33
APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO DE ESTRUCTURAS MEDIANTE HERRAMIENTAS INFORMÁTICAS Luis Lozano Bodeguero. 50895732-K Exp.: 10246 [email protected] Tutor: José Luis Fernández Cabo ETSAM aula TFG 3 ENERO 2016 TRABAJO FIN DE GRADO PLAN 2010

APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

Embed Size (px)

Citation preview

Page 1: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

  

APLICACIONESDELAESTÁTICAGRÁFICAAL

DISEÑODEESTRUCTURASMEDIANTEHERRAMIENTASINFORMÁTICAS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Luis Lozano Bodeguero. 50895732-K Exp.: 10246 [email protected]

Tutor: José Luis Fernández Cabo

ETSAM aula TFG 3

ENERO 2016

TRABAJO FIN DE GRADO PLAN 2010

Page 2: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 1

ÍNDICE

1. Resumen.............................................................................................................2

2. Introducción.......................................................................................................2

2.1. Objetivo..............................................................................................2

2.2. Notas históricas...................................................................................3

3. Bases de la estática gráfica.............................................................................6

4. Método................................................................................................................8

4.1. Método empleado............................................................................9

4.2. Herramienta empleada..................................................................13

4.3. Aplicación del método mediante la herramienta......................13

5. Estudio de casos...............................................................................................14

5.1. Puente Samuel Beckett..................................................................14

5.2. Aeropuerto Stuttgart........................................................................19

5.3. Nave del almacén de aduanas de Chiasso................................25

6. Conclusiones....................................................................................................31

7. Bibliografía........................................................................................................32

Page 3: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 2

1.RESUMEN

En el presente artículo se expone un método gráfico para la optimización y el diseño estructural teniendo como principio la estática gráfica, aprovechando las posibilidades que las herramientas informáticas aportan. El método expuesto trabaja con la modificación de variables parametrizadas en el Diagrama de Fuerzas, y sitúa la estática gráfica como una herramienta de diseño desde la fase inicial del proyecto, la fase de "form-finding". Partiendo del concepto de reciprocidad de Maxwell, la modificación del Diagrama de Fuerzas supone la modificación de la forma. La ventaja de este método es que queda asegurado el equilibrio de la solución en todo momento y no requiere de elementos adicionales de sustentación en la estructura.

En primer lugar se presentan unas notas históricas sobre la evolución de la estática gráfica, y una breve explicación de sus conceptos básicos, introduciendo la relación entre Diagrama de Fuerzas y diagrama de forma. A continuación se expone el método con un detallado ejemplo gráfico, y finalmente la aplicación de dicho método en tres casos de diferente topología.

Palabras clave: diagrama de fuerzas, diagrama de forma, optimización, reciprocidad, form-finding, parametrizado, estática gráfica.

2. INTRODUCCIÓN

El uso de la estática gráfica en el diseño de estructuras supone una integración entre diseño, cálculo y construcción, debido a que permite al diseñador tener conciencia de la forma de la estructura y del flujo de las fuerzas en todo momento, estando éstas en continua relación. Dicha integración se ha perdido desde mediados del siglo XIX por el uso de la herramienta matemática para el diseño, que ha desplazado a la estática gráfica únicamente a la parte de análisis de la estructura. La pérdida de la posibilidad de usar la estática gráfica como herramienta de diseño ha supuesto el encarecimiento de proyectos (debido a que los componentes estructurales son un porcentaje importante del precio final) y la obligación de incorporar métodos adicionales de sujeción de la estructura.

2.1. OBJETIVO

El documento tiene por objetivo el resurgir de la estática gráfica como herramienta de diseño de primer orden, gracias a las posibilidades de las herramientas informáticas. Se pretende la inversión del uso habitual de la estática gráfica, es decir, que no sea únicamente una herramienta de análisis sino que sea usada también en la fase de diseño, para ello se tendrá como origen el equilibrio de fuerzas, no una forma ya dada. Se presenta un método capaz de favorecer el form-finding teniendo asegurado en todo momento el equilibrio de fuerzas del sistema. Este continuo equilibrio de fuerzas del sistema se consigue porque en todo momento el polígono de fuerzas y la forma de la estructura están cerrados, y queda asegurada la coherencia entre ambos gracias a su relación recíproca.

Page 4: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Traba

Luis Lozano Tutor: José L

2.2. NOTA

La eparalelo hordenadorprotagonis

La base coaplicada pdescompoprimeros in

Simresultante la estáticagráficamelados inclingenerada

Pierre Varig(sin definirl1725). A panalizaba funicular (fde las fueejercidas p

Figura 1.  Dibujos Leona

Figura 2 Figura 2.  Experimento 

ajo Fin de Gr

Bodeguero. Luis Fernánde

AS HISTÓR

estática gráasta poco r se consolsmo a la he

onceptual dpor vez primosición de funventos.

mon Stevin ede las fuerz

a gráfica. nte (fig.2):

nados de d por esta cu

gnon (matea como ta

partir de un la forma g

forma generzas en el i

por dichos p

ardo Da Vinci. 

Stevin. 

rado. PLAN 20

Exp: 10246 ez Cabo

RICAS

áfica aparedespués deida la estárramienta m

de la estáticmera por Leouerzas (fig.

en 1586 fuezas y momeStevin demempleaba

diferente peuerda y sus

emático fral) en 1725 e experimengenerada

erada por einterior de

pesos sobre

010

ece antes qe la mitad d

ática gráficmatemática

ca gráfica sonardo Da 1), aplicó es

e el primeroentos en un mostró el e

una cuerdaendiente y lopesos.

ancés) es elen su trabanto (fig.3) epor dicho

el hilo) y pola geomet el hilo con

ue la herramdel siglo XIXa a la par

a.

e encuentrVinci en 150stos concep

o en anticip cuerpo (STE

equilibrio dea con pesoongitud, da

primero enjo "Nouvelle

en el que chilo. Comi

olígono de fría). Estudia la forma ge

Figura 3Figura 3.  Experimento 

mienta matX, momentor que empi

ra en la ley d00 con sus dptos de la e

par el teoreEVIN.S, 1586e un cuerpos distribuidoaba una res

n tratar cone Mecaniqu

colgaba unienza a intfuerzas (diaa la relacióenerada po

Varignon. 

temática y o en que cieza a desa

del paralelodibujos aceestática grá

ema de Va6), el cual repo sobre uos a lo largospuesta grá

nceptos deue ou Statiqa serie de troducir la grama que

ón que existor el hilo.

ambas avaon la apariaparecer, d

ogramo, la erca de la

fica desde

rignon relatesultaría el iun plano ino de ella so

áfica sobre

la estáticaque" (VARIGpesos de uidea del p

e representate entre las

01/2016

 

3

anzan en ción del dejando

cual fue

sus

tivo a la inicio de nclinado obre dos la forma

a gráfica GNON.P, un hilo y polígono a el flujo s fuerzas

Page 5: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 4

Karl Culmann (ingeniero alemán) profundiza en la relación existente entre el polígono funicular y el polígono de fuerzas (idea ya introducida por Varignon), en su obra publicada en 1865 "Die graphische Statik" (CULMANN.K, 1865). Culmann no publicó su trabajo terminado ya que trabajó en el campo ideal, fue su alumno Wilhelm Ritter quien publicó entre 1888 y 1906 el trabajo sobre la estática gráfica más reconocido, el libro técnico formador de generaciones de ingenieros editado en cuatro volúmenes (RITTER.W, 1888-1906). Culmann estudió la relación directa entre el polígono de fuerzas y el funicular del sistema de fuerzas y sus reciprocidades (fig.4). Numerosos autores colocan a Culmann como el origen de la estática gráfica. Culmann consideraba al dibujo como el verdadero lenguaje de lo ingenieril oponiéndose al método del análisis matemático. Daba tal valor a la estática gráfica debido a la rápida compresión que el sistema aporta y su relación inmediata entre la forma y las fuerzas.

Maxwell (físico británico) en 1870 estableció que los nodos, líneas y áreas de la geometría tienen su recíproco en el polígono de fuerzas (MAXWELL.JC, 1870): cada nodo de la geometría se ve representado en un área del polígono de fuerzas, cada línea de la geometría en otra línea del polígono de fuerzas, y cada área de la geometría en un nodo de las fuerzas (fig.5). La relación recíproca que expuso Maxwell entre elementos era de perpendicularidad.

Luigi Cremona (matemático italiano) en su obra "Le figure reiproche nella grafica statica" de 1872 (CREMONA.L, 1872) propuso un avance a la relación entre el polígono de fuerzas y el de formas propuesto por Maxwell, haciendo que esta relación geométrica de reciprocidad entre el diagrama de fuerzas y el polígono funicular fuera paralela (fig.6) en vez de perpendicular como había sido propuesto anteriormente por Maxwell. De tal forma que cada línea de la geometría tenía una paralela en el diagrama de fuerzas, lo cual lo convirtió en mucho más intuitivo y rápido de ver. Además aportó que la longitud de cada línea del polígono de fuerzas representaba la magnitud el esfuerzo axil del elemento de la estructura con el que estaba relacionado. A su vez, la longitud de cada línea del diagrama de forma representaba la longitud real de la geometría de la estructura.

Figura 4.  Gráficos Culmann.

Figura 5.  Concepto de reciprocidad de Maxwell.

Page 6: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 5

La estática gráfica alcanza su consolidación a finales del siglo XIX, tal como lo demostró Maurice Koechlin (alumno de Culmann) tras su análisis gráfico de la Torre Eiffel. Sin embargo, a mediados del siglo XIX comienza el desplazamiento de la estática gráfica cediendo terreno al método matemático, estando ya completa la teoría clásica de las estructuras. Dicho protagonismo del método matemático sobre el gráfico implicó un nivel mayor de racionalización de los métodos de diseño estructural, pero también supuso una desintegración entre diseño, cálculo y construcción (conceptos que hasta el momento la estática gráfica mantenía unificados). Desde este punto se evidencia la separación entre la ingeniería y la arquitectura, dejándose la estática gráfica principalmente como herramienta didáctica para la compresión de estructuras.

A día de hoy, la estática gráfica es utilizada como herramienta de enseñanza de estructuras para arquitectos en muchas universidades como Cambridge, ETH Zurich o Mit entre otras. En el campo de la producción de arquitectura, el ordenador en el siglo XXI está realzando la estática gráfica y haciéndola revivir. El valor de la estática gráfica y su habilidad de producir intuitivos y directos reconocimientos del sistema de fuerzas ha sido enfatizado por arquitectos e ingenieros (LACHAUER.L, 2015) como Gaudi (fig.7), Luigi Nervi (fig.8), Frei Otto (fig.9), o Conzett (fig.10).

Figura 6.  Reciprocidad paralela de Cremona.

Figura 8. Palazzetto dello Sport. 1960. 

Figura 7. Sagrada Familia. 1882. 

Figura 9. Estadio Olímpico de Munich. 1972. 

Figura 10. Pasarela Traversina. 2005. 

Page 7: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 6

3.BASES DE LA ESTÁTICA GRÁFICA

La estática gráfica es una rama de la mecánica que permite manejar las condiciones de equilibrio de un sistema de fuerzas de manera gráfica.

La estática gráfica se fundamenta en tres principios (BEER.F.P, 2007): la ley del paralelogramo, la primera ley de Newton y el principio de transmisibilidad. La ley del paralelogramo (fig.11) establece que dos fuerzas P1 y P2, que actúan sobre una partícula, son equivalentes en su acción a una fuerza resultante única R que se obtiene como diagonal del paralelogramo construido con los vectores dados. La primera ley de Newton establece que si la fuerza resultante de todas las fuerzas que actúan sobre un cuerpo es cero, el cuerpo permanece en reposo. El principio de transmisibilidad (fig.12) considera a las fuerzas como vectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea de acción. Por el principio de transmisibilidad se establece que las condiciones de un cuerpo se ven inalteradas si una fuerza P se remplaza por una fuerza P', de misma magnitud y dirección pero aplicada en un punto distinto en la misma línea de acción. De la combinación de ambas se resuelve el equilibrio en los cuerpos con fuerzas no aplicadas en un mismo punto (fig.13).

En el caso de que actúen más de dos fuerzas coplanares en un cuerpo, mediante la combinación de la ley del paralelogramo (fig.11) y el principio de transmisibilidad (fig.12), se traza el polígono de fuerzas: si el polígono de fuerzas formado por las fuerzas dadas P1, P2, P3 y P4 forman un polígono abierto, existe una fuerza resultante R y no hay equilibrio de fuerzas (fig.14); si este polígono de fuerzas es un polígono cerrado no existirá fuerza resultante y habrá equilibrio de fuerzas ∑ F=0 (fig.15), (BEER.F.P, 2007).

Figura 11.  Ley del paralelogramo. 

Figura 12.  Principio de transmisibilidad. 

Figura 13.  Paralelogramo y transmisibilidad. 

Figura 14.  Polígono abierto. 

Figura 15.  Polígono cerrado.

Page 8: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 7

Si las fuerzas forman un polígono cerrado queda demostrado que el sistema está en equilibrio de fuerzas ∑F=0, pero puede existir un momento de giro en el sistema. Se dividirán las fuerzas en el polígono funicular en dos grupos con resultantes R1 y R2 iguales y opuestas denominadas par resultante (fig.16): en el caso particular de que las líneas de acción de ambas resultantes coincidan en el polígono funicular, el sistema de fuerzas se halla en equilibrio de momentos con respecto a cualquier punto del plano ∑M=0.

En el caso de que actúen más de dos fuerzas en un cuerpo pero que todas ellas no estén contenidas en un único plano, se debe proceder en cada punto del mismo modo agrupando las fuerzas dos a dos, la resultante ha de ser nula para que se verifique así el equilibrio del sistema. En caso de que éste polígono de fuerzas sea abierto el valor de la resultante será la magnitud y dirección de la fuerza que se debe aplicar al sistema para que resulte en equilibrio.

El polígono de fuerzas y el polígono de forma están relacionados de modo directo, una vez trazadas las fuerzas en el diagrama de fuerzas estas podrán ser descompuestas con el objetivo de trazar un flujo de fuerzas, para ello se dibuja un punto arbitrario O denominado polo. Se trazan los rayos polares (rectas que unen el polo O con los puntos final e inicial de los vectores de fuerza), los que representan el flujo de fuerzas en la geometría. Mediante el movimiento del polo O en el diagrama de fuerzas se produce la modificación de la forma (figs.17 y 18).

Figura 16.  Par resultante.

Figura 17.  Relación fuerzas‐forma. 

Figura 18.  Relación fuerzas‐forma.

Page 9: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 8

La nomenclatura de Bow completa y clarifica el método de Cremona, tiene la principal función de relacionar el polígono funicular y el polígono de fuerzas mediante referencias alfanuméricas: las regiones internas a la estructura y delimitadas por las barras de la misma se denominan con números; las regiones externas a la estructura, consideradas cerradas en el infinito y delimitadas por las acciones y reacciones, se denominan con letras mayúsculas (fig.19). Para nombrar cada fuerza externa (acción o reacción) o interna (esfuerzos) se usarán dos letras (minúsculas), números o su combinación: situándose en un nudo se determina un sentido de giro (horario o antihorario, pero siempre el mismo), según las áreas próximas a cada fuerza se situará en primer lugar la del área primera seguido del segundo(a1, 23, 3d) (fig.20). Con dicho criterio el polígono de fuerzas y el polígono de forma estarán relacionados según el criterio de reciprocidad (CREMONA.L, 1872), tal que cada línea se relacionará con una línea, cada punto con un área y viceversa (fig.21).

4.MÉTODO

A continuación se expone el método empleado en el trabajo, el cual tiene sus fundamentos en los principios de la estática gráfica. El método trata de situar a la estática gráfica como una herramienta de diseño de primer orden, empleada en la fase de producción de la idea y no únicamente como una herramienta de análisis (finalidad que se le dota más comúnmente). Esta nueva interpretación de la estática gráfica aunaría diseño, cálculo y construcción, conceptos que hasta mediados del siglo XIX se mantenían integrados y con las herramientas informáticas se pretende su reaproximación. Programas informáticos capaz de llevar adelante este método son Grasshopper y Geogebra.

Figura 19.  Polígono de forma. 

Figura 20.  Nomenclatura de fuerzas.

Figura 21.  Polígono de fuerzas. 

Page 10: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 9

4.1.MÉTODO EMPLEADO

El método empleado en el trabajo es la estática gráfica, el método explicado a continuación solo podrá ser usado para sistemas en los que no existan momentos flectores sino que únicamente axiles (tracción y compresión). Siguiendo rigurosamente los pasos descritos a continuación (se adjunta un modelo de un puente tipo que irá siguiendo el proceso: con tres tirantes paralelos entre sí que sostienen el tablero, sujetos por un mástil con forma funicular y contrarrestados por un tirante anclado a un terreno irregular):

1.- IDENTIFICAR LA TOPOLOGÍA En primer lugar se determina la topología de la geometría (fig.22) (con independencia del tamaño o forma de la misma), y se identifican los nudos y las barras y sus uniones entre sí.

2.- DEFINIR CONSTRICCIONES GEOMÉTRICAS DE NODOS Se determina la naturaleza geométrica de cada punto del sistema en función de su posición (fig.23), se identifica cada punto según la posibilidad de movimiento que se le otorgue distinguiéndose entre: I. puntos fijos / II. puntos deslizables por una línea (recta, curva o irregular) / III. puntos libres

 

Figura 23.

Nudos:

Barras:

Punto fijo:

Punto deslizable:

Punto libre:

Figura 22.

Page 11: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 10

3.- DEFINIR CONSTRICCIONES GEOMÉTRICAS DE BARRAS Es posible que existan ciertas constricciones o propiedades de las barras que nos interesen dentro de la topología elegida (fig.24). Entre muchas, algunas de éstas podrían ser: barras paralelas entre sí, barras verticales, barras horizontales, barras en dirección a un punto común...

4.- IDENTIFICAR ACCIONES Y REACCIONES Ya teniendo totalmente definida la topología se determinan las acciones y reacciones aplicadas en un punto (fig.25), éste podrá ser fijo, deslizable o libre (explicado en apartado 2).

Paralelas:

Verticales:

Horizontales:

A punto común:

Acciones:

Reacciones:

Figura 24.

Figura 25.

Page 12: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 11

5.- IDENTIFICAR REGIONES Se da una referencia alfanumérica a las regiones internas y externas de la forma, siguiendo la nomenclatura de Bow (pág.8): con números las regiones internas, y con letras mayúsculas las regiones externas (fig.26). De dicho modo cada fuerza externa (acciones y reacciones) e interna (esfuerzos) quedarán nombrados por dos letras, números, o su mezcla: los esfuerzos internos se nombrarán por las regiones que tienen a ambos lados (23, a1, 1e...); para las acciones y reacciones, se considera un sentido horario o antihorario (es indistinto, pero se elige uno para la nomenclatura de todos), y se nombrará la acción empezando por la región primera según el giro y seguido de la región al lado contrario de la fuerza (ab, de...).

6.- POLÍGONO DE FUERZAS Se traza el polígono de fuerzas (fig.27) de acuerdo a la parametrización dada según la relación de reciprocidad de Cremona (CREMONA.L, 1872): se comienza trazando las acciones, nombrando sus extremos con letras minúsculas según las regiones contiguas en la forma (apartado 5), y se prosigue uniendo los extremos de éstas con los puntos correspondientes a las regiones contiguas según la topología elegida, con el fin de hallar los esfuerzos internos, respetando las constricciones geométricas ya preestablecidas (apartado 3). Una vez dibujado el polígono de fuerzas se traza la forma resultante (fig.28) mediante paralelas por los nodos correspondientes ya fijados (apartado 2).

Figura 8Figura 7 

Regiones internas: 1,2,3...

Regiones externas: A,B,C...

Figura 26. 

Figura 27. Figura 28.

Page 13: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 12

7.- TOMA DE DATOS Y COMPARACIÓN Podremos obtener diversas formas dentro de la misma topología ya elegida moviendo los puntos del diagrama de fuerzas, teniendo en todo momento asegurado el equilibrio de fuerzas de la estructura por encontrarse cerrado el polígono de fuerzas. Esto nos permitirá visualizar diversas posibilidades (figs.29-31).

La longitud de las líneas en el diagrama de forma permite obtener datos acerca de la medida real de cada barra. La longitud de las líneas en el diagrama de fuerzas permite obtener datos sobre los esfuerzos internos de cada barra. Tras la multiplicación de ambas medidas (fuerza y longitud) se obtiene la cantidad de estructura del sistema, lo que a su vez derivará en cantidad y coste de material, pudiendo usar este dato como comparativo entre varias propuestas. La cantidad de estructura no es un dato de comparación absoluta de costes, puesto que no implica conceptos influyentes como la estabilidad del sistema, o la dificultad de ejecución entre otros, pero resulta un dato bastante orientativo.

Figura 30. Figura 31.Figura 29. 

Page 14: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 13

4.2.HERRAMIENTA EMPLEADA

La herramienta empleada en el trabajo es el programa informático Geogebra (fig.32). Geogebra es un programa de geometría que permite parametrizar las construcciones; trabaja con puntos, vectores, segmentos, rectas y planos tanto en dos como en tres dimensiones. Geogebra supone la herramienta fundamental para este trabajo debido a la posibilidad que ofrece de interrelacionar el diagrama de fuerzas y diagrama de formas. Además, el programa cuenta con una hoja de cálculo (similar a hojas Excel) que te permite anotar las medidas de los segmentos de la hoja de dibujo y operar con estos valores. El programa permite extraer los datos tanto en formato imagen como en Gifs (imágenes interactivas).

4.3.APLICACIÓN DEL MÉTODO MEDIANTE LA HERRAMIENTA

A continuación se muestran imágenes extraídas del programa Geogebra, siendo aplicado el método a seguir de la estática gráfica en el experimento de Varignon (VARIGNON.P, 1725)(fig.3). Se observa cómo tras la modificación del flujo de las fuerzas se produce una variación de la forma funicular (figs.33-36).

5.ESTUDIO DE CASOS

Figura 32.  Interfaz de Geogebra.

Figura 33. Figura 34.

Figura 36.Figura 35. 

Page 15: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 14

5.ESTUDIO DE CASOS

Se ha aplicado el método propuesto a tres arquitecturas ya existentes: el puente de Samuel Beckett, el sistema estructural del aeropuerto de Stuttgart, y la nave del Almacén de aduanas de Chiasso. Se ha partido de la topología estructural propia y se han propuesto diversas alternativas formales, siguiendo el método ya explicado (págs.9-12) mediante el programa informático Geogebra (pág.13). En estos tres casos elegidos no existen momentos flectores en sus elementos estructurales principales por lo que el método se puede aplicar. Las diferentes imágenes mostradas de las propuestas, tanto su diagrama de forma como diagrama de fuerzas, han sido directamente sacadas del programa Geogebra.

5.1.PUENTE SAMUEL BECKETT

El puente de Samuel Beckett (fig.37) se ubica en el centro de Dublín, Irlanda, uniendo la orilla sur del río Liffey con la norte, el arquitecto del proyecto es Santiago Calatrava y es construido en 2007. El arquitecto inspira el diseño del puente en la tradicional arpa irlandesa, en su diseño los tirantes evocan las cuerdas siendo así el puente una mezcla de simbolismo y modernidad. El puente hace homenaje a Samuel Beckett, premio Nobel de literatura en 1969, que junto al puente James Joyce, el cual se encuentra aguas arriba sobre el mismo río, la ciudad rinde homenaje a dos de sus autores más importantes.

El puente es diseñado como entrada marítima de Dublín, por un lado debía permitir el tráfico fluvial y por otro conectar las dos partes de la ciudad, por ello el tablero puede girar 90º mediante un mecanismo de rotación sobre la base del pilono.  

Estructuralmente, el sistema tiene su base en la estática gráfica. Se trata de una pasarela de 124 metros de largo y 27 de ancho con vigas en voladizo dispuestas transversalmente a la dirección principal de la misma. La sustentación de la pasarela se debe a 31 tensores de cable paralelos entre sí que transmiten el peso propio del puente y su carga de uso desde el eje central del tablero a un pilono. El pilono, de 40 metros de altura, tiene una forma funicular funcionando únicamente a compresión (al conseguir la no existencia de esfuerzos de flexión en ningún componente de la estructura se consigue optimizar la estructura siendo necesario menos sección de material). El pilono es contrarrestado por 6 tirantes traseros anclados al terreno, los cuales cierran el polígono de fuerzas del sistema.

Figura 37. 

Page 16: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 15

A continuación, tras la descripción y el análisis de las características generales del puente, se procede al estudio de diversas variantes de diseño que podrían haber existido poniendo estas en continua comparación según su cantidad de estructura. Previamente se estudia la topología del sistema (fig.38). Los valores que se han parametrizado son: longitud de tirantes, longitud del contrarresto y arranque del contrarresto.

En primer lugar, tras el trazado de la topología en Geogebra, se expone el caso real (fig.40), para ello se han ido moviendo los valores parametrizados (longitud de tirantes, longitud del contrarresto y arranque del contrarresto) hasta hacerlo coincidir con la imagen. En la elección de la forma exacta dentro de las posibilidades de la topología se presupone que el arquitecto buscó un equilibrio entre la componente de diseño y la económica. Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 3.157 (en función de nuestras cargas).

Figura 38. Topología del sistema. 

Figura 39.  Polígono de fuerzas. Caso realizado. 

 

Figura 40.  Polígono de forma. Caso realizado.

Page 17: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 16

A continuación se ha llevado a cabo una fase de form-finding (búsqueda de nuevas formas) a partir de las tres variables parametrizadas en la topología inicial: longitud de contrarresto (1), longitud de tirantes (2), y arranque del contrarresto(3). En las diferentes propuestas según los valores parametrizados se muestran el diagrama de forma, el diagrama de fuerzas, la parábola que nos permite encontrar el punto de menor cantidad de estructura (en el eje de abscisas la cantidad de estructura y en el de ordenadas el punto más alto del tirante de contrarresto) y el valor de cantidad de estructura. En los tres casos se encuentra el menor valor de cantidad de estructura moviendo únicamente un valor en el Diagrama de Fuerzas, éste se encontrará en el punto en que la parábola que se traza tenga su punto lo más a la izquierda posible.

_En el primer caso (fig.43) se dejan fijos el arranque del contrarresto (se mantiene igual al caso construido) y la dirección del contrarresto, variando únicamente la longitud del contrarresto con el movimiento de un punto del Diagrama de Fuerzas (fig.42). Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 3.069 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando la longitud del contrarresto se podrían haber reducido gastos en cantidad de material en un 3%.

Figura 41. Cantidad de estructura mínima (1).

Figura 43. Diagrama de forma (1).

Figura 42. Diagrama de fuerzas (1). 

Page 18: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 17

_En el segundo caso (fig.46) se dejan fijos el arranque del contrarresto (se mantiene igual al caso construido) y la dirección de los tirantes variando únicamente su longitud con el movimiento de un punto del Diagrama de Fuerzas (fig.45). Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 2.417 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando la longitud de tirantes se podrían haber reducido gastos en cantidad de material en un 23%.

_En el tercer caso (fig.49) se dejan fijos la dirección y longitud de los tirantes (se mantiene igual al caso construido) variando únicamente el arranque del contrarresto con el movimiento de un punto del Diagrama de Fuerzas (fig.48). Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 2.916 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando el arranque del contrarresto se podrían haber reducido gastos en cantidad de material en un 8%.

Figura 49. Diagrama de forma (3).

Figura 44. Cantidad de estructura mínima (2). 

Figura 45. Diagrama de fuerzas (2). 

Figura 46. Diagrama de forma (2).

Figura 47. Cantidad de estructura mínima (3). 

Figura 48. Diagrama de fuerzas (3). 

Page 19: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 18

Finalmente se procede a la búsqueda del caso óptimo (fig.52), el de menor cantidad de estructura, dejando de lado el diseño. Para esta búsqueda se han ido moviendo los tres puntos del Diagrama de Fuerzas (fig.51), hasta encontrar el punto más a la izquierda de las múltiples parábolas (fig.50), obteniendo así el punto de menor cantidad de estructura. Partiendo de las cargas consideradas, el sistema resultaría tener en su caso más óptimo una cantidad de estructura de 2.090 (en función de nuestras cargas).

Por lo tanto se deduce que habiendo mantenido la topología del puente se podrían haber reducido gastos en cantidad de material en un 34%.

Figura 50. Cantidad de estructura mínima (óptimo). 

Figura 51. Diagrama de fuerzas (óptimo). 

Figura 52. Diagrama de forma (óptimo). 

Page 20: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 19

5.2.AEROPUERTO DE STUTTGART

 

El Aeropuerto de Stuttgart (fig.53) es un aeropuerto internacional ubicado a 13 km al sur de la ciudad alemana Stuttgart. Es diseñado por el arquitecto Meinhard Van Genkar y construido en 2004. La apariencia externa del aeropuerto parece una gran ala inclinada en la llanura de las afueras de Stuttgart, con un interior que sorprende por su evocación al bosque de Birnam de Macbeth debido a su sistema estructural que recuerda a las formas de sus árboles; en él se manifiesta el diálogo entre una estructura pesada de hormigón contra unos tubos de acero aparentemente ligeros que la sustentan.

La cubierta del edificio está formada por doce crujías rectangulares de 22x32 metros, siendo sostenida cada una de ellas por un juego propio de un árbol (fig.55): emane del suelo de forma vertical el tronco, que consta de cuatro tubos estructurales de acero paralelos y conectados entre sí, éstos se doblan para convertirse primero en ramas principales que más adelante se bifurcan en racimos de ramas cada vez más pequeñas, finalmente 64 "ramitas" soportan una retícula ortogonal de vigas sobre la que se apoya el forjado.

Figura 53. 

Figura 55.  Módulo estructural unitario. 

Figura 54.  Imagen interior del aeropuerto.

Page 21: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 20

El sistema estructural recoge las cargas verticales del peso de la cubierta y las transmite de forma aparentemente descuidada hasta el suelo, llegando así a la reacción final. Este flujo de esfuerzos internos por ramas y troncos tiene su principio en la estática gráfica, donde ninguno de sus elementos trabaja a flexión, lo cual reduce notablemente los costes materiales y cantidades de material.

A continuación, tras la descripción y el análisis de las características generales de la estructura, se procede al estudio de diversas variantes de diseño que podrían haber existido poniendo éstas en continua comparación según su cantidad de estructura. Previamente se estudia la topología del sistema (fig.56), de la que se deduce que está formado por un conjunto de tronco (1) - ramas primarias (4) ramas secundarias (16) - ramitas (64). Se trabaja el caso con su proyección en dos dimensiones sobre uno de sus alzados principales. Se considera como puntos móviles de la estructura cada uno de los siete nodos existentes, obteniendo dicho movimiento como resultado de la modificación del diagrama de fuerzas.

Figura 56. Topología del sistema. 

Page 22: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Traba

Luis Lozano Tutor: José L

En prreal (fig.57diagrama elección darquitectoPartiendo 137 (en fun

Maramitas, seestructura,negación" diseño seríestructura.nivel de cglobal (quexigiría aumcantidad d

Porreal habien

Figura 59. Diagrama de 

Figura 57.  Polígono de

ajo Fin de Gr

Bodeguero. Luis Fernánde

rimer lugar,7), para ellde fuerzas

de la forma buscó un ede las carg

nción de nu

nteniendo e procede , mediante del sistemaía un fraca. En este caomparar ca

ue no pandmentar secde estructur

r lo tanto sendo mante

forma (óptimo

e forma. Caso re

rado. PLAN 20

Exp: 10246 ez Cabo

tras el trazo se han i(fig.58) hast exacta deequilibrio engas consideuestras carg

los princip a la búsqla variacióna llevando so pero sirv

aso el valor oantidad dedeo ya que

cción. Partiera de 117 (e

deduce qunido la topo

o). 

ealizado. 

010

ado de la tdo movienta hacer coentro de lasntre la com

eradas, el sigas).

pios de estqueda del n del diagra todo los n

ve de puntoobtenido co

e material, e no hay c

endo de las en función d

ue se podríaología en u

topología ando los nodoincidir cads posibilidad

mponente distema resu

ta topologí caso óptiama de fue

nudos a la o de partidomo cantidporque el sconstriccion cargas conde nuestras

an haber ren 15%.

arbórea en dos como ra nodo de des de la to

de diseño, fuulta tener un

ía de tronmo (fig.59)

erzas (fig.60base, lo cu

da para codad de estrusistema resunes intermensideradas, cargas).

educido los

Figura 60.Diagrama d

Figura 58.  Polígono de

Geogebra,resultado d la forma coopología seuncionalidana cantida

co-ramas-ra), el de m); el caso o

ual evidentmparación uctura no eultaría tene

edias), lo q el sistema

gastos de m

de fuerzas (ópt

 fuerzas. Caso 

, se exponede la variacon la realidae presuponead y la ecod de estruc

amas secumenor cantiobtenido suemente a de cantida

es tan signifier poca estue le penaresultaría te

materiales d

imo). 

realizado. 

01/2016

 

21

e el caso ción del ad. En la e que el nómica.

ctura de

undarias-dad de pone "la nivel de ades de cativo a

tabilidad alizaría y ener una

del caso

Page 23: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Traba

Luis Lozano Tutor: José L

A cformas) bencontranmovimientdiagrama cierre del Dde Forma,

_En epodría ser cargas connuestras ca

Pormantenido

Figura 61. Diagrama de 

ajo Fin de Gr

Bodeguero. Luis Fernánde

continuacióuscando ddo tras la vo de los node fuerzas

Diagrama d la cantidad

el primer ca útil si se densideradas,argas).

r lo tanto seo los gastos

forma (1). 

rado. PLAN 20

Exp: 10246 ez Cabo

ón se ha llediferentes ivariación deodos de las, estando de Fuerzas. d de estruct

aso se dispeseara pon, el sistema

e deduce q en cantida

010

evado a cantereses e

e los puntosa forma por

en todo mEn cada catura de la p

ponen todoner forjados resulta tene

que habienad de mater

abo una fasn cada c

s móviles der estar ésto

momento asaso se muepropuesta, y

os los nudos intermedioer una cant

ndo puesto rial constan

se de form-caso. Estas el Diagramaos parametrsegurado estra el Diag

y el compar

s a una altos con alturtidad de est

los nudos antes.

FigurDiagr

-finding (bú nuevas foa de Fuerzarizados y re

el equilibrio rama de Furativo con e

ura constanra libre iguatructura de

a altura co

a 62. rama de fuerza

úsqueda deormas se h

as, lo cual suelacionados del sistemauerzas, el Diel caso real

nte (fig.61),al. Partiend 136 (en fun

onstante se

s (1). 

01/2016

 

22

e nuevas han ido upone el s con el a por el iagrama .

, lo cual o de las nción de

habrían

Page 24: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Traba

Luis Lozano Tutor: José L

_En ela posibilidcargas connuestras ca

Pordisminuido

_ En la posibilidnudos ni bcantidad d

Poraumentad

Figura 63. Diagrama de

Figura 65. Diagrama de

ajo Fin de Gr

Bodeguero. Luis Fernánde

el segundo dad de colonsideradas,argas).

r lo tanto seo los gastos e

el tercer cadad en planbarras inclinde estructur

r lo tanto sedo los gastos

e forma (2). 

e forma (3). 

rado. PLAN 20

Exp: 10246 ez Cabo

caso se disocar un fo, el sistema

e deduce qen cantidad

aso se disponta baja dadas. Partiera de 262 (e

e deduce qs en cantida

010

ponen todorjado bajo resulta tene

que habiend de mater

onen todos e usos queendo de laen función d

que habiendad de mate

os los nudos cubierta sier una cant

do puesto rial en un 9%

los nudos ee requirieranas cargas code nuestras

do puesto lerial en un 1

FigDia

s en alturas in presenciatidad de est

los nudos e%.

en alturas sun grandes onsiderada cargas).

os nudos e191%.

Figura 64.Diagrama d

ura 66. agrama de fuer

inferiores (fa de nudotructura de

en alturas in

uperiores (fialturas libre

as, el sistema

n alturas su

de fuerzas (2). 

rzas (3).

fig.63), lo cus. Partiendo 123 (en fun

nferiores se

ig.65), lo cues sin presea resulta te

uperiores se

01/2016

 

23

ual daría o de las nción de

habrían

ual daría encia de ener una

habrían

Page 25: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

FD

ETSAM Traba

Luis Lozano Tutor: José L

_En euna sensacsistema res

Porhabrían au

Figura 67. Diagrama de fo

ajo Fin de Gr

Bodeguero. Luis Fernánde

el cuarto cación de masulta tener u

r lo tanto seumentado lo

orma (4). 

rado. PLAN 20

Exp: 10246 ez Cabo

aso se dispoayor movimuna cantida

e deduce qos gastos en

010

onen los nudmiento e irread de estruc

que habienn cantidad

dos de modgularidad. ctura de 16

ndo puesto de materia

do desordePartiendo d0 (en funció

los nudos al en un 16%

Figura Diagram

nado (fig.67de las cargaón de nuest

de tal mod%.

68. ma de fuerzas 

7), lo cual tas considertras cargas)

do desorde

(4). 

01/2016

 

24

ransmite radas, el ).

nado se

Page 26: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 25

5.3. NAVE DEL ALMACÉN DE ADUANAS DE CHIASSO

La nave del almacén de aduanas de Chiasso (fig.69) se ubica al sur de Suiza en la frontera con Italia, diseñado por el arquitecto e ingeniero Suizo Robert Maillart en 1924.

La nave cubre una extensión de 20 metros de profundidad por 25 metros de ancho. El diseño de cada pórtico está formado por un arco inferior con forma funicular, el tejado superior y los montantes verticales, habiendo una distancia entre apoyos de 25 metros. Muchos autores han dado diversas opiniones acerca de la forma de la arcada: una analogía con formas de la naturaleza, referencias de estilo, referencias a las vigas Vierendeel... sin embargo Max Bill aportó "the form follows the flow of forces", la forma sigue el flujo de las fuerzas, situando así a la forma lo resultante de un equilibrio vectorial obtenido mediante la estática gráfica, estando de acorde con los condicionantes impuestos por el del lugar (ZASTAVN.D, 1872).

A continuación, tras la descripción y el análisis de las características generales de la nave, se procede al estudio de diversas variantes de diseño que podrían haber existido poniendo estas en continua comparación según su cantidad de estructura. Previamente se estudia la topología del sistema (fig.70). Los valores que se han parametrizado son: inclinación de la cubierta, longitud de montantes y ángulos extremos.

Figura 69. 

Figura 70. Topología del sistema. 

Page 27: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 26

En primer lugar, tras el trazado de la topología en Geogebra, se expone el caso real (fig.72), para ello se han ido moviendo los valores parametrizados (inclinación de la cubierta, longitud de montantes y ángulos extremos) en el Diagrama de Fuerzas (fig.71) hasta hacer coincidir la forma con la imagen real. En la elección de la forma exacta dentro de las posibilidades de la topología se presupone que el arquitecto buscó un equilibrio entre la componente de diseño, la de uso y la económica. Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 263 (en función de nuestras cargas).

A continuación se ha llevado a cabo una fase de form-finding (búsqueda de nuevas formas) a partir de las tres variables parametrizadas en la topología inicial: inclinación de la cubierta (1), longitud de montantes (2), y ángulos extremos(3). En los tres valores parametrizados se muestran el diagrama de forma, el diagrama de fuerzas, la parábola (o recta) que nos permite encontrar el punto de menor cantidad de estructura (en el eje de abscisas la cantidad de estructura y en el de ordenadas el punto más alto de la cubierta) y el valor de cantidad de estructura. En los tres casos se encuentra la menor cantidad de estructura moviendo únicamente un valor en el Diagrama de Fuerzas, éste se encontrará en el punto en que la parábola tenga su punto lo más a la izquierda posible.

Figura 71.  Polígono de fuerzas. Caso realizado. 

Figura 72.  Polígono de forma. Caso realizado.

Page 28: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 27

_En el primer caso (fig.75) únicamente se varia el ángulo de inclinación de la cubierta como resultado de la diferente inclinación del ángulo del Diagrama de Fuerzas (fig.74). Se mantienen fijos la longitud de los montantes y los ángulos de los extremos (se mantiene igual al caso construido). Se obtiene por resultado que la cantidad mínima de estructura variando el ángulo de la cubierta se alcanzaría cuando ésta fuera horizontal. Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 260 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando la inclinación de la cubierta se podrían haber reducido gastos en cantidad de material en un 2%.

Figura 73. Cantidad de estructura mínima (1). 

Figura 74. Diagrama de fuerzas (1). 

Figura 75. Diagrama de forma (1).

Page 29: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 28

_En el segundo caso (fig.78) únicamente se varía la longitud de los montantes como resultado de la mayor o menor extensión de unas barras del Diagrama de Fuerzas (fig.77). Se mantienen fijos la inclinación de la cubierta y los ángulos de los extremos (se mantiene igual al caso construido). Se obtiene por resultado que la cantidad de estructura va disminuyendo a medida que mayores sean los montantes, se ha considerado un límite, ya que a partir del cual se podría considerar inservible la nave. Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 233 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando la longitud de los montantes se podrían haber reducido gastos en cantidad de material en un 12%.

Figura 76. Cantidad de estructura mínima (2). 

Figura 78. Diagrama de forma (2).

Figura 77. Diagrama de fuerzas (2). 

Page 30: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 29

_En el tercer caso (fig.81) únicamente se varían los ángulos de los extremos como resultado de la mayor o menor extensión de unas barras del Diagrama de Fuerzas (fig.80). Se mantienen fijos la inclinación de la cubierta y la longitud de los montantes (se mantiene igual al caso construido). Se obtiene por resultado que la cantidad de estructura disminuye cuanto más se aproxime el nudo al suelo. Partiendo de las cargas consideradas, el sistema resulta tener una cantidad de estructura de 259 (en función de nuestras cargas).

Por lo tanto se deduce que únicamente variando los ángulos de los extremos se podrían haber reducido gastos en cantidad de material en un 2%.

Figura 79. Cantidad de estructura mínima (3). 

Figura 80. Diagrama de fuerzas (3). 

Figura 81. Diagrama de forma (3).

Page 31: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 30

Finalmente se procede a la búsqueda del caso óptimo (fig.84), el de menor cantidad de estructura, manteniendo unas condiciones de uso después de las limitaciones ya analizadas (altura libre de uso). Para esta búsqueda se han ido moviendo las variables del Diagrama de Fuerzas (fig.83), hasta encontrar el punto más a la izquierda de las múltiples parábolas, obteniendo así el punto de menor cantidad de estructura. Partiendo de las cargas consideradas, el sistema resultaría tener en su caso más óptimo una cantidad de estructura de 221 (en función de nuestras cargas).

Por lo tanto se deduce que habiendo mantenido la topología de la nave y sus condiciones de uso se podrían haber reducido gastos en cantidad de material en un 16%.

Figura 82. Cantidad de estructura mínima (óptimo). 

Figura 83. Diagrama de fuerzas (óptimo). 

Figura 84. Diagrama de forma (óptimo).

Page 32: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 31

6.CONCLUSIONES

El protagonismo tomado por la herramienta matemática desde el siglo XIX ha supuesto una total desintegración entre diseño - cálculo - construcción, considerándose como procesos independientes entre sí. Dicha desintegración ha supuesto el distanciamiento entre el arquitecto y el ingeniero, perdiendo su esencia el factor diseño y el estético de la forma estructural, y obligando a modificaciones del diseño por imposiciones del calculista. La tarea de definir estructuras exige un proceso interactivo de diseño-análisis, un proceso que mediante el método matemático tradicional supone un continuo sistema de prueba y error hasta encontrar una solución suficientemente estable, estéticamente adecuada y de coste razonable; sin embargo, mediante la estática gráfica, las fases de diseño y análisis son simultáneas. Por lo tanto, es necesario recuperar el uso de la estática gráfica en la fase cero del proyecto, la del diseño y producción de la forma arquitectónica, aprovechando las posibilidades y la precisión que las herramientas informáticas aportan.

Este trabajo pretende ser una contribución para la Arquitectura e Ingeniería civil, procurando un acercamiento entre ambas y buscando la ayuda mutua en el campo del form-finding, en la búsqueda de nuevas formas arquitectónicas.

Page 33: APLICACIONES DE LA ESTÁTICA GRÁFICA AL DISEÑO · PDF filevectores deslizantes, parte de la evidencia experimental de que una fuerza puede ser transmitida a lo largo de su línea

ETSAM Trabajo Fin de Grado. PLAN 2010 01/2016

 Luis Lozano Bodeguero. Exp: 10246 Tutor: José Luis Fernández Cabo 32

7.BIBLIOGRAFÍA

· BAKER,W., BEGHINI,L., MAZUREK,A., CARRION, J., BEGHINI,A., 2012, Maxwell's reciprocal diagrams and discrete Michell frames.

· BEER,F.P, RUSSELL, E., EISENBERG, E.R., 2007, 8ª ED. Mecánica vectorial para ingenieros. Estática.

· BEGHINI,L., BEGHINI,A., BAKER,W., 2013. Structural optimization using graphic statics.

· CERVERA,J. 1988. Tres Teoremas Fundamentales de la Teoría del Diseño de Estructuras.

· CHARLESON,A. 2006. La estructura como arquitectura: Formas, detalles y simbolismo. Ed. Reverté.

· CREMONA,L. 1872. Le figure reiproche nella grafica statica. Milano.

· CULMANN,K. 1865. Die Graphische Statik, Meyer und Zeller. Zurich.

· FIVET,C, ZASTAVNI,D., CAP,JF., 2015. Extending Graphic Statics for User-Controlled Structural Morphogenesis.

· GERHARDT, R., KURRER,K-E., PICHLER,G., 2003. The methods of graphical statics and their relation to the structural form.

· JACOBO, G.J., 2004. El diseño estructural por medio de los métodos gráficos.

· LACHAUER, L., JUNGJOHANN,L., KOTNIK,T., 2015. Interactive Parametric Tools for Structural Design.

· LEE, J., FIVET,C., MUELLER,C., 2015. Modelling with forces: grammar-based graphic statics for diverse architectural structures. Massachusetts Institute of Technology.

· LUZ SALCEDO, M. 2006. La estructura como generadora de espacios arquitectónicos. Bogotá.

· MAXWELL, JC. 1870. On reciprocal figures, frames, and diagrams of forces. Edimburgo.

· PANSERI, E. 1975. Curso medio de estática gráfica. Ed. Construcciones sudamericanas.

· RITTER, W. 1888-1906. Anwndungen der graphischen Statik. Zurich.

· VARIGNON, P. 1725. Nouvelle Mécanique ou Statique. Paris.

· STEVIN,S. 1586. De Beghinselen der Weeghconst. Brujas.

· TIMOSHENKO,S.P. 1953. History of Strength of Materials. EEUU.

· TIMOSHENKO,S.P., LACHAUER, L., 1981. Teoría de las estructuras, Ed. ELCANO S.A. (1ª Edición)

· VAN MELE,T., LACHAUER, L., RIPPMANN, M., BLOCK, P. 2012, Geometry-based Understanding of Structures.

· ZASTAVNI,D. 2008. The structural Design of Maillart's Chiasso Shed.