6

Click here to load reader

Enlaces metalicos

Embed Size (px)

Citation preview

Page 1: Enlaces metalicos

ENLACES METALICOS

ANTECEDENTES:La estructura del denominado enlace metálico nació como entidad aparte, al no poderse aplicar a los metales el enlace covalente ni el iónico. La teoría más sencilla del enlace metálico fue introducida por Drude a principios de siglo y recibió el nombre de teoría del electrón libre o del mar de electrones. Posteriormente con la aplicación de la mecánica estadística, el modelo fue adquiriendo complejidad matemática, aplicándose la estadística de distribución de Fermi-Dirac a los electrones por primera vez en 1928 por SommerfIeld. Posteriormente surgió la teoría de bandas, más amplia que la anterior al permitir realizar un estudio general del estado sólido y explicar las propiedades particulares de los metales y no metales sólidos. Esta teoría se basa en la existencia de bandas electrónicas dadas por las funciones introducidas por Félix Bloch y en el uso del potencial dado por Kronig y Penney en 1930 para poder integrar la ecuación de Schrödinger. El gran éxito de esta teoría fue el dar una explicación satisfactoria de las propiedades conductoras de las sustancias sólidas, clasificándolas en conductoras, semiconductoras y aislantes, lo cual fue de vital importancia para el conocimiento, fabricación y utilización de los sistemas semiconductores en la industria de la electrónica.

Los átomos de los elementos metálicos se caracterizan por tener pocos electrones de valencia (electrones de la última capa). No pueden formar enlaces covalentes, pues compartiendo electrones no pueden llegar a adquirir la estructura de gas noble.

La estabilidad la consiguen de otro modo, los electrones de valencia de cada átomo entran a formar parte de "un fondo común", constituyendo una nube electrónica que rodea a todo el conjunto de iones positivos, dispuestos ordenadamente, formandoun cristal metálico.

PROPIEDADES:

-Alta conductividad térmica y eléctrica, los electrones pueden moverse con libertad por la nube electrónica.

-Son dúctiles (factibles de hilar) y maleables (factibles de hacer láminas), su deformación no implica una rotura de enlaces ni una aproximación de iones de igual carga, como ocurría en los compuestos iónicos por ejemplo.

-Los puntos de fusión son moderadamente altos, la estabilidad de la red positiva circundada por la nube de electrones es alta.

-Son difícilmente solubles en cualquier disolvente, por el mismo motivo que justifica el punto anterior. (Pensar en la forma de "atacar"el agua a un compuesto iónico, en un metal que es "un todo uniforme" no existe esa posibilidad).

- Los átomos de los metales (en estado sólido) están unidos por medio del enlace metálico.

- Todos y cada uno de los átomos del metal comparten, con todos los demás los electrones dela capa de valencia, formando así una red tridimensional y compacta de cationes ordenados(cristal metálico) inmersa en una nube de electronescompartidos.

- Esta estructura tienegran estabilidad. ENLACE METALICO O DE BANDA

Page 2: Enlaces metalicos

Consiste en un conjunto de cargas positivas que son los átomos metálicos desprovistos de sus electrones de valencia, los cuales pertenecen y unen a todos los cationes. Los metales en estado sólido forman un retículo cristalino tridimensional, en cuyos nudos hay los cationes metálicos, y entre ellos se mueven libremente los electrones de valencia. Puede decirse que los orbitales atómicos de valencia se superponen en gran número dando lugar a bandas de energía continuas en las que los electrones se desplazan libremente. Los electrones están totalmente deslocalizados, lo que significa que el enlace es completamente adireccional. En las sustancias metálicas, como en las iónicas, no existen moléculas, es el cristal en su conjunto el que se considera como una molécula, ya que los enlaces se extienden en las tres direcciones del espacio. Los sólidos metálicos son excelentes conductores eléctricos y térmicos, debido a la existencia de electrones libres, poseen brillo metálico y son tenaces, dúctiles y opacos.

Generalmente se considera que el enlace metálico consiste de un grupo de iones positivos y una gran cantidad de electrones, los cuales pueden moverse libremente entre los iones. Este comportamiento influye sobre las propiedades generales de los metales como en el caso de su habilidad para conducir la corriente eléctrica.

Por ejemplo:

En un trozo de sodio metálico, los iones están localizados en una posición fija en el metal y los electrones de valencia (uno por cada átomo de sodio) están libres para moverse entre las varias nubes electrónicas.

Por tanto, en los metales las fuerzas de atracción que deben superarse para realizar la conversión del estado sólido al estado líquido o desde el estado líquido al estado gaseoso son bastante fuertes. Por supuesto, estas fuerzas de atracción varían de un metal a otro pero en general son muy fuertes.

¿QUE ATOMOS DE ELEMENTO PUEDEN INTERVENIR?

Page 3: Enlaces metalicos

Hoy se acepta que en los metales el enlace no es entre átomos, sino más bien entre cationes metálicos y lo que fueron sus electrones. Así, el metal sodio es un conjunto ordenado de iones Na+ y un “mar de electrones” distribuidos entre ellos.

Aquí el compartimiento de electrones ocurre entre todos los núcleos metálicos, que poseen valores iguales de electronegatividad. Esta visión del enlace metálico esta simplificada, pero es lo bastante funcional para nuestro propósito, que es explicar algunas de las propiedades de estos elementos.

El hecho de que los electrones estén deslocalizados explica por qué de estos elementos son buenos conductores tanto del calor como de la electricidad, ya que ambos fenómenos están asociados al libre movimiento de sus electrones. Los metales son conductores, mientras que los sólidos iónicos o covalentes, donde los pares de electrones están bien localizados, no lo son.

Cuando un pedazo de metal se somete a presión externa, los cationes metálicos pueden resbalar unos sobre otros, debido a la capa de electrones que los separa. El metal de deforma pero no se rompe, a diferencia de los cristales iónicos.

CARACTERÍSTICAS DEL ENLACE METALICO.

Maleabilidad y Ductilidad

Cuando un pedazo del metal se somete a presión externa, los cationes metálicos pueden “resbalar” unos sobre otros, debido a la capa de electrones que los separa. El metal se deforma pero no se rompe, a diferencia de los cristales iónicos. Esta es la explicación de su maleabilidad y de la ductillidad.

Los núcleos de los metales se organizan en estructuras ordenadas. Imagina que colocamos sobre una superficie lisa 14 bolas de billar.

Page 4: Enlaces metalicos

Si posteriormente se agregan más bolas en un segunda capa, se colocarían en los huecos que forman cada tres bolas de la primera capa. Para añadir bolas en una tercera capa hay ahora dos opciones; o escogemos los huecos de la segunda capa que están directamente sobre las bolas de la primera, o usamos aquellos que se encuentran sobre huecos de la primera capa. Si se escoge la primera opción se obtiene una estructura llamada hexagonal de empaquetamiento compacto, mientras que la segunda da lugar a la estructura cúbica centrada en las caras.

Aleaciones

Muchos de los metales que conocemos no son puros, sino aleaciones. Una aleación es una disolución sólida, y se prepara disolviendo un metal en otro, generalmente cuando ambos están en estado líquido. La aleación tiene propiedades fisicoquímicas diferentes de las de metales originales.

Por ejemplo.

El oro puro (denominado de 24 quilates) es demasiado blando para usarlo en joyería. Para hacerlo más fuerte se alea con plata y cobre, lo que en una proporción de 25% da lugar a una aleación conocida como oro de 18 quilates.

Las aleaciones del mercurio se llaman amalgamas. Las de plata y zinc son muy utilizadas por los dentistas para llenar las cavidades dentales. El mercurio, que solo es muy venenoso, cuando se encuentra en esta amalgama no representa mayor problema de salud.

Cuando los átomos de los metales forman una aleación son prácticamente del mismo tamaño (hasta un 15% en su diferencia) pueden remplazarse fácilmente sin romper ni alterar la estructura cristalina del metal que se encuentra en mayor proporción. Tenemos entonces unaaleación por sustitución, como es el caso del oro con la plata. Si la diferencia de tamaños es mayor, los átomos más pequeños ocupan los huecos dejados por los átomos mayores (las posiciones intersticiales) por lo que se les conoce como aleaciones intersticiales.

EJEMPLOS DE USOS DEL ENLACE METALICO

Sus usos son indispensables para:

Page 5: Enlaces metalicos

LA MEDICINA

(empastes para dientes)

LA INDUSTRIA AUTOMOTRIZ

(para recubrir piezas metálicas y evitar la oxidación)

LA INDUSTRIA METAL-MECÁNICA

Page 6: Enlaces metalicos

(fabricación de aceros de diversa durezas)

OBJETOS QUE CONTIENEN ATOMOS UNIDOS POR EL ENLACE METALICO.

La aleación más importante, el acero, es intersticial: podríamos decir que los pequeños átomos de carbono (radio de 77pm) están disueltos en el hierro (radio de 126pm). Al aumentar la cantidad del carbono, el acero se vuelve más duro. Con 0.2% de C se tienen aceros blandos para: (clavos y cadenas); con 0.6% se tienen aceros medios (los de rieles o vigas); y con 1% aceros de alta calidad (cuchillos, resortes, herramientas y similares). Además del carbono, se puede formar aleaciones con otros elementos, como Cr y Ni, con los que se produce elacero inoxidable.

El peltre es una aleación (85% Sn, 7.3% Cu, 6% Bi, 1.7%Sb) es muy empleada en utensilios de cocina.

El latón (67%Cu, 33%Zinc) se utiliza en la fabricación de diversos artículos de ferretería.

Las hojas de rasurar tienen una aleación de Cr- Pt.

Los audífonos de los equipos de música portátiles emplean un imán permanente de Co- Sm.