos la evolucin separa dos tipos celulares:PROCARIOTAS Y EUCARIOTAS

  • LOS ORGANISMOS VIVOS probably arose on earth about 3.5 billion years ago by spontaneous reactions between molecules in an environment that was far from chemical equilibrium . PROCARIOTAS Y EUCARIOTAS

  • Los procariotas son los organismos celulares ms pequeos y representan el grupo ms antiguo y ms abundante de los seres vivos. La biologa molecular ha permitido a los bilogos identificar dos linajes distintos de procariotas: las arqueobacterias y las eubacterias.

  • LA CELULA Unidad morfolgica y funcional que constituye a los seres vivosTEORIA CELULARTodos los organismos vivos estn compuestos por una o mas clulasLas reacciones qumicas, procesos biosintticos y reacciones liberadoras de energa ocurren dentro de la clulaLas clulas se originan de otras clulasLas clulas contienen la informacin hereditaria de los organismos de la que son parte, y sta pasa de una clula progenitora a una clula hija

  • RNA PRIMER MOLECULA AUTOCATALITICA

  • One of the crucial events leading to the formation of the first cell must have been the development of an outer membrane.Conformation of an RNA molecule. Nucleotide pairing between different regions ofthe same polynucleotide (RNA) chain causes the molecule to adopt a distinctive shape.La membrana defini la primera clula

  • Evolutionary significance of cell-like compartments. In a mixed population of self replicating RNA molecules capable of influencing protein synthesis any improved form of RNA that is able to promote formation of a more useful protein must share this protein with its neighboring competitors. However, if the RNA is enclosed within a compartment, such as a lipid membrane, then any protein the RNA causes to be made is retained for its own use; the RNA can therefore be selected on the basis of its guiding production of a better protein.Hay consenso de que forma ancestral de vida necesitaba un rudimentario manual de instrucciones que pudiera ser copiado y transmitido de generacin en generacin. La propuesta ms aceptada es que el RNA

  • LOS ORGANISMOS VIVOS

    Las molculas autorreplicantes se habran introducido dentro de compartimientos como?La uniformidad que subyace a la vida en la Tierra -notablemente, todos los organismos comparten un mecanismo de transmisin gentica comn basado en el DNA- sugiere que toda la vida actual desciende de un nico ancestro

  • Formation of membranes by phospholipids. Because these molecules have hydrophilic heads and lipophilic tails, they will align themselves at an oil-water interface with their heads in the water and their tails in the oil.

  • PLASMATIC MAMBRANESix ways in which membrane proteins associate with the lipid bilayer. Most transmembrane proteins are thought to extend across the bilayer as a single a helix (1) or as multiple a helices (2); some of these "single-pass" and "multipass" proteins have a covalently attached fatty acid chain inserted in the cytoplasmic monolayer (1). Other membrane proteins are attached to the bilayer solely by a covalently attached lipid - either a fatty acid chain or prenyl group - in the cytoplasmic monolayer (3) or, less often, via an oligosaccharide, to a minor phospholipid, phosphatidylinositol, in the noncytoplasmic monolayer (4). Finally, many proteins are attached to the membrane only by noncovalent interactions with other membrane proteins (5) and (6).

  • PROCARIOTAS EUCARIOTAS

  • They are spherical or rod-shaped cells,Commonly several micrometers in linear dimension.Possess a protective coat, called a cell wall, beneath which a plasma membrane encloses a single cytoplasmic compartment containing DNA, RNA, proteins, and small molecules. Bacteria are small and can replicate quickly, simply dividing in two by binary fission. When food is plentiful, "survival of the fittest" generally means survival of those that can divide the fastest.Under optimal conditions a single procaryotic cell can divide every 20 minutes (5 billion cells in less than11 hours).By spontaneous mutation and natural selection to utilize new types of sugar molecules as carbon sources.LAS PROCARIOTAS SON ESTRUCTURALMENTE SIMPLES PERO BIOQUIMICAMENTE DIVERSOS

  • Metabolic pathway:reaction "chains" so that the product of one reaction is the substrate for the next; such enzymatic chains.If metabolic pathways evolved by the sequential addition of new enzymatic reactions to existing ones, "metabolic tree," The fundamental position in metabolism is firmly occupied by the chemical processes that involve sugar phosphates, among which the most central of all is probably the sequence of reactions known as glycolysis, by which glucose can be degraded in the absence of oxygen.Glycolysis occurs in virtually every living cell and drives the formation of the compound adenosine triphosphate, or ATP, which is used by all cells as a versatile source of chemical energy

  • PARED CELULAREn Bacterias: peptidoglicano o murena Cadenas lineales de glicano (unidades alternadas de N-acetilglucosamina y N-acetil murmico). Entrecruzados por uniones peptdicas (4 aa)La pared de las Gram+ consta de slo una capa de 10 a 80 nm de espesor de peptidoglicano. violeta+fuccsina= violeta

    La pared de las G- consta de una capa de 2 a 3 nm de espesor de peptidoglicano, el periplasma y una membrana externa de 7 a 8 nm de espesor con lipoprotenas y lipopolisacridos de estructura similar a la membrana celular violeta+fuccsina= fucsiaGram +Gram -

  • Evolucin y aprovechamiento de energa

  • REQUIRIMIENTOS NUTRICIONALES BASICOS

    Fuente de energa. Auttrofo (luz)Quimitrofo (oxidacin de compuestos qumicos)

    Fuente de Carbono: Littrofos (compuestos inorgnicos, CO2)Organtrofos (compuestos orgnico, glucosa y otros

  • Nutricin y metabolismo Bacterias ver cuadro siguientePlantas: fotolitotrofosAnimales: quimioorganotrofos

    QUIMIOORGANOTROFOS La glucosa o HC son fuente de C y energa. Respiracin y fermentacin.Respiracin aerbica estricta el O2 es el aceptor final de la cadena de transporte de e-Respiracin anaerbica estricta los aceptores son compuestos del N (NO3) que se reducen a (NO-2) que puede ser reducido a N2 por pseudomonas y otras MO Nitrificantes Nitrobacter: NO-2 es oxidado a NO-3 ( absorcin de N en las plantas) FBN reduccin de N2 atmosferico a NH4+ ndulos

  • Fuentes de energa y de carbono de las bacterias

    Tipo de organismoFuente de energaFuente de carbonoDadores de electronesFotolitotrofos Bacterias verdes y purpreas del azufre, cianobaterias LuzCO2Compuestos inorgnicos S2- Fotoorganotrofos Bacterias purpreas no del azufre LuzCompuestos orgnicos (y CO2) Compuestos orgnicos (alcoholes, cidos grasos, etc.)Quimiolitotrofos Arqueobacterias hipertermfilas del azufre, metangenas, bacterias del hidrgeno, del hierro, nitrificantes, carboxibacterias Qumica. Reacciones de oxidorreduccinCO2Compuestos inorgnicos (H2, S, S2-, Fe2+, NO3, NO2, CO)Quimioorganotrofos La mayor parte de las bacterias Qumica Reacciones de oxidorreduccinCompuestos orgnicosCompuestos orgnicos (glucosa y otros hidratos de carbono)

  • Eucaryotic cells, by definition and in contrast to procaryotic cells, have a nucleus (caryon in Greek), which contains most of the cell's DNA, enclosed by a double layer of membrane The DNA is thereby kept in a compartment separate from the rest of the contents of the cell, the cytoplasm, where most of the cell's metabolic reactions occur. In the cytoplasmOrganelles can be recognized. The chloroplasts and mitochondria Each of these is enclosed in its own double layer of membrane, which is chemically different from the membranes surrounding the nucleus. Mitochondria are an almost universal feature of eucaryotic cells, whereas chloroplasts are found only in those eucaryotic cells that are capable of photosynthesis EUCARIOTAS

  • EUCARIOTA VEGETAL Caractersticas diferenciales de las Eucariotas animales: Vacuola, Pared celular (celulosica) y Cloroplastos

  • The cell nucleus. The nucleus contains most of the DNA of the eucaryotic cell. It is seen here in a thin section of a mammalian cell examined in the electron microscope. How and why the nucleus originated is uncertain; some speculations on its origin are presented inA chloroplast. The extensive system of internal membranes can be seen in this electron micrograph of a chloroplast in a moss cell. The flattened sacs of membrane contain chlorophyll and are arranged in stacks, or grana. This chloroplast also contains large accumulations of starch. A mitochondrion. Mitochondria carry out the oxidative degradation of nutrient molecules in almost all eucaryotic cells. As seen in this electron micrograph, they possess a smooth outer membrane and a highly convoluted inner mem-brane.

  • Endoplasmic reticulum. Electron micrograph of a thin section of a mammalian cell showing both smooth and rough regions of the endoplasmic reticulum (ER). The smooth regions are involved in lipid metabolism; the rough regions, studded with ribosomes, are sites of synthesis.The Golgi apparatus.

  • Los ribosomas, el retculo endoplsmico y el complejo de Golgi y sus vesculas cooperan en la sntesis, procesamiento qumico, empaquetamiento y distribucin de macromolculas y nuevo material de membrana Trfico de membranas

  • CITOESQUELETO Tubulina, y filamentos de actina

  • How the positively charged proteins called histones mediate the folding of DNA in chromosomes.Schematic drawing of eucaryotic cells in mitosis. An animal cell is shown on the left and a plant cell on the right. The nuclear envelope has broken down, and the DNA, having replicated, has condensed into two complete sets of chromosomes. One set is distributed to each of the two newly forming cells by a mitotic spindle composed largely of microtubules.DNA and mitosis in eucariotic cells

  • VIRUSES The coats of viruses. These electron micrographs of negatively stained virus particles are all at the same scale. (A) Bacteriophage T4, a large DNA-containing virus thatinfects E. coli. The DNA is stored in the bacteriophage head and injected into the bacterium through the cylindrical tail. (B) Potato virus X, a filamentous plant virus that contains an RNA genome. (C) Adenovirus, a DNA-containing virus that can infect human cells. The protein capsid forms the outer surface of this virus. (D) Influenza virus, a large RNA-containing animal virus whose protein capsid is further enclosed in a lipid-bilayer-based envelope containing protruding spikes of viral glycoprotein.

  • VIRUSEl genoma de los virus puede estar constituido por DNA o RNA de cadena simple o doble. Las protenas de la cpside pueden tomar distintas formas. La cpside puede estar rodeada por capas adicionales o tener otras estructuras protenicas complejas unidas a ella

  • The life cycle of the Semliki forest virus. The virus parasitizes the host cell for most of its biosyntheses

  • The life cycle of a retrovirus. The retrovirus genome consists of an RNA molecule of about 8500 nucleotides; two such molecules are packaged into each viral particle. The enzyme reverse transcriptase first makes a DNA copy of the viral RNA molecule and then a second DNA strand, generating a double-stranded DNA copy of the RNA genome. The integration of this DNA double helix into the host chromosome, catalyzed by the viral integrase, is required for the synthesis of new viral RNA molecules by the host-cell RNA polymerase