46
Eduardo Silva Lora 1 , York Castillo Santiago 1 , Quelbis Román Quintero Bertel 2 , Osvaldo José Venturini 1 , José Carlos Escobar Palacio 1 , Vladimir Melián Cobas 1 , Albany Milena Lozano Násner 3 , Oscar Almazan del Olmo 4 San Salvador de Jujuy, 11 al 14 de noviembre de 2019 Conferencia: BIOMASS ELECTRICITY GENERATION TECHNOLOGIES: A REVIEW, TECHNOLOGY SELECTION PROCEDURE, AND POWER CAPACITY CALCULATION

Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos

Escobar Palacio1, Vladimir Melián Cobas1, Albany Milena Lozano Násner3, Oscar Almazan del Olmo4

San Salvador de Jujuy, 11 al 14 de noviembre de 2019

Conferencia:“BIOMASS ELECTRICITY GENERATION TECHNOLOGIES: A REVIEW, TECHNOLOGY

SELECTION PROCEDURE, AND POWER CAPACITY CALCULATION “

Page 2: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

What is new at NEST/UNIFEI?New facilities: building and a shed- A PETROBRAS PROJEC

ReBiBiR (T)-Programa CYTED

Page 3: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

NEST Laboratories

ReBiBiR (T)-Programa CYTED

Bubbling bed gasifier

Biomass combustion laboratory

Gas microturbines and chiller

Fuel and gases characterization laboratory

Traning center forpower plants operators

Page 4: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 5: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 6: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

RDF briquettes production and gasification

Page 7: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

HELIOTHERMAL LAB

Page 8: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 9: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 10: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Biomass power plants in the world and

in Brazil (ECOPROG, 2017)

The present state of the art of the electricity generation from

biomass and future prospects are described in [6]:

- In 2017 there were 3520 biomass generation plants with an

installed capacity of 52.5 GWe.

- In 2026 this number will increase up to 5400 and the installed

capacity up to 76 GWe to be commissioned by the end of this

year.

Brazil has a capacity of 14.02 GWe (244 biomass power

plants), where the sugarcane biomass sources represents

78.2% of the total with 11.01 GWe. Other biomass sources,

such as animal waste, urban solid waste, liquid biofuels, and

other agro-industrial goods, share 11.8% [6].

Page 11: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Arising questions?

IS IT ECONOMICALLY VIABLE TO GENERATE ELECTRICITY?

LCOE? NPV? IRR ?

BIOMAS AVAILABILTY AND PROPERTIES??

WHICH PRETEATMENT TECHNOLOGY TO USE?

WHICH POWER CAPACITY, KWE, CAN I HAVE?

WHICH TECHNOLOGY IS MORE SUITABLE?

Page 12: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Biomass electricity Generation Technologies

Page 13: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Biomass electricity Generation Technologies

Page 14: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Classification of Biomass fuelled power

plants

Industrial> 3 MWe.

Conventional Rankine Cycle.

BIGCC

Medium-scale generation 0.1 to 3.0 MWe

Organic Rankine Cycle (ORC),

Gasifier / ICE, Conventional Rankine Cycle

Radial Turbine

Screw Expander,

Piston Steam Engine.

Small-scale generation <0.1 MW

Stirling Engine,

Rankine Organic Rankine Cycle,

Radial Turbine

Screw Expander.

Page 15: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Particularities and constrainst in modern biomassgeneration units

• Use of biomass with variable size distribution andmoisture; its transport and feeding.

• Biomass pretreatment is specific for each technology andcapacities.

• Problems related to the combustion process: slagging andcorrosion.

• Definition of parameters and thermal scheme during thesystem design depending on a cost benefit analysis.

• Uncertainties in relation to the cost of some types ofgeneration technologies.

Page 16: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

CONVENTIONAL STEAM RANKINE CYCLE

• The Rankine cycle has a relatively low efficiency - for conventional pressures of

20 bars, efficiencies in the range of 7-15 %, depending on the type of turbine

used: backpressure or condensing one [15].

• The efficiency increase of conventional Rankine cycles can be attained through

the use of higher steam parameters and/or steam reheating (line 7) and the

regenerative heating of the condensates (line 9). All these improvements require

of a techno-economic analysis to compare the necessary additional investment

with the profit obtained due to efficiency increase.

• Some biomass plants now use reheating and regenerative heating, such as

Bishoferode in Germany, which achieved an efficiency of 36% at 540 °C and

13.0 MPa as steam parameters [16].

Page 17: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

A general scheme of a Rankine steam cycle

Page 18: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 19: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

BIGCC – Combined cycle

Page 20: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

• In the 80’s many projects like the Varmano´s plant in Sweden (11 Mwe), operated for a long period of time.

• Today those projects are forsaken and the plants are on a standstill state, due to technical and economic reasons.

• Foreseen theoretical efficiency of 43% was never reached, not over passing 32%.

• Problems with the gas cleaning, difficulties with processes integration, financial limitations, etc.

Page 21: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

BIOMASS ORC PROCESS DIAGRAM

TRIOGEN

Page 22: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 23: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 24: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

SCREW EXPANDER

Page 25: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

SCREW EXPANDER: HELIEX POWER

HP145: 1700 – 1100 Euro/kWe (75 – 160 kWe)

HP204: 1400 – 1000 Euro/kWe (160 – 400 kWe)

HP204: 1000 – 900 Euro/kWe (400 – 630 kWe)

Page 26: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Electricity generation though biomass gasification and the gas cleaning stage.

Page 27: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

GASIFIER/ICE systemsGraz, Austria

Page 28: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Gasifier / Gas microturbine

The idea of feeding a gas microturbine with biomass gasification gas (lean gas and product gas) is extremely interesting due to it high weight/power ratio and low emissions.

Low heating value value of the gas and its composition, quite different from the natural gas, make the operation of gas microturbines (MTG) with gas from biomass to present problems such as pressure drop, flame instability, need to refurbish the combustion chamber and to solve the arising compressor and turbine mismatch.

Page 29: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 30: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Page 31: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Biomass Stirling Engine

Page 32: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Power capacity and efficiency ranges for biomass to electricity technologies.

Page 33: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Technology and market maturity of biomass electricity generation technologies

Page 34: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

BIOMASS PRETREATMENT

Page 35: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Pretreatment schematic typologies for biomass electricity

generation commercial technologies.

Page 36: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Biomass pretreatment requirements for different thermochemical conversion

technologies (own elaboration using data from Koppejan and van Loo (2012),

e4TECH (2009), Naimi et al. (2006), Worley and Yale (2012), Mahr (2011).

Page 37: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Based on biomass availability and properties such as low

heating value, moisture and size distribution a methodology is

proposed for the calculation of the power capacity and the

selection of the conversion technology

(1) An initial value of the conversion efficiency is assumed and

a first approximation of the power capacity is obtained based

on biomass availability.

The conversion technology definition (Primary Energy

Conversion + Prime mover) is carried out based on the

information available in the efficiency versus power range

graphic, assuming a linear dependence of electricity

generation efficiency from power capacity (We are refining

these data).

A corrected efficiency value results from this step.

Page 38: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Iterative method for efficiency and power capacity calculation while using

commercial generation technologies: CRC, ORC and G/ICE

Starting point

calculated

from biomass

availability

and EFF=20%

New EFF

value

Page 39: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

2) Pretreatment technologies are selected according to

the moisture and particles size requirements for each of

the selected primary conversion technologies.

3) Efficiency values are corrected by considering the

energy consumption of the pretreatment equipment.

4) After that, this set of calculations is repeated until theefficiency values will differ by only 0.5%. It can occur a

change of generation technology.

Page 40: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

5) Cost of biomass: including agricultural practices in

the case of energy crops, and collecting in the case of

residues. Logistics costs to deliver biomass up to the

generating unit should be considered also. These are

the main components of the biomass cost at the gate

of the generation plant.

6) LCOE is calculated using available investment data

and operation and maintenance cost of main

pretreatment primary conversion equipment and prime

movers.

Page 41: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

Methodology for power

capacity calculation

and technology

selection in biomass

electricity generation

units.

Biomass availability, calorific value, moisture,

size distribution

Selection of potential conversion technologies for electricity generation based on defined power capacity

ranges

Real conversion efficiencies refinement

Start

Assumption of an initial conversion efficiency value

of 20%

Power capacity calculation (operating hours should be

assumed)*

Definition of pretreatment technologies

Power capacity calculation

LCOE, VPL, payback

Technology selection

Selection of the combustion and gasification reactor type

and its efficiency

Real conversion efficiencies calculation

*Changes in generation range and

technology can happen

Technical and market maturity assessment

Page 42: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

APPLICATION EXAMPLE: Power capacity vs biomass availability

(40% moisture) for ORC, G/ICE, and CRC technologies.

Page 43: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

EXAMPLE OF APPLICATION – TECHNICAL AND ECONOMIC POTENTIAL OF

BIOMASS ELECTRICITY IN MINAS GERAIS STATE

Page 44: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

COSTS!!!

The information related to the specific costs of different

installed generation systems is poor and imprecise; the higher

values are referred to as complete installations (IRENA, 2012;

Kosmadakis et al., 2013; Preto, 2014).

It varies in wide ranges:

1) Steam cycle: approx. 6500 USD/kWe,

2) ORC: from 6200 to 10700 USD/kWe,

3) Steam engine: 6100 USD/kWe

4) Gasification/ICE: 5300 to 8000 USD/kWe.

Page 45: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

CONCLUSIONS

• The technologies already at commercial scale are the CRC, ORC and thegasification/engines systems. The generation efficiencies are in the range of 10 to 36%,being the most efficient systems the CRC with reheating and regenerative heating and thegasification / internal combustion engine units.

• In relation to the costs, for most of the technologies, it was not possible to find coherent,reliable and solid information, due to the fact of a reduced number of manufacturers and alimited trading volume, that drives to the situation that every project is customized.

• A methodology is being proposed for calculating a proximate value of the electric capacitystarting from biomass availability in ton/h, while defining the most feasible technology to beused.

• Data are provided for the adequate selection of pretreatment equipment consideringrequirements linked with the fluid dynamics of the combustion and gasification reactors,which selection also depends on the quantity of available biomass.

• Recommendations are included about references indicating how to calculate the cost andelectricity consumption of pretreatment equipment an how to consider them in efficiency andLCOE calculations.

• The information provided in the paper allows applying a logical approach to the preliminarydesign of biomass electricity generation systems.

Page 46: Conferencia · 2020-03-28 · Eduardo Silva Lora1, York Castillo Santiago1, Quelbis Román Quintero Bertel2, Osvaldo José Venturini1, José Carlos Escobar Palacio1, Vladimir Melián

ReBiBiR (T)-Programa CYTED

GRACIAS, MUITO OBRIGADO

[email protected]