150
Estudio de Previsión de Demanda 2015-2035 (2050) Dirección de Planificación y Desarrollo 12 de noviembre de 2015

Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

  • Upload
    vuduong

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Estudio de Previsión de Demanda 2015-2035 (2050)

Dirección de Planificación y Desarrollo

12 de noviembre de 2015

Page 2: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Estudio de previsión de demanda 2015-2035 (2050) – noviembre de 2015 2

En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo debe realizar de acuerdo al reglamento de los CDEC (DS 291/2007), el CDEC SIC ha encargado a la empresa Quiroz & Asociados la elaboración de un estudio que aborde dichos análisis.

El Estudio contempla la ejecución de una serie de etapas, dentro de las cuales se encuentra una revisión de las metodologías utilizadas a nivel internacional para la estimación de demanda eléctrica, la elección de una metodología para el desarrollo de las estimaciones y su posterior implementación, finalizando con las proyecciones de demanda para los sistemas SIC y SING entre los años 2015 y 2035 con un nivel de desagregación geográfica que considera regiones administrativas en el SIC y por tipo de cliente (libre/regulado). Adicionalmente se solicitó una extensión del horizonte de proyección hasta el año 2050, de carácter referencial.

La metodología utilizada en el Estudio permite contar con una diversidad de sendas de crecimiento probables de la demanda eléctrica, obtenidas a partir de la simulación de la evolución de la actividad económica en el país.

Los datos utilizados para la elaboración del Estudio corresponden a información proporcionada por el CDEC SIC, así como también a información pública de organismos especializados, tales como el Fondo Monetario Internacional, CEPAL, INE, entre otros.

A continuación se presenta el informe descrito con su correspondiente resumen ejecutivo.

Page 3: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

RESUMEN EJECUTIVO Estudio de Previsión de Demanda de Largo Plazo, 2015-2035 (2050)

El Centro de Despacho Económico de Carga del Sistema Interconectado Central (CDEC SIC)

ha encargado a Quiroz & Asociados la elaboración del “Estudio de Previsión de Demanda de

Largo Plazo 2015-2035 (2050)”, en adelante el “Estudio”. Éste tiene por finalidad proyectar el

consumo eléctrico en los sistemas interconectados Central (SIC) y del Norte Grande (SING)

hacia el 2035, con frecuencia mensual y desagregaciones por tipo de cliente (libres y

regulados) y regionales (en el SIC). Adicionalmente, se propone realizar una previsión global

del consumo anual hasta el año 2050.

Para llevar a cabo tal propósito, Quiroz & Asociados ha adoptado una metodología de

carácter econométrico, basada tanto en datos locales como internacionales. Para comenzar,

el Estudio aúna datos de consumo eléctrico e ingreso per cápita, y también precios, para

distintos países y momentos del tiempo (panel de países) y estima con ellos una función de

demanda eléctrica. Con ella, el panel de países permite proyectar una relación consumo-

producto en Chile hacia el largo plazo, en el que el comportamiento del mercado debiera

asemejarse al de aquellos países de mayor ingreso. Utilizando ésta, se ajustan las elasticidades

obtenidas de modelos econométricos con datos locales históricos (Modelo de Corrección de

Errores, MCE), los que poseen la desagregación y frecuencia requerida por CDEC SIC.

Evaluando el MCE, ajustado según los resultados del modelo panel (MP), considerando

supuestos sobre el comportamiento futuro de la actividad económica, población y precios,

obtenemos proyecciones mensuales de consumo eléctrico hasta el 2035. Para población,

utilizamos las proyecciones realizadas en conjunto por el Instituto Nacional de Estadística (INE) y

la CEPAL, mientras que para precios, recurrimos a proyecciones propias de CDEC SIC. Para

actividad económica, en tanto, optamos por simular múltiples sendas de crecimiento

basándonos en un modelo tipo Markov Switching, en el que estimamos la probabilidad de

pasar de un estado (alto, medio o bajo) de crecimiento a otro. Con esto simulamos 1.000

trayectorias para el IMACEC, las que utilizamos como insumo en el modelo de proyección de

consumo eléctrico, obteniendo como producto 1.000 trayectorias resultantes de crecimiento

de la demanda eléctrica. A modo de síntesis, la siguiente figura muestra un esquema de la

metodología:

Page 4: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Figura 1: Metodología base de proyección

Fuente: Elaboración propia

Se presenta a continuación una síntesis de los resultados y procesos del Estudio.

I. Consumo eléctrico y desarrollo: evidencia internacional

La demanda por electricidad es en definitiva una demanda derivada de la tecnología que

hace uso de la misma. En etapas tempranas de desarrollo económico, el aumento del ingreso

familiar, por ejemplo, permite la compra de bienes y servicios con los cuales la población

resuelve sus necesidades básicas. En etapas de desarrollo avanzado, sin embargo, las

sociedades tienden a surtir este tipo de necesidades y la demanda eléctrica doméstica tiende

a estancarse o inclusive a ser progresivamente menor. Un desempeño análogo ocurre en la

demanda industrial. En países de bajo desarrollo, éste suele ir aparejado de un impulso del

consumo eléctrico producto de la creación de industria. Pero a partir de cierto ingreso, ocurren

también giros hacia tecnologías más eficientes, así como un cambio en el enfoque productivo

de las economías que, conforme se desarrollan, son más intensivas en sectores menos

demandantes de energía, como el sector de servicios.

Como consecuencia de estos procesos, la relación entre consumo eléctrico per cápita y

producto per cápita es una de carácter positivo, pero de senda decreciente. Así lo muestra, a

modo de ejemplo, la Figura 2, en la que se relaciona el consumo eléctrico y producto per

PROYECCIÓN CON AJUSTE DE LARGO PLAZO Proyección por región, sistema y tipo de cliente

1.000 sendas de consumo (Markov Switching)

Frecuencia mensual, ene. 2015- dic. 2035

Función de demanda per cápita ajustada

Elasticidad del MCE para el presente

Ajuste para el largo plazo (según MP)

MODELO PANEL (MP) Datos internacionales, panel de países.

Consumo per cápita por país y año

Frecuencia anual, panel desbalanceado 1980 - 2014

Función de demanda per cápita internacional

Pecios e ingreso per cápita

El. consumo-producto: función del ingreso

MODELO DE CORRECCIÓN DE ERRORES (MCE) Datos locales, series de tiempo.

Retiros por región, sistema y tipo de cliente

Frecuencia mensual, ene. 2005 - dic. 2014

Función de demanda per cápita local

Pecios e ingreso per cápita

Elasticidad consumo-producto fija

Page 5: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

cápita en paridad de poder de compra (PPP) en tres países: Gran Bretaña, Dinamarca y

Australia.

Figura 2: Consumo y producto per cápita real en PPP, 1980-2014

(a) Gran Bretaña

(b) Dinamarca

(c) Australia

Fuente: Elaboración propia en base a datos de Banco Mundial y EIA

Para precisar los rasgos de esta relación, estimamos un modelo panel de países mediante la

siguiente función de demanda:

𝑙𝑛(𝑐𝑝𝑐) = 𝛼 + 𝛽 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐) + 𝛾 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐)2

+ 𝛿 ∗ 𝑙𝑛(𝑝) (1)

2,000

3,000

4,000

5,000

6,000

7,000

8,000

25000.0 27000.0 29000.0 31000.0 33000.0 35000.0 37000.0 39000.0 41000.0

Co

nsu

mo

pc

(kW

h)

PIB pc PPP (US$)

2,000

3,000

4,000

5,000

6,000

7,000

8,000

35000.0 37000.0 39000.0 41000.0 43000.0 45000.0 47000.0 49000.0

Co

nsu

mo

pc

(kW

h)

PIB pc PPP (US$)

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

30000.0 32000.0 34000.0 36000.0 38000.0 40000.0 42000.0 44000.0 46000.0

Co

nsu

mo

pc

(kW

h)

PIB pc PPP (US$)

Page 6: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

donde 𝑐𝑝𝑐 es el consumo per cápita, 𝑃𝐼𝐵𝑝𝑐 es el PIB pc real y 𝑝 es una medida de precio de la

electricidad. Con esto, la elasticidad consumo-producto queda definida como función del

ingreso per cápita, como sigue:

𝜼𝒄𝒑 = 𝜕𝑙𝑜𝑔(𝑐𝑝𝑐)

𝜕𝑙𝑜𝑔(𝑃𝐼𝐵𝑝𝑐)= 𝛽 + 2𝛾 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐) (2)

Para la estimación utilizamos datos anuales desde 1980 a 2014 para los 34 países que hoy

conforman la OCDE. Procedemos con ellos a estimar las funciones de demanda del consumo

total, así como desagregado en residencial, industrial y comercial+fiscal, esto bajo dos

supuestos alternativos: Efectos Fijos y Efectos Aleatorios, resultando el primero más apropiado,

producto de su mejor ajuste y consistencia (evaluada a través de un test de Hausman).

Los resultados de la estimación se muestran en la Tabla 1. En cada caso se muestra el

coeficiente estimado en cada variable (incluyendo tanto precio residencial como industrial)

junto a su error estándar en paréntesis. Se muestra también el 𝑅2 ajustado de las regresiones

Tabla 1: Modelos de Efectos Fijos

Total Industriales Residenciales Comerciales y fiscal

𝑙𝑛 (𝑃𝐼𝐵𝑝𝑐) 2,855* (0,190)

2,956* (0.204)

3,624* (0.240)

2,357* (0.265)

𝑙𝑛(𝑃𝐼𝐵𝑝𝑐)2

-0,108* (0,009)

-0.124* (0.010)

-0.147* (0.012)

-0,069* (0.013)

𝑙𝑛 (𝑝𝑟) -0,401* (0,026)

-0.360* (0.028)

-0.366* (0.033)

-0.450* (0.037)

𝑙𝑛 (𝑝𝑖) -0,153* (0,025)

-0.079* (0.027)

-0.016* (0.032)

-0.271* (0.035)

𝑅2 ajustado 0,963 0,955 0,958 0,938 *: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

Con estos coeficientes, las elasticidades adoptan la forma que muestra la Figura 3. En ella se

evidencia que la demanda industrial es la menos elástica de todas, mientras que la más

elástica es la de clientes comerciales y fiscales. La demanda residencial, en tanto, tiene una

elasticidad elevada para bajos niveles de ingreso (0,91 a los US$10.000), pero decae más

rápidamente que las demás (a 0,33 en los US$ 70.000). La demanda comercial+fiscal, por su

parte, tarda más en decrecer, lo que es consistente con la idea de que el desarrollo va

vinculado a una mayor concentración de la actividad económica en sectores de servicios (en

desmedro de la industria).

Page 7: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Figura 3: Elasticidades por tipo de cliente

Fuente: Elaboración propia

II. Modelo de corrección de errores

El modelo panel tiene como objetivo identificar los cambios en la dinámica entre consumo de

electricidad y crecimiento económico en el largo plazo. Éste no nos brinda información, sin

embargo, sobre el comportamiento actual de las series de consumo en Chile en los niveles de

desagregación requeridos por CDEC SIC. Para ello utilizamos un MCE, el que estimamos con

datos locales mensuales desde enero 2005 a agosto 2015.

La ecuación de largo plazo del Modelo de Corrección de Errores es de la siguiente forma:

𝑦𝑡 = 𝛼′𝑋𝑡 + 𝜖𝑡 (3)

donde 𝑦𝑡 corresponde al logaritmo natural del consumo per cápita en el período 𝑡, 𝑋𝑡 es la

matriz de regresores, que incluye tanto una medida de ingreso per cápita (IMACEC sobre

población) como una de precio1, ambos en logaritmo natural. Se incluyen también variables

binarias (dummies) para capturar efectos estacionales en los distintos meses del año.

1 En cuanto a los precios regulados, utilizamos los Precios de Nudo Promedio de energía y potencia desde el año

2010, cuando comienza su aplicación como tal con la entrada en vigencia de los primeros contratos de

licitaciones de suministro a clientes regulados mandadas por la Ley 20.018 de 2005. Para años previos utilizamos

simplemente el Precio de Nudo de Corto Plazo, entonces medida de precio regulado previo al cambio

normativo. Para precios libres de la energía usamos ambos, el costo marginal y el precio medio de mercado,

mientras que para precio de potencia en clientes libres aplica igualmente el Precio de Nudo relevante.

0

1.2

10000 70000

Elas

tici

dad

PIB pc

Residencial

0

1.2

10000 70000

Elas

tici

dad

PIB pc

Industrial

0

1.2

10000 70000

Elas

tici

dad

PIB pc

Comercial y Fiscal

0

1.2

10000 70000

Elas

tici

dad

PIB pc

Total

Page 8: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Los resultados principales se detallan en la Tabla 2, que muestra las elasticidades consumo-

producto y precio (de los que resultaron significativos en algún caso), junto con el error

estándar en paréntesis, además del 𝑟2 ajustado de la regresión (en el Estudio se revisa también

cointegración de las variables). La elasticidad asociada al ingreso varía de caso en caso,

siendo la más elevada la del consumo regulado en el SIC y la menos la del consumo libre en el

mismo sistema. La elasticidad en el agregado, en tanto, se encuentra en torno a 0,87. En

cuanto a medidas de precio, el modelo arrojó en todo caso elasticidades negativas, como

esperado, pero muy cercanas a cero, lo que es indicativo de una demanda altamente

inelástica.

Tabla 2: Modelos de Corrección de Errores

SIC+SING SIC SIC Libre SIC Regulado SING SING libre SING regulado

LOG(IMA/POB) 0,873* (0,029)

0,812* (0,022)

0,206* (0,060)

1,207* (0,046)

0,636* (0,036)

0,564* (0,040)

1,148* (0,055)

LOG(CMG) -0,016* (0,003)

- - -0,026* (0,004)

- - -

LOG(PER) - -0,013* (0,003)

- - - - -

𝑅2 ajustado 0,957 0,937 0,966 0,874 0,806 0,759 0,871 *: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

III. Proyección de regresores

a) Población

Se utilizaron las proyecciones (mensualizadas) de población nacional elaboradas en conjunto

por el INE y la CEPAL, presentadas en el documento “Chile: Proyecciones y Estimaciones de

Población. Total País. 1950-2050” (Observatorio Demográfico de América Latina, 2009). Éstas se

presentan en la Tabla 3.

Tabla 3: Proyecciones de población 2015-2035

Año Población total Año Población total

2015 17.865.185 2026 19.220.429 2016 18.001.964 2027 19.312.102 2017 18.138.749 2028 19.403.774 2018 18.275.530 2029 19.495.446 2019 18.412.316 2030 19.587.121 2020 18.549.095 2031 19.652.544 2021 18.665.029 2032 19.717.971 2022 18.780.961 2033 19.783.397 2023 18.896.893 2034 19.848.824 2024 19.012.825 2035 19.914.249 2025 19.128.758 Fuente: Elaboración propia en base a datos INE y CEPAL

Page 9: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

b) Precios

Las proyecciones de precios se basaron en el resultado de la “Revisión Anual del Estudio de

Transmisión Troncal 2015” de CDEC SIC. La Figura 3 muestra las proyecciones para una barra

representativa por región (las que se detallan en la Tabla 15 del Estudio).

Figura 3: Proyecciones de costo marginal por región, US$

Fuente: CDEC SIC

c) Crecimiento económico

Siguiendo el enfoque metodológico propuesto, se estiman sendas de IMACEC consistentes con

las estructuras estocásticas que caracterizan los ciclos económicos históricos en Chile. Para

esto, utilizamos un modelo del tipo Hidden Markov-Switching, en el que tres estados posibles de

la economía pueden ocurrir en cada período: un estado de alta actividad, uno de actividad

media y uno de actividad baja. Mediante un programa elaborado en Matlab, hemos

estimado los parámetros de las distribuciones de cada estado (media y desviación estándar),

asumiendo que éstas son del tipo normal. Los resultados para datos de variación a 12 meses

del IMACEC, enero 1997 a agosto 2015, se muestran en la Tabla 4.

Tabla 4: Distribuciones estimadas, crecimiento 12 meses IMACEC

Estado Total

Alto Medio Bajo -

Media 5,97% 2,79% -2,74% 3,76%

Desviación Estándar 1,57% 1,37% 1,11% 2,99%

Probabilidad Incondicional 47,88% 42,09% 10,02% -

Fuente: Elaboración propia.

El programa nos permite estimar además las probabilidades de pasar de cada uno de los

estados a otro, o permanecer en el mismo (la denominada “Matriz de Transición”). Con esto,

simulamos 1.000 trayectorias de crecimiento a futuro para enero 2017-diciembre 2035, mientras

que para 2015 y 2016 utilizamos tasas acordes a las proyecciones de crecimiento del Fondo

0

50

100

150

200

sep

-15

may-…

ene-…

sep

-17

may-…

ene-…

sep

-19

may-…

ene-…

sep

-21

may-…

ene-…

sep

-23

may-…

ene-…

sep

-25

may-…

ene-…

sep

-27

may-…

ene-…

sep

-29

may-…

ene-…

sep

-31

may-…

ene-…

sep

-33

may-…

ene-…

I II III IV V RM VI VII VIII IX X

Page 10: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Monetario Internacional (2,3% en 2015 y 2,5% en 2016), considerando que las expectativas

actuales de crecimiento contemplan que la economía continuará en estado medio por un

tiempo más.

A estas trayectorias se les realiza, sin embargo, un ajuste hacia el largo plazo (recorte

progresivo en las tasas medias de crecimiento a partir del año 2020, hasta el 2035), el que

busca capturar la baja esperable en las tasas a medida que la economía se desarrolla. En

efecto, el Estudio muestra que en los datos existe una relación negativa entre desarrollo y tasas

de crecimiento. Realizamos este ajuste suponiendo que en Chile las tasas convergerán a la

tendencia internacional (hoy nos encontramos sobre ésta) hacia el final de la proyección.

Las tasas promedio de crecimiento anual que resultan de las simulaciones se muestran en la

Tabla 5, junto con las proyecciones del FMI y del Banco Central.

Tabla 5: Tasas anuales de crecimiento económico

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 . . .

2030 . . .

2035

Promedio Simulaciones

2,3% 2,5% 3,0% 3,5% 3,6% 3,6% 3,6% 3,6% 3,6% 3,6% 3,3% 2,8% 2,4%

FMI 2,3% 2,5% 2,9% 3,1% 3,3% 3,5% - - - - - - -

Banco Central

2% - 2,5%

2,5%-3,5%

- - - - - - - - - - -

Fuentes: Elaboración propia en base a datos FMI e Informe de Política Monetaria, septiembre 2015 (Banco Central)

Como consecuencia de los ajustes de largo plazo, las tasas de crecimiento decrecen hasta

alcanzar un 2,4% en 2035. Con estas, más las proyecciones de población, obtenemos las

simulaciones que se muestran en la figura siguiente, que presenta los resultados de sendas de

PIB real per cápita (a dólares 2013) en deciles: cada franja de color representa un 10% del total

de las simulaciones. La mediana, en una línea blanca al centro de las proyecciones, se ubica

en los US$ 26.239 hacia el 2035, esto es un 70% por sobre los US$ 15.438 de base en 2014.

Figura 4: Deciles de las simulaciones de PIB real per cápita (US$ 2013)

Fuente: Elaboración propia

10,000

15,000

20,000

25,000

30,000

35,000

40,000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

Page 11: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Mostramos además el histograma con el resultado de los cómputos realizados para el PIB real

pc de 2035. Se destaca la barra del percentil 50 (US$27.000-28.000).

Figura 5: Histograma de 1.000 simulaciones de PIB real pc (US$ 2013) al 2035

Fuente: Elaboración propia

Los resultados más probables se encuentran entre los UD$ 25.000 y los US$ 30.000 per cápita al

2035, donde los intervalos del histograma (cada mil dólares) acumulan una frecuencia de 495

simulaciones, esto es, casi la mitad de las 1.000 totales. El promedio de la distribución, en tanto,

se ubica en los US$ 26.131.

IV. Proyecciones de consumo al 2035

El procedimiento de proyección fue el siguiente:

1. Para cada uno de las trayectorias de ingreso per cápita proyectadas, calculamos las

elasticidades consumo-producto respectivas según el modelo de datos de panel.

2. Ajustamos las elasticidades estimadas en los Modelos de Corrección de Errores de

acuerdo a la variación de las elasticidades obtenidas del modelo panel.

3. Con las elasticidades ajustadas y las proyecciones de crecimiento económico,

proyectamos una serie de sendas de crecimiento de consumo per cápita de

electricidad.

4. Finalmente, utilizando las proyecciones de población, obtuvimos estimaciones de

consumo total.

A continuación se presentan los resultados de proyección de consumo anual para el sistema

agregado (SIC+SING), para las 1.000 trayectorias proyectadas:

0

20

40

60

80

100

120

15

000

16

000

17

000

18

000

19

000

20

000

21

000

22

000

23

000

24

000

25

000

26

000

27

000

28

000

29

000

30

000

31

000

32

000

33

000

34

000

35

000

36

000

37

000

38

000

y m

ayo

r...Fr

ecu

enci

a (n

° d

e s

imu

laci

on

es)

PIB pc real, US$ 2013

Page 12: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Figura 6: Deciles de proyecciones de consumo eléctrico anual para todo el país (GWh).

Fuente: Elaboración propia

La Figura 7, en tanto, muestra el histograma de las distintas simulaciones el año 2035 para el

consumo total. Más de un 94% de las simulaciones resulta en un consumo eléctrico superior a

los 90.000 GWh por año y más de un 55% resulta en un consumo superior a los 110.000 GWh.

Además, el histograma (así como los deciles 1 y 10 de la figura anterior) muestra una ligera

asimetría que no estaba presente en las proyecciones de PIB per cápita, la que se debe a las

menores elasticidades consumo-producto que aplican sobre aquellos escenarios de mayor

crecimiento.

Figura 7: Histograma de las proyecciones de consumo eléctrico anual para el 2035, GWh

Fuente: Elaboración propia

Por último, la Tabla 6 expone el consumo anual (promedio de las simulaciones) y las tasas

derivadas de crecimiento para el agregado (SIC+SING) y cada sistema, diferenciando por tipo

de cliente.

50,000

60,000

70,000

80,000

90,000

100,000

110,000

120,000

130,000

140,000

150,000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

0

10

20

30

40

50

60

70

80

76

000

78

000

80

000

82

000

84

000

86

000

88

000

90

000

92

000

94

000

96

000

98

000

10

000

0

10

200

0

10

400

0

10

600

0

10

800

0

11

000

0

11

200

0

11

400

0

11

600

0

11

800

0

12

000

0

12

200

0

12

400

0

12

600

0

12

800

0

13

000

0

13

200

0

13

400

0

13

600

0

13

800

0

y m

ayo

r...Frec

uen

cia

(n°

de

sim

ula

cio

nes

)

Consumo total, GWh

Page 13: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Tabla 6: Proyecciones de demanda anual

TOTAL SIC SING

Año Total % Libres % Regulados % Libres % Regulados %

2015 66.070 2,7% 17,739 -1.0% 31,549 3.2% 14,903 7.1% 1,880 -0.1% 2016 67.656 2,4% 17,953 1.2% 32,621 3.4% 15,153 1.7% 1,929 2.6% 2017 69.456 2,7% 18,161 1.2% 33,745 3.4% 15,547 2.6% 2,004 3.9% 2018 71.509 3,0% 18,396 1.3% 35,183 4.3% 15,855 2.0% 2,075 3.6% 2019 73.676 3,0% 18,619 1.2% 36,603 4.0% 16,290 2.7% 2,165 4.4% 2020 75.932 3,1% 18,834 1.2% 38,070 4.0% 16,764 2.9% 2,264 4.6% 2021 78.162 2,9% 19,039 1.1% 39,572 3.9% 17,193 2.6% 2,359 4.2% 2022 80.466 2,9% 19,242 1.1% 41,096 3.9% 17,666 2.8% 2,462 4.4% 2023 82.786 2,9% 19,441 1.0% 42,637 3.7% 18,141 2.7% 2,568 4.3% 2024 85.196 2,9% 19,643 1.0% 44,240 3.8% 18,634 2.7% 2,678 4.3% 2025 87.535 2,7% 19,835 1.0% 45,817 3.6% 19,098 2.5% 2,784 4.0% 2026 89.745 2,5% 20,007 0.9% 47,328 3.3% 19,524 2.2% 2,885 3.6% 2027 92.105 2,6% 20,186 0.9% 48,935 3.4% 19,989 2.4% 2,995 3.8% 2028 94.448 2,5% 20,362 0.9% 50,534 3.3% 20,449 2.3% 3,104 3.7% 2029 96.727 2,4% 20,533 0.8% 52,088 3.1% 20,895 2.2% 3,211 3.4% 2030 98.906 2,3% 20,688 0.8% 53,583 2.9% 21,320 2.0% 3,315 3.2% 2031 101.025 2,1% 20,827 0.7% 55,050 2.7% 21,730 1.9% 3,418 3.1% 2032 103.023 2,0% 20,960 0.6% 56,432 2.5% 22,116 1.8% 3,515 2.8% 2033 104.988 1,9% 21,090 0.6% 57,792 2.4% 22,496 1.7% 3,611 2.7% 2034 106.973 1,9% 21,220 0.6% 59,167 2.4% 22,878 1.7% 3,709 2.7% 2035 108.918 1,8% 21,337 0.6% 60,526 2.3% 23,250 1.6% 3,806 2.6%

Media 2,5% 1,3% 3,1% 2,0% 2,6% 15-25 2,8% 1,5% 3,6% 2,3% 2,9% 26-35 2,2% 1,0% 2,6% 1,6% 2,3%

Los resultados presentan un año 2015 con crecimiento negativo tanto en consumo libre del SIC

como en regulado del SING. En consumo libre del SING, en cambio, se percibe un aumento

importante de la demanda en este año, producto del ingreso de actores importantes en la

minería. En todo caso, se perciben tasas menores de crecimiento en los años cercanos,

producto del menor crecimiento económico, las que tienden a recuperarse hacia fines de la

década para luego decaer gradualmente de la mano del desarrollo. La demanda total, en

tanto, alcanzaría tasas de crecimiento del 3,1%el 2020, para luego decaer a 1,8%, alcanzando

un total de 108.918 GWh hacia e 2035.

V. Desagregación regional

En el SIC, las proyecciones se presentan desagregadas por región, aunando las regiones X y

XIV por disponer así de datos de mayor antigüedad, desde antes de su separación el año

2007.

Por la importancia de la minería en el norte, así como por la relevancia de algunas minas en las

regiones más céntricas, se ha considerado necesario complementar la metodología de

proyección vía econometría con una revisión de los planes de obras registrados en COCHILCO.

Page 14: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Para esto, comenzamos por separar en los datos regionales a aquellas mineras cuyo consumo

fue, el 2014, igual o superior al 10% del total regional (Candelaria, Salvador y Caserones en la III,

Carmen de Andacollo en la IV, Pelambres y Andina en la V y Teniente en la VI).

En cuanto a los grandes clientes que se encuentran ya operando, proyectamos su producción

de mineral utilizando las tasas de crecimiento proyectadas por COCHILCO para la capacidad

de producción de plantas ya operativas en las regiones respectivas, y asumimos que el

consumo eléctrico aumenta en iguales proporciones. En cuanto a los proyectos (nuevos o de

expansión) que hoy se encuentran en cartera, seleccionamos todos los con inversión estimada

en más de MMUS$500 y que presentan según COCHILCO una condición de “Base”, “Probable”

o “Posible” (dejando fuera los proyectos “potenciales”, que poseen probabilidades aún muy

bajas de materialización). El consumo estimado de estos proyectos en sus Estudios de Impacto

Ambiental se agrega a nuestras proyecciones en su valor esperado, esto es, considerando que

con un 0,8 de probabilidades se concretarán los proyectos “probables” y con un 0,5 los

“posibles”.

La Tabla 7 muestra las proyecciones de consumo de grandes mineras.

Tabla 7: Consumo proyectado de grandes mineras, GWh

III región IV región V región VI región

Proyectos

Salvador + Caserones + Candelaria

Proyectos Carmen

de Andacollo

Proyectos Pelambres + Andina

Proyectos Teniente

2014 - 1,656 - 500 - 2,068 - 1,789 2015 - 1,824 - 484 - 2,042 - 1,728 2016 - 1,899 - 490 - 2,114 - 1,745 2017 560.0 1,914 158 483 - 2,078 - 1,707 2018 1,596 1,904 158 489 - 2,018 - 1,674 2019 1,596 1,984 866 480 - 1,945 - 1,676 2020 1,807 1,661 866 471 - 1,988 - 1,627 2021 1,807 1,596 866 465 - 1,974 - 1,618 2022 1,807 1,547 866 465 735 2,118 - 1,491 2023 1,807 1,486 866 460 735 2,216 - 1,265 2024 1,807 1,439 866 460 735 2,340 - 1,090 2025 1,807 1,390 866 454 735 2,466 - 915 2026 1,807 1,354 866 454 735 2,311 - 747 2027 1,807 1,354 866 449 735 2,611 - 912 2028 1,807 1,354 866 445 735 2,768 - 857 2029 1,807 1,354 866 440 735 2,961 - 806 2030 1,807 1,354 866 436 735 3,198 - 757 2031 1,807 1,354 866 431 735 3,486 - 712 2032 1,807 1,354 866 427 735 3,800 - 669 2033 1,807 1,354 866 423 735 4,180 - 629 2034 1,807 1,354 866 419 735 4,640 - 591 2035 1,807 1,354 866 414 735 5,196 - 556

Fuente: Elaboración propia

El consumo remanente es estimado mediante econometría con modelos para el consumo

total y regulado por región (en algunos casos se estimó también el consumo libre). A estas

Page 15: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

proyecciones sumamos luego las previsiones de la Tabla 7 y obtenemos los resultados

regionales en consumo total, libre y regulado, que muestran las tablas 8-10 (en tasas de

crecimiento del consumo). En la primera de ellas se evidencia que el consumo proyectado

decrecerá en el largo plazo en el norte del SIC (III región), mientras que en el resto aumentará,

aunque de forma dispar, más pronunciadamente en regiones como la V y la X. El consumo

regulado, en cambio, muestra un comportamiento más parejo para la totalidad de las

regiones, con tasas que comienzan en torno al 4% y luego decrecen. El consumo libre, por

último, es muy dispar y volátil, sobre todo en las regiones mineras. Éste se mantiene estancado

además, con tasas en ocasiones a la baja, en las regiones X y Metropolitana.

Tabla 8: Proyecciones de consumo TOTAL por región 2015-2035 (tasas crecimiento)

Total, incluyendo a mineras, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 4.9% -0.4% 0.9% 0.6% 3.3% 1.7% 8.2% 2.3% 0.9%

2016 2.3% 2.4% 2.4% 2.7% 2.7% 1.8% 3.4% 3.5% 2.6%

2017 9.0% 8.9% -0.4% 0.2% 3.2% 2.1% 2.9% 3.5% 2.3%

2018 13.6% 1.5% -1.5% 0.1% 3.1% 2.1% 3.9% 3.4% 3.8%

2019 -3.6% 30.3% -0.2% 1.8% 3.8% 2.8% 3.4% 4.2% 3.0%

2020 0.2% 2.4% 3.7% 3.6% 4.2% 3.3% 3.4% 4.2% 3.0%

2021 0.5% 2.4% 2.6% 4.1% 3.9% 3.0% 3.6% 4.4% 3.1%

2022 0.1% 2.5% 4.4% 2.0% 4.0% 3.0% 3.2% 4.8% 2.9%

2023 -4.5% 1.2% 10.2% -0.9% 4.0% 2.7% 3.0% 4.0% 2.8%

2024 0.6% 2.6% 3.9% 1.8% 4.1% 2.9% 3.2% 4.1% 2.9%

2025 0.6% 2.3% 3.6% 1.6% 3.6% 2.4% 3.3% 4.0% 3.0%

2026 2.5% 2.7% 1.5% 2.2% 3.4% 2.2% 3.1% 3.7% 2.8%

2027 -2.9% 1.3% 3.5% 5.3% 3.4% 1.9% 3.1% 3.9% 2.8%

2028 -0.3% 1.9% 3.0% 2.8% 3.3% 1.8% 3.0% 3.8% 2.8%

2029 -0.6% 1.7% 3.1% 2.7% 3.2% 1.6% 2.9% 3.6% 2.7%

2030 -0.9% 1.6% 3.1% 2.4% 3.0% 1.3% 2.7% 3.4% 2.5%

2031 -1.4% 1.4% 3.1% 2.2% 2.8% 1.1% 2.6% 3.2% 2.4%

2032 -1.5% 1.3% 3.0% 2.0% 2.6% 0.9% 2.4% 3.0% 2.2%

2033 -1.9% 1.2% 3.1% 1.8% 2.5% 0.9% 2.3% 2.9% 2.1%

2034 -2.4% 1.1% 3.3% 1.7% 2.5% 1.0% 2.2% 2.8% 2.1%

2035 -3.0% 1.0% 3.4% 1.5% 2.4% 1.0% 2.1% 2.7% 2.0% Fuente: Elaboración propia

Page 16: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

Tabla 9: Proyecciones de consumo REGULADO por región 2015-2035 (tasas crecimiento)

Consumo regulado, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 -3.0% 2.0% 1.8% 5.1% 3.8% 4.2% 4.9% 2.5% 3.3%

2016 2.3% 2.9% 2.5% 2.9% 2.9% 4.9% 4.1% 3.6% 3.4%

2017 3.1% 3.5% 2.9% 3.6% 3.7% 5.0% 3.0% 3.6% 3.2%

2018 2.3% 3.8% 2.7% 3.7% 3.5% 4.2% 4.6% 3.5% 5.1%

2019 3.7% 4.1% 3.5% 4.2% 4.3% 4.7% 3.5% 4.3% 4.0%

2020 4.1% 4.2% 3.8% 4.4% 4.5% 4.6% 3.2% 4.2% 3.8%

2021 3.6% 4.0% 3.4% 4.1% 4.2% 4.1% 3.6% 4.5% 3.9%

2022 3.9% 4.0% 3.6% 4.2% 4.3% 4.0% 3.0% 4.9% 3.6%

2023 4.1% 4.0% 3.7% 4.2% 4.4% 3.9% 2.9% 4.1% 3.5%

2024 4.0% 4.0% 3.7% 4.2% 4.4% 3.6% 3.0% 4.2% 3.6%

2025 3.5% 3.6% 3.3% 3.7% 3.9% 3.1% 3.3% 4.0% 3.6%

2026 3.2% 3.4% 3.1% 3.5% 3.6% 2.7% 3.0% 3.8% 3.3%

2027 3.4% 3.4% 3.2% 3.5% 3.7% 2.5% 3.2% 3.9% 3.5%

2028 3.3% 3.3% 3.1% 3.4% 3.6% 2.2% 3.1% 3.8% 3.4%

2029 3.1% 3.1% 3.0% 3.2% 3.4% 1.9% 2.9% 3.6% 3.2%

2030 3.0% 2.9% 2.8% 3.0% 3.2% 1.6% 2.7% 3.4% 3.0%

2031 2.9% 2.8% 2.7% 2.9% 3.0% 1.3% 2.6% 3.3% 2.9%

2032 2.6% 2.5% 2.5% 2.7% 2.8% 1.1% 2.4% 3.0% 2.6%

2033 2.5% 2.4% 2.4% 2.5% 2.7% 1.1% 2.3% 2.9% 2.5%

2034 2.5% 2.4% 2.4% 2.5% 2.6% 1.0% 2.3% 2.9% 2.5%

2035 2.4% 2.3% 2.3% 2.4% 2.6% 1.0% 2.2% 2.8% 2.4% Fuente: Elaboración propia

Tabla 10: Proyecciones de consumo LIBRE por región 2015-2035 (tasas crecimiento)

Consumo libre, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 6.7% -4.6% 0.0% -3.4% 1.2% -1.7% 20.6% -5.8% -6.0%

2016 2.3% 1.6% 2.4% 2.5% 1.8% -2.7% 1.1% -0.1% -0.1%

2017 10.3% 19.1% -3.8% -3.1% 1.5% -2.4% 2.4% -0.5% -0.5%

2018 15.8% -2.1% -5.9% -3.5% 1.7% -1.4% 1.6% -0.6% -0.6%

2019 -4.9% 75.7% -4.6% -0.8% 2.0% -0.6% 3.0% -0.5% -0.5%

2020 -0.5% 0.6% 3.6% 2.7% 2.9% 0.8% 4.0% 0.1% 0.1%

2021 -0.1% 0.7% 1.6% 4.0% 2.8% 0.8% 3.4% 0.0% 0.0%

2022 -0.6% 0.7% 5.4% -0.5% 2.7% 0.9% 3.9% 0.0% 0.0%

2023 -6.4% -1.9% 18.4% -7.1% 2.2% 0.3% 3.7% -0.4% -0.4%

2024 -0.3% 1.0% 4.1% -1.5% 2.8% 1.3% 4.0% 0.0% 0.0%

2025 -0.1% 0.7% 3.9% -1.5% 2.6% 1.0% 3.2% 0.0% 0.0%

2026 2.3% 1.9% -0.3% 0.2% 2.7% 1.2% 3.2% 0.1% 0.1%

2027 -4.5% -1.4% 3.8% 8.2% 2.1% 0.5% 2.7% -0.3% -0.3%

2028 -1.3% -0.1% 2.8% 1.9% 2.3% 1.0% 2.9% -0.1% -0.1%

2029 -1.7% -0.2% 3.1% 1.8% 2.2% 0.9% 2.7% -0.1% -0.1%

2030 -2.2% -0.4% 3.3% 1.4% 2.1% 0.7% 2.5% -0.2% -0.2%

2031 -2.8% -0.6% 3.6% 1.1% 2.0% 0.7% 2.4% -0.2% -0.2%

2032 -2.9% -0.6% 3.6% 0.9% 1.8% 0.6% 2.2% -0.2% -0.2%

2033 -3.5% -0.8% 3.9% 0.7% 1.7% 0.6% 2.1% -0.2% -0.2%

2034 -4.3% -1.0% 4.2% 0.4% 1.7% 0.8% 2.1% -0.2% -0.2%

2035 -5.2% -1.3% 4.5% -0.1% 1.6% 0.9% 2.0% -0.3% -0.3% Fuente: Elaboración propia

Page 17: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

VI. Ejercicios de previsión al 2050

Sin duda, la relación entre el consumo eléctrico y sus principales drivers puede cambiar en el

futuro, lo que ocurriría si, por ejemplo, emerge una nueva tecnología que haga más o menos

atractivo a los consumidores el uso de la electricidad. Por lo anterior, una metodología quizás

más ilustrativa para proyectar al 2050 que el uso exclusivo de métodos econométricos, sea el

planteamiento de escenarios para el futuro. Dichos escenarios nos permitirían revisar qué

implicancias podrían tener ciertos cambios probables sobre la demanda eléctrica.

De estos cambios analizamos tres que se vislumbran hoy como importantes: 1) la eficiencia

energética; 2) el auto eléctrico; y 3) la autogeneración eléctrica. Respecto de la primera,

estimamos, mediante una ampliación de la metodología utilizada en el Estudio, que es de

esperar que la demanda en Chile aumente cada vez menos con el ingreso, comenzando en

tasas que pueden alcanzar el 3,1% hacia el 2020, pero que descenderían hasta un 1,3% al

2050. Con esto, el consumo total a ese año alanzaría los 137.107 GWh y un incremento de 113%

desde el 2014 (pero apenas 26% desde 2035). La demanda expresada en términos per cápita,

en tanto, crecería todavía menos, en apenas un 87% al 2050, alcanzando los 6.786 kWh.

Respecto del auto eléctrico, estimaos tres escenarios de crecimiento de las ventas hacia el

2050: uno acelerado, en el que se alcanza una participación de 15% en las ventas totales de

automóviles a dicho año; uno medio, alcanzando un 12,5% de las ventas en 2050; y uno bajo,

que se traduce en una tasa de 8,5% de las ventas a 2050. Con esto, la participación del auto

eléctrico podría fluctuar entre el 7 y el 11% en el parque automotriz, lo que podría elevar el

consumo eléctrico en hasta 7.600 GWh al 2050, esto es, en un 5,5% de la demanda proyectada

sin esta tecnología.

Por último, en lo que a autogeneración refiere, no parece probable que adquiera una gran

relevancia en Chile, a diferencia de lo que ha ido paulatinamente ocurriendo en otros países.

En efecto, Chile se ha sumado tardíamente a las consideraciones ambientales en generación

eléctrica, lo que ha hecho aprovechando la caída en los costos de inversión de las ENRC, en

particular de la generación solar. En consecuencia, esta tecnología representa hoy un

importante 38% de la capacidad de generación que se encuentra en construcción (CNE). Por

ello, no parece probable que en un escenario como el actual, el Estado chileno opte, por

ejemplo, por subsidiar la compra de paneles solares, en circunstancias en que los inversionistas

lo están haciendo a gran escala sin la necesidad de subsidio. Ahora bien, el aprovechamiento

de las economías de escala del que gozan las centrales hace que esta alternativa de

autogeneración a nivel de usuario tampoco sea rentable de forma privada, a pesar de la

caída en los precios del panel fotovoltaico. En efecto, los ahorros que derivan de no pagar por

Page 18: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

el sistema de distribución y transmisión no logran compensar las ventajas en costos que poseen

las grandes centrales, en las que la inversión unitaria se ha mantenido considerablemente

menor por varios años (y con ello, finalmente, el costo medio de la electricidad).

Page 19: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

ESTUDIO DE PREVISIÓN DE

DEMANDA DE LARGO PLAZO

2015-2035 (2050)

Informe Final

30 de octubre de 2015

Page 20: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

2

Informe preparado por Quiroz & Asociados para el Centro

de Despacho Económico de Carga Sistema

Interconectado Central. Las opiniones vertidas aquí son de

exclusiva responsabilidad de los autores y no reflejan

necesariamente las del Centro de Despacho Económico

de Carga.

Jorge Quiroz: [email protected]

Felipe Givovich: [email protected]

Loreto Ayala: [email protected]

Salvador Andino: [email protected]

QUIROZ & ASOCIADOS

Isidora Goyenechea 3000, of 1301

Santiago – Chile

Fono: (56-2) 2639 9012

Page 21: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

3

CONTENIDO

CONTENIDO ..................................................................................................................................................... 3

1. ANTECEDENTES ......................................................................................................................................... 5

2. ENFOQUE Y METODOLOGÍA DEL ESTUDIO .......................................................................................... 6

3. ESTUDIOS DE PREVISIÓN EN OTROS PAÍSES .......................................................................................... 9

3.1 Modelos tipo “uso final” ................................................................................................................. 9

3.2 Métodos econométricos .............................................................................................................. 10

4. CONSUMO ELÉCTRICO Y DESARROLLO: EVIDENCIA INTERNACIONAL ........................................ 13

4.1 Modelo panel ................................................................................................................................. 15

4.2 Por tipo de cliente ......................................................................................................................... 19

5. RELACION CONSUMO-PRODUCTO EN CHILE: MODELO DE CORRECCIÓN DE ERRORES ........ 21

5.1 Consumo agregado y por sistema ............................................................................................ 22

5.2 Consumo por tipo de cliente en cada sistema ....................................................................... 26

6. PROYECCIÓN DE REGRESORES ........................................................................................................... 28

6.1 Población ........................................................................................................................................ 28

6.2 Markov Switching sobre crecimiento económico .................................................................. 29

6.2.1 Proyección al 2035 ................................................................................................................. 31

6.2.2 Ajuste de largo plazo al crecimiento ................................................................................. 33

6.2.3 Resultados................................................................................................................................ 38

6.3 Precios .............................................................................................................................................. 40

7. PROYECCIONES AL 2035 ...................................................................................................................... 42

7.1 Por Tipo de Cliente ........................................................................................................................ 46

8. DESAGREGACIÓN REGIONAL EN EL SIC ........................................................................................... 51

9. EJERCICIOS DE PREVISIÓN AL 2050 .................................................................................................... 63

9.1 Eficiencia Energética .................................................................................................................... 63

9.2 Auto eléctrico ................................................................................................................................. 65

9.3 Autogeneración ............................................................................................................................ 67

10. SÍNTESIS Y CONCLUSIONES ............................................................................................................... 70

REFERENCIAS .................................................................................................................................................. 72

ANEXO 1: ESTUDIOS DE PREVISIÓN DE DEMANDA .................................................................................. 74

ANEXO 2: EFECTOS FIJOS Y EFECTOS ALEATORIOS ................................................................................. 88

Page 22: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

4

ANEXO 3: MODELO PANEL: OUTPUTS DE EVIEWS ..................................................................................... 90

ANEXO 4: MODELO DE CORRECCIÓN DE ERRORES ............................................................................... 93

ANEXO 5: MODELO DE CORRECCIÓN DE ERRORES 2: OUTPUTS DE EVIEWS ...................................... 95

ANEXO 6: MARKOV SWITCHING ............................................................................................................... 123

ANEXO 7: DESPLIEGUE ESPERADO DE LA AUTOGENERACIÓN EN CHILE ........................................... 126

ANEXO 8: DETALLE DE PROYECCIONES ................................................................................................... 130

ANEXO 9: NORMALIZACIÓN DE PROYECCIONES .................................................................................. 131

Page 23: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

5

1. ANTECEDENTES

El Centro de Despacho Económico de Carga del Sistema Interconectado Central (CDEC SIC)

ha encargado a Quiroz & Asociados la elaboración de un estudio denominado “Estudio de

Previsión de Demanda de Largo Plazo 2015-2035 (2050)”, en adelante el “Estudio”. Éste tiene por

finalidad proyectar el consumo eléctrico en los sistemas interconectados Central (SIC) y del

Norte Grande (SING) hacia el 2035, con frecuencia mensual y desagregaciones por tipo de

cliente (libres y regulados) y regionales. Adicionalmente, se propone realizar una previsión global

del consumo anual hasta el año 2050.

El presente documento corresponde a la versión final del Estudio, habiendo atravesado ya por

sucesivas etapas preliminares de elaboración y discusión del documento mismo, la metodología

empleada y los resultados obtenidos. Por lo mismo, y en conformidad con los requerimientos del

CDEC SIC, el presente informe aborda de forma detallada, en una primera instancia, la

metodología y los modelos econométricos utilizados para la proyección, para luego mostrar los

resultados en los principales agregados (total, por sistema y por tipo de cliente), así como en las

regiones que integran el SIC. Una metodología distinta se propone para abordar las previsiones

hacia el 2050, consistente en la evaluación de escenarios posibles de cambios relevantes en el

patrón de la demanda eléctrica, tales como la masificación del auto eléctrico y una mayor

eficiencia energética.

Estos contenidos se presentan en el documento a lo largo de 10 secciones, que se estructuran

como sigue: la sección 2 introduce el enfoque del estudio y la metodología utilizada en la

proyección; la sección 3 presenta una breve revisión de los métodos de previsión más

frecuentemente utilizados en otros países en demanda eléctrica, así como una comparación

sucinta de estos con el método aquí propuesto; la sección 4 analiza el comportamiento de la

relación consumo eléctrico-producto en distintos países, en particular aquellos con un mayor

nivel de desarrollo económico que Chile; la sección 5 presenta los modelos base de la

proyección a nivel agregado; la sección 6 proyecta los regresores y la 7 el consumo eléctrico

por sistema y tipo de cliente, mientras que la sección 8 expone la metodología y los resultados

de desagregación regional; finalmente, la sección 9 muestra algunos análisis hacia el 2050 y la

10 sintetiza y concluye.

Page 24: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

6

2. ENFOQUE Y METODOLOGÍA DEL ESTUDIO

Teniendo en consideración la extensión del período de proyección requerido por el CDEC SIC

para el Estudio (2015-2035, con extensiones a 2050), el enfoque metodológico desarrollado a lo

largo de este documento se centra en identificar aquellas dinámicas que, con mayor

probabilidad, enfrentará el mercado eléctrico chileno a futuro, teniendo en consideración el

actual estado económico del país y su devenir probable. Para ello, el estudio incorpora

información del desempeño del mercado eléctrico de países que han transitado por las etapas

de desarrollo que Chile enfrentará durante el período de proyección.

Para el ejercicio antes señalado, el Estudio aúna datos de consumo eléctrico e ingreso per

cápita, para distintos países y momentos del tiempo y los examina en búsqueda de una relación

estable. En particular, indaga sobre la evolución de dicha relación a medida que los países

logran mayor desarrollo. Para precisar esto, el Estudio presenta una estimación de demanda con

datos tipo panel de países. Con ella se evalúa la existencia de cambios en la elasticidad

consumo-producto (cambio porcentual en consumo ante aumento de 1% en PIB per-cápita)

para distintos niveles de este último, verificando la presencia de una elasticidad ingreso que

decrece con el desarrollo. De esta forma se caracteriza una demanda que se desprende

progresivamente del crecimiento económico, aumentando a tasas comparativamente

menores con el pasar del tiempo. Los datos son anuales (1980 a 2014) para los 34 países de la

OCDE: con estos se estiman dos modelos ( Efectos Fijos y Efectos Aleatorios, a detallar más

adelante), dentro de los cuales se escoge el de mejor ajuste y supuestos más apropiados.

El panel de países permite proyectar una relación consumo-producto en Chile hacia el largo

plazo, en el que el comportamiento del mercado debiera asemejarse al de aquellos países de

mayor ingreso. Utilizando ésta, se ajustan las elasticidades obtenidas de modelos econométricos

con datos locales históricos, los que poseen la desagregación y frecuencia requerida por el

CDEC SIC. En particular, utilizamos un Modelo de Corrección de Errores (MCE) para series

mensuales de tiempo a nivel nacional, por sistema interconectado (SIC y SING) y por región

(sección 5), caracterizando, como en el modelo panel de países (MP), el consumo per cápita

como función del precio e ingreso per cápita. Sobre este modelo realizamos ajustes hacia el

largo plazo (ajustes en la elasticidad consumo-producto) de acuerdo a lo determinado en el

panel de países.

Teniendo en consideración los modelos anteriores, la proyección del consumo de energía

eléctrica requiere como insumo una estimación del crecimiento económico de Chile en el largo

Page 25: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

7

pazo. Para ello, optamos por simular múltiples sendas de crecimiento económico basándonos

en un modelo tipo Markov Switching (sección 6) en el que estimamos la probabilidad de pasar

de un estado (alto, medio o bajo) de crecimiento a otro. Con estas probabilidades, más un

estado observado en el presente, simulamos 1.000 trayectorias para el IMACEC, las que

utilizamos como insumo en el modelo de proyección de consumo eléctrico, obteniendo como

producto 1.000 trayectorias resultantes de crecimiento de la demanda eléctrica. A modo de

síntesis, la siguiente figura muestra un esquema de la metodología:

Figura 1: Metodología base de proyección

Fuente: Elaboración propia

En suma a lo anterior, se realizan previsiones anuales de consumo agregado (SIC+SING) entre

2036 y 2050, aunque esto bajo un enfoque medularmente distinto. En efecto, teniendo en cuenta

que a medida que ampliamos el horizonte de previsión, mayor es el grado de incertidumbre,

abordamos la extensión de las previsiones hacia el 2050 a partir de ejercicios de escenarios, los

que utilizamos a modo de herramientas de evaluación de futuros posibles, más que como

herramientas de previsión propiamente tal. En esta tarea analizamos tres factores que podrían

incidir sustantivamente sobre la demanda futura: 1) la eficiencia energética, que podría reducir

a nivel global los requerimientos de electricidad de los clientes conectados; 2) la penetración

en el mercado del auto eléctrico, que vendría a elevar el consumo regulado en una magnitud

previsiblemente importante; y 3) se evalúa el escenario de autogeneración en base a

PROYECCIÓN CON AJUSTE DE LARGO PLAZOProyección por región, sistema y tipo de cliente

1.000 sendas de consumo (Markov Switching)

Frecuencia mensual, ene. 2015- dic. 2035

Función de demanda per cápita ajustada

Elasticidad del MCE para el presente

Ajuste para el largo plazo (según MP)

MODELO PANEL (MP)Datos internacionales, panel de países.

Consumo per cápita por país y año

Frecuencia anual, panel desbalanceado 1980 - 2014

Función de demanda per cápita internacional

Pecios e ingreso per cápita

El. consumo-producto: función del ingreso

MODELO DE CORRECCIÓN DE ERRORES (MCE)Datos locales, series de tiempo.

Retiros por región, sistema y tipo de cliente

Frecuencia mensual, ene. 2005 - dic. 2014

Función de demanda per cápita local

Pecios e ingreso per cápita

Elasticidad consumo-producto fija

Page 26: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

8

tecnología solar fotovoltaica, escenario que estimamos tiene baja probabilidad de expansión

dadas las condiciones estructurales previsibles de nuestro mercado eléctrico.

Page 27: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

9

3. ESTUDIOS DE PREVISIÓN EN OTROS PAÍSES

Las metodologías de previsión de consumo eléctrico disponibles son múltiples y diversas, en cada

caso acordes a los requerimientos de la institución que demanda las proyecciones, así como a

la realidad a la que ésta se ciñe. Revisaremos a continuación de forma breve dos grandes

“categorías” de metodologías de previsión, las que, con variaciones, componen la base de las

estrategias utilizadas en gran parte de los estudios de otros países. Circunscribiremos, finalmente,

la metodología de este Estudio dentro del marco de la literatura revisada. Una revisión más

extensa de la literatura revisada puede encontrarse en el Anexo 1.

3.1 MODELOS TIPO “USO FINAL”

Dos de los modelos de “uso final” cuyo uso se ha propagado más intensamente son los modelos

MEAD (Model for Analysis of Energy Demand) y LEAP (Long-range Energy Alternatives Planning),

ambos pensados para el planeamiento eléctrico y energético en general. El primero fue

elaborado por el Organismo Internacional de Energía Atómica (OIEA) para asistir a países en

materias relacionadas y, en particular, estimar el papel de la energía nuclear en sendas

alternativas de comportamiento de estos mercados hacia el futuro. Los insumos del modelo son

introducidos en un archivo Excel que, junto con su manual de uso, ha sido distribuido por el OIEA

a sus países miembros, dentro de los cuales está Chile. El segundo, LEAP, en cambio, fue creado

por el “Stockholm Environment Institute” para evaluar políticas energéticas y de mitigación del

cambio climático, y es ofrecido en un software a distintas organizaciones gubernamentales,

académicas, de consultoría, etc., en más de 190 países a nivel mundial.

Los modelos de tipo “uso final” constituyen representaciones del mercado eléctrico desde,

como dice el nombre, el consumo de electricidad a nivel del último usuario, ya sea hogar,

fábrica, comercio, etc. Por esta razón, se les denomina a menudo como modelos “de abajo

arriba” (bottom-up), pues buscan con datos de demografía (crecimiento de la población,

personas por hogar, etc.), tecnología (aparatos domésticos por hogar, tecnología industrial,

eficiencia de tecnología nueva, etc.), preferencias (por tecnologías, sistemas de trasporte, etc.),

comportamiento de los usuarios (ahorro energético), etc., replicar el consumo energético

agregado por sector (residencial, servicios, industrial y transportes). Esto lo hacen calibrando

parámetros relativos, por ejemplo, a intensidad o eficiencia energética, penetración de ciertas

Page 28: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

10

tecnologías, etc. De esta forma, se simula el comportamiento de los mercados energéticos a

partir de parámetros y datos, replicando en una identidad la demanda agregada (de allí que

se les conozca también por su “enfoque de contabilidad”).

Para las previsiones a futuro, se construyen escenarios asociados a supuestos sobre los valores

de los parámetros del modelo (cuánto crecerá la población, qué tan eficiente será la

tecnología, qué penetración tendrán algunas tecnologías, etc.)1. De esta forma, tomando

como referencia el año base, es posible construir múltiples futuros posibles haciendo variar los

parámetros de acuerdo, por ejemplo, a ciertos objetivos de política.

Debido a su particular enfoque “contable”, estos modelos no son utilizados comúnmente con el

fin de proyectar las condiciones actuales de los mercados energéticos hacia el futuro, sino más

bien de evaluar distintas configuraciones de los mercados y su impacto sobre, por ejemplo,

demanda, emisiones de carbono, etc. Se ha hecho en general vasto uso de esta metodología

en evaluaciones de muy largo plazo, donde las proyecciones resultan poco asertivas.

Algunos trabajos que han analizado la demanda energética con modelos de este tipo son, por

ejemplo, MINMINAS (2015), que realiza evaluaciones generales del mercado eléctrico hacia el

2050 en Colombia; Hainoun et al (2006), que se detiene en la demanda energética industrial en

Siria; Fletcher and Marshall (1995) y OEF (2006), también sobre la demanda industrial pero en

Inglaterra; Ozlap and Hyman (2006) en la industria de papel en Estados Unidos; Price et al (2001)

en la industria del acero en países en desarrollo; Avdaković et al (2015) en Bosnia y Herzegovina,

Kichonge et al. (2014) en Tanzania, entre muchos otros.

3.2 MÉTODOS ECONOMÉTRICOS

Los métodos econométricos buscan caracterizar la relación entre consumo energético y lo que

la teoría económica predice como sus principales drivers, como actividad económica y

crecimiento de la población. Utiliza para ello datos históricos, de modo de evaluar

1 A modo de ejemplo, el programa LEAP modela relaciones del tipo 𝐸 = 𝐴 ∗ 𝐼, donde 𝐴 es el nivel de actividad

económica e 𝐼 es la intensidad energética del sector, entendida como energía por unidad de producto. Así, por

ejemplo, se puede evaluar el consumo de un sector industrial que resulta de múltiples niveles de actividad futura

e intensidad energética. Adicionalmente, el análisis de “energía útil” se ajusta a la ecuación 𝐸 = 𝐴 ∗ (𝑈 𝑛⁄ ), donde

𝑈 es la intensidad energética y 𝑛 es una medida de eficiencia. Esta identidad permite, por ejemplo, evaluar cómo

cambiará el consumo energético en edificios si la actividad inmobiliaria aumenta (aumenta 𝐴); si en un mismo

edificio se utiliza más energía (aumenta 𝑈); o los aparatos domésticos son más eficientes.

Page 29: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

11

estadísticamente si estas variables han presentado en períodos ya observados una cierta

correlación en su comportamiento (controlando por otros factores). Esta relación es luego

extrapolada al futuro, con lo que se obtienen proyecciones de consumo.

Los métodos econométricos tienen como principal objetivo predecir el valor más probable de

la serie a futuro, suponiendo que los patrones de la relación caracterizada no variarán. Por lo

mismo, han mostrado buenos resultados en horizontes breves de previsión, en los que el supuesto

es razonable. Poseen otras ventajas frente a métodos alternativos, como lo son la posibilidad de

dar lectura intuitiva a los parámetros estimados desde la teoría económica, así como la de dar

mayor objetividad e imparcialidad a las proyecciones. En efecto, en los modelos de “uso final”,

los supuestos sobre parámetros a futuro son a menudo derivados de objetivos de política,

mientras aquí el propósito es que las proyecciones nazcan de relaciones estadísticas observadas

por el analista en los datos.

En cuanto a los métodos de estimación adoptados, la literatura más antigua (previa a la década

de 1980) recurrió con frecuencia a Mínimos Cuadrados Ordinarios, método que mostraría ser al

menos insuficiente al implementase sobre series de datos no estacionarias (en general, series con

tendencia o estacionalidad), como es el caso del consumo eléctrico, población y actividad

económica. En tales casos, la regresión podría no estar capturando relaciones causales entre

las variables sino más bien espurias, invalidando la lectura económica de los parámetros. En

respuesta a ello, proliferó en la literatura el uso de modelos dinámicos de series de tiempo

(modelos ARIMA), y finalmente se reabrieron también las puertas a Mínimos Cuadrados

Ordinarios, ahora bajo el requerimiento de testear la cointegración de las variables en juego, la

que resuelve el problema de las regresiones espurias entre variables integradas en un mismo

orden.

En este marco se ubican, entre otros, los estudios de previsión de demanda realizados en países

como Reino Unido, Nueva Zelanda, Colombia y Chile (CNE, 2014). Así, por ejemplo, las

proyecciones de energía realizadas por el antiguo Departamento de Comercio e Industria del

Reino Unido, ahora en manos del Departamento de Energía y Cambio Climático, se basan en la

estimación de un sistema de ecuaciones de oferta y demanda para los distintos mercados

energéticos con sus respectivas interacciones, para los que se utiliza un Modelo de Corrección

de Errores basado en precios y actividad económica (detallado en la sección 5 y el Anexo 4).

Con el sistema de ecuaciones estimado, se computan equilibrios de mercado en cantidades y

precios que sirven a modo de proyección para los mercados energéticos bajo análisis.

A nivel de mercado eléctrico exclusivamente, el estudio Transpower (2011), realizado por la

compañía estatal neozelandesa de transmisión eléctrica, combina modelos diversos, entre ellos

Page 30: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

12

uno econométrico en Mínimos Cuadrados Ordinarios con población y PIB como regresores. Así

mismo, en MINMAS (2015) se ensamblan dos modelos autorregresivos (AR) y uno de Corrección

de Errores, ponderando cada uno de acuerdo a un criterio de ajuste. Así mismo, el estudio

encargado por la Comisión Nacional de Energía el año 2014 (CNE, 2014), recurre a un modelo

econométrico para proyectar demanda hacia el 2028 (libre y regulada en los sistemas SIC y

SING). El estudio escoge, según ajuste y otros criterios, de entre 19 modelos dinámicos estimados.

Estos son modelos de tipo AR(1) (autorregresivo con un rezago), con uno o varios regresores

adicionales, los que puede ser PIB agregado de las regiones del sistema, producto minero o

manufacturero, población, precio de la electricidad o precio del cobre. Con los modelos

seleccionados se crean tres escenarios para cada sistema: uno alto, uno medio y uno bajo.

Adicionalmente, algunas entidades han optado por fusionar aspectos de los métodos

econométricos y de “uso final”, aprovechando la imparcialidad y precisión que buscan los

primeros y la flexibilidad de los segundos para la evaluación de escenarios. Este es el caso de la

Administración de Información de Energía (EIA) de Estados Unidos, que ha elaborado uno de los

modelos híbridos más estudiados, el NEMS (National Energy Modelling System), para las

previsiones energéticas del país, así como para evaluar los impactos energéticos, económicos,

medioambientales y de seguridad que tienen distintas políticas alternativas de gobierno.

Por último, la metodología que sigue este estudio, descrita en sus generalidades en la sección 2,

es también, esencialmente, una de carácter econométrico. Como en el caso de Reino Unido y

Colombia, se utiliza un modelo de Corrección de Errores para caracterizar las funciones de

demanda por sistema, región y tipo de cliente. Estas funciones son ajustadas, además, de

acuerdo a los resultados de un modelo panel que busca ligar nuestras previsiones al futuro con

la experiencia de otros países más desarrollados. Este ejercicio, también de tipo econométrico,

ha sido, sin embargo, introducido para lidiar con las limitaciones del modelo de Corrección de

Errores, que, como todos los modelos de series de tiempo, sólo puede proyectar hacia el futuro

una extensión de las condiciones actuales del mercado eléctrico capturadas por la regresión,

no pudiendo de ninguna manera adelantar cambios estructurales (cambios en el modelo

mismo) nunca antes ocurridos, aun cuando estos sean en alguna forma previsibles a través de

la observación de la experiencia internacional.

Cabe destacar, finalmente, que la metodología recoge parte del enfoque de los modelos de

“uso final” en su análisis de muy largo plazo (hacia el 2050), en el que se ajustan las proyecciones

globales de acuerdo a escenarios tecnológicos que hoy presentan una cierta probabilidad de

afectar significativamente la demanda futura de retiros en el sistema de transmisión.

Page 31: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

13

4. CONSUMO ELÉCTRICO Y DESARROLLO: EVIDENCIA

INTERNACIONAL

La demanda por electricidad es en definitiva una demanda derivada de la tecnología que

hace uso de la misma. En etapas tempranas de desarrollo económico, el aumento del ingreso

familiar, por ejemplo, permite la compra de bienes y servicios con los cuales la población

resuelve sus necesidades básicas. De la mano del desarrollo, la iluminación, refrigeración de

alimentos, televisión y otras necesidades “básicas” van dando lugar a bienes y servicios más

prescindibles, como son, por ejemplo, el uso del aire acondicionado. Finalmente, en etapas de

desarrollo avanzado, las sociedades tienden a surtir este tipo de necesidades y la demanda

eléctrica doméstica tiende a estancarse o inclusive a ser progresivamente menor, producto de

un mejor comportamiento del usuario y la incorporación de tecnología más eficiente.

Un desempeño análogo ocurre en la demanda industrial. En países de bajo desarrollo, éste suele

ir aparejado de un impulso del consumo eléctrico producto de la creación de industria. Pero a

partir de cierto ingreso, ocurren también giros hacia tecnologías más eficientes, así como un

cambio en el enfoque productivo de las economías que, conforme se desarrollan, son más

intensivas en sectores menos demandantes de energía, como el sector de servicios.

Como consecuencia de estos procesos, la relación entre consumo eléctrico per cápita y

producto per cápita es una de carácter positivo, pero de senda decreciente. Así lo muestra la

Figura 2, en la que se relaciona el consumo eléctrico y producto per cápita en paridad de poder

de compra (PPP) de 154 países al año 2012, esto junto con una tendencia polinómica.

Figura 2: Consumo eléctrico y producto per cápita (PPP, US$), 154 países, año 2012

Fuente: Elaboración propia en base a datos de Banco Mundial y U.S. EIA

Page 32: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

14

Esta dinámica se replica en las realidades particulares de cada país. Las figuras 3(a)-3(c), por

ejemplo, muestran dicha evolución en Gran Bretaña, Dinamarca y Australia. En particular,

muestran consumo contra PIB pc PPP (real) desde 1980 a 2014, junto con una tendencia.

Figura 3(a), 3(b) y 3(c): Consumo y producto per cápita real en PPP, 1980-2014

(a) Gran Bretaña

(b) Dinamarca

(c) Australia

Fuente: Elaboración propia en base a datos de Banco Mundial y EIA

Page 33: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

15

Para precisar los rasgos de esta relación, presentamos a continuación una estimación de

demanda con datos tipo panel de países, en la que permitimos no linealidades en la elasticidad

consumo-producto de modo de evaluar y cuantificar la existencia de una senda decreciente,

como la que hemos hasta ahora bosquejado.

4.1 MODELO PANEL

Estimamos un modelo panel de varios países en el que hacemos depender el consumo per

cápita (en logaritmos) de una medida de precio y del PIB pc real (en logaritmos) de forma lineal

y cuadrática. Esto es, expresamos para todos los países y todos los momentos del tiempo, el

consumo per cápita mediante la siguiente función:

𝑙𝑛(𝑐𝑝𝑐) = 𝛼 + 𝛽 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐) + 𝛾 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐)2

+ 𝛿 ∗ 𝑙𝑛(𝑝) (1)

donde 𝑐𝑝𝑐 es el consumo per cápita, 𝑃𝐼𝐵𝑝𝑐 es el PIB pc real y 𝑝 es una medida de precio de la

electricidad2. Incorporamos las variables en logaritmo e incluimos un término cuadrado del

logaritmo del ingreso para que la elasticidad consumo-producto quede definida como variable

en función del ingreso. Es más, dicha elasticidad no es más que la derivada de (1) con respecto

a 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐), como a continuación:

𝜼𝒄𝒑 = 𝜕𝑙𝑜𝑔(𝑐𝑝𝑐)

𝜕𝑙𝑜𝑔(𝑃𝐼𝐵𝑝𝑐)= 𝛽 + 2𝛾 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐) (2)

Para la estimación utilizamos datos anuales desde 1980 a 2014 para los 34 países que hoy

conforman la OCDE. Los datos y sus fuentes se especifican a continuación:

2 No incorporamos variables de tiempo (tendencia o dummies anuales, por ejemplo), puesto que no nos sería

posible proyectar dichos efectos a futuro. Por lo mismo, resulta conveniente estimar más bien una elasticidad

contaminada por la correlación entre producto per cápita y otros procesos que pueden ocurrir en el tiempo, como

son los cambios tecnológicos. Además, cabe destacar que por similar razón estimamos el modelo con producto

real y no en paridad de poder de compra (PPP), siendo el factor de paridad variable en el nivel de ingreso, por lo

que ameritaría ser predicho de forma independiente. No siendo éste el objeto del presente estudio, en el que se

proyecta PIB pc real sin el factor PPP, se opta por estimar una elasticidad también contaminada por la relación

(inversa) entre desarrollo y PPP,

Page 34: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

16

Tabla 1: Datos del panel, unidad y fuente

Serie Unidad Fuente

Consumo total, residencial, industrial y comercial+fiscal GWh IEA

Población Personas Banco Mundial

PIB pc, real US$ 2013 Banco Mundial

Precio industrial US$ IEA

Precio residencial US$ IEA IEA= International Energy Agency

Fuente: Elaboración propia

Procedemos con ellos a estimar bajo dos supuestos alternativos: Efectos Fijos y Efectos Aleatorios.

En ambos casos buscamos capturar elementos idiosincráticos no observables de cada país, que

explican parte de la diferencia en sus consumos per cápita y que son constantes a través del

tiempo. En el primer caso se asume que dichos efectos pueden caracterizarse como constantes

distintas para cada país (𝛼𝑖 en vez de sólo 𝛼 en la ecuación (1), donde el subíndice 𝑖 distingue a

los 𝑖 = 1, … ,34 países de la muestra), mientras en el segundo asumimos una distribución aleatoria

para los mismos (una constante común, 𝛼, pero un término adicional en el modelo, 𝜇𝑖, con una

distribución aleatoria de media cero y no correlacionado con los regresores del modelo, que en

este caso son PIB pc y precio3). Para detalles técnicos de las estimaciones de Efectos Fijos y

Efectos Aleatorios, ver Anexo 2.

Los resultados de la estimación de los dos modelos se muestran en la Tabla 2. La primera columna

muestra el modelo de Efectos Fijos y la segunda el de Efectos Aleatorios. En cada caso se

muestra el coeficiente estimado en cada variable junto a su error estándar en paréntesis. Se

muestra también la suma del error cuadrático y el 𝑅2 ajustado de las regresiones (los detalles de

las regresiones de panel se encuentran en el Anexo 3).

3 Dicho término es distinto del término de error 𝑢𝑖𝑡, distribuido normal con media cero y varianza constante en la

muestra. Este último es variable entre países y en el tiempo. En el modelo de Efectos Aleatorios, obtendremos

como residuo de la estimación la suma de ambos componentes aleatorios 𝜇𝑖 + 𝑢𝑖𝑡. A diferencia del clásico modelo

OLS (Mínimos Cuadrados Ordinarios), en que los residuos son independientes entre sí, en este modelo no lo son,

pues todos los datos de un mismo país compartirán el elemento 𝜇𝑖, que generará correlación entre ellos.

Page 35: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

17

Tabla 2: Modelos de Efectos Fijos y Efectos Aleatorios

Efectos Fijos Efectos Aleatorios

𝑙𝑛 𝑃𝐼𝐵𝑝𝑐 2,855* (0,190)

2,860* (0,190)

(𝑙𝑛 𝑃𝐼𝐵𝑝𝑐)2

-0,108* (0,009)

-0,108* (0,009)

𝑙𝑛 (𝑝𝑟) -0,401* (0,026)

-0,406* (0,026)

𝑙𝑛 (𝑝𝑖) -0,153* (0,025)

-0,155* (0,025)

𝑅2 ajustado 0,963 0,728 Suma de residuos cuadrados 15,156 15,764

*: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

En los dos modelos las variables de PIB pc en logaritmo, éste al cuadrado y precios (residencial

e industrial) resultan significativas al 1%. Además, los coeficientes estimados difieren tan sólo en

magnitud decimal, y muestran, en todo caso, el signo esperado: la elasticidad producto del

consumo per cápita es positiva, pero el término cuadrático de coeficiente negativo indica que

dicha elasticidad decrece con el ingreso, formando así una función cóncava al tipo de las

observadas en las Figuras 2 y 3. El coeficiente asociado a ambos precios es de signo negativo y

su valor es indicativo de una demanda eléctrica inelástica. Por último, la suma de los errores

cuadráticos son también similares, pero menores en el modelo de Efectos Fijos. El R2 ajustado,

en tanto, es considerablemente mayor en el primer modelo.

Las bondades de un modelo de Efectos Fijos por sobre uno de Efectos Aleatorios, o viceversa,

han de ser revisadas más allá del error cuadrático de la estimación o el ajuste. En efecto, el

modelo de Efectos Aleatorios requiere, para ser consistente, del supuesto de que no exista

correlación entre el efecto no observado, 𝜇𝑖, y los regresores incluidos en el modelo4. Dado que

𝜇𝑖 es tratado como un residuo en la regresión y no es directamente estimado, si dicha variable

correlaciona con los regresores entonces los parámetros estimados de estos últimos estarán

sesgados, pues capturarán también parte del efecto de la variable omitida 𝜇𝑖. El modelo de

Efectos Fijos, en cambio, es consistente con o sin correlación del efecto no observado. Para

optar por uno u otro debemos, por ende, testear dicha hipótesis (correlación entre el efecto no

observado y los regresores) a través de un test de Hausman, el que arroja en este caso el

siguiente resultado:

4 A modo de ejemplo hipotético, si en aquellos países en que hay menos horas de luz solar se trabaja más, entonces

el efecto no observable (“hay menos luz solar”) elevaría a la vez el consumo eléctrico y el PIB pc. Existiría entonces

un efecto no observable significativo, y este estaría correlacionado con el regresor.

Page 36: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

18

Tabla 3: Test de Hausman, output de Eviews

Equation: EQ_CONS_T

Test cross-section random effects

Test Summary Chi-Sq.

Statistic Chi-Sq. d.f. Prob.

Cross-section random 9.157896 4 0.0573

Fuente: Elaboración propia

El valor del estadígrafo es de 9,16, mientras el valor crítico del test, que se distribuye Chi cuadrado

con 4 grados de libertad, es de 9,488 para un 5% de significancia y 7,779 para un 10%. En

consecuencia, la hipótesis nula de que no existe correlación entre los efectos no observados y

los regresores no puede ser rechazada al 5% de significancia estadística, pero sí al 10%.

Por la ambigüedad del resultado anterior, así como por su mejor ajuste, nos quedamos con el

modelo de Efectos Fijos, el que, como muestra la Figura 4, aproxima razonablemente bien el

consumo per cápita de los países de la muestra. Dicha figura muestra las trayectorias reales y

predichas de consumo para todos los países, en los períodos considerados.

Figura 4: Efectos Fijos: reales, predichos y residuos del modelo

Fuente: Elaboración propia

En cuanto a la elasticidad consumo-producto, el modelo describe a la misma como una función

cóncava y decreciente del producto per cápita, de la forma 𝜼𝒄𝒑 = 2,855 − 0,216 ∗ 𝑙𝑛(𝑃𝐼𝐵𝑝𝑐),

según se deriva de la ecuación (2) y la Tabla 2. La Figura 5 muestra dicha función, junto con

algunos valores referenciales a la derecha:

-10,0

-9,0

-8,0

-7,0

-6,0

-5,0

-4,0

-3,0

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Au

stra

lia -

80

Au

stri

a -

85

Bel

giu

m -

87

Can

ada

- 9

0C

hile

- 0

6D

enm

ark

- 83

Den

mar

k -

13Fi

nla

nd

- 1

0Fr

ance

- 0

6G

erm

any

- 0

2G

ree

ce -

98

Hu

nga

ry -

01

Irel

and

- 9

7Is

rael

- 0

7It

aly

- 0

3Ja

pan

- 9

9K

ore

a, R

ep. -

95

Luxe

mb

ou

rg -

13

Mex

ico

- 0

9N

eth

erla

nd

s -

10

New

Zea

lan

d -

06

No

rway

- 1

0P

ola

nd

- 0

7P

ort

uga

l - 0

3Sl

ova

k R

epu

blic

- 1

2Sp

ain

- 0

8Sw

itze

rlan

d -

81

Swit

zerl

and

- 1

1Tu

rkey

- 0

7U

nit

ed

Kin

gdo

m -

03

Un

ite

d S

tate

s -

99

Residuo Real Predicho

Page 37: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

19

Figura 5: Elasticidad consumo-producto

PIB pc (US$ 2013)

Elasticidad

10.000 0,86

15.000 0.78

20.000 0.71

30.000 0.63

50.000 0,52

Fuente: Elaboración propia

La elasticidad toma valores cercanos a 1en la cola inferior de la muestra (datos de 1980) y va a

disminuyendo progresivamente hasta acercarse a 0,5 en los US$ 50.000. En el caso de Chile, que

al 2014 poseía un PIB real pc de US$ 15.438 (US$ 2013) la elasticidad predicha es de 0,77.

4.2 POR TIPO DE CLIENTE

Mismo ejercicio se realizó distinguiendo el consumo por tipo de cliente: industrial, residencial y

comercial + fiscal. Con ello buscamos capturar diferencias en la función de elasticidad acordes

a los comportamientos respectivos de cada grupo de agentes. El método de estimación fue de

Efectos Fijos, el que fue respaldado por un test de Hausman. Los coeficientes estimados con sus

respectivos errores estándar en paréntesis, así como el 𝑅2 y estadígrafo del test de Hausman, se

presentan en la siguiente tabla para los tres casos:

Tabla 4: Modelos de Efectos Fijos

Industriales Residenciales Comerciales y fiscal

𝑙𝑛 (𝑃𝐼𝐵𝑝𝑐) 2,956* (0.204)

3,624* (0.240)

2,357* (0.265)

𝑙𝑛(𝑃𝐼𝐵𝑝𝑐)2

-0.124* (0.010)

-0.147* (0.012)

-0,069* (0.013)

𝑙𝑛 (𝑝𝑟) -0.360* (0.028)

-0.366* (0.033)

-0.450* (0.037)

𝑙𝑛 (𝑝𝑖) -0.079* (0.027)

-0.016* (0.032)

-0.271* (0.035)

𝑅2 ajustado 0,955 0,958 0,938 Test de Hausman 10,85 24,42 4,41

*: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

0

1

10.000 70.000

Elas

tici

dad

PIB pc

Page 38: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

20

Todos los modelos finales tienen tanto producto como producto al cuadrado y precio como

variables significativas al 1%. Los coeficientes son todos del signo esperado; también los de

elasticidad precio, que muestran un consumo inelástico en todos los sectores, aunque menos en

clientes comerciales y fiscales, en que tanto el residencial como el industrial poseen coeficientes

de magnitud relevante. El test de Hausman, por su parte, muestra valores superiores al valor

crítico de 9,448 (distribución Chi-cuadrado con 4 grados de libertad) para los dos primeros

modelos, por lo que en estos rechazamos la nula de que no existe correlación entre los efectos

no observados y los regresores, invalidando con ello el uso de un modelo de Efectos Aleatorios.

En el tercer modelo, en tanto, no podemos rechazar la hipótesis de que tanto el estimador de

Efectos Fijos como el de Efectos Aleatorios sean consistentes, de modo que optamos por el

primero simplemente por presentar el modelo un mejor ajuste (𝑅2 de 0,938 contra 0,721).

Las elasticidades por tipo de cliente resultan, con los coeficientes estimados, en las funciones

que muestra la

Figura 6. En ella se evidencia que la demanda industrial es la menos elástica, mientras que la

más es la de clientes comerciales y fiscales. La demanda residencial, en tanto, tiene una

elasticidad elevada para bajos niveles de ingreso (0,91 a los US$10.000), pero decae más

rápidamente (a 0,33 en los US$ 70.000). La demanda comercial+fiscal, por su parte, tarda

decrecer, lo que es consistente con que el desarrollo va vinculado a una mayor concentración

de la actividad económica en sectores de servicios (en desmedro de la industria).

Figura 6: Elasticidades por tipo de cliente

0

1,2

10000 70000

Elas

tici

dad

PIB pc

Residencial

0

1,2

10000 70000

Elas

tici

dad

PIB pc

Industrial

0

1,2

10000 70000

Elas

tici

dad

PIB pc

Comercial y Fiscal

0

1,2

10000 70000

Elas

tici

dad

PIB pc

Total

Page 39: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

21

Fuente: Elaboración propia

Page 40: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

22

5. RELACION CONSUMO-PRODUCTO EN CHILE:

MODELO DE CORRECCIÓN DE ERRORES

El modelo panel que mostramos en la sección anterior tiene como objetivo identificar los

cambios en la dinámica entre consumo de electricidad y crecimiento económico. Dicho

modelo no nos brinda información, sin embargo, sobre el comportamiento actual de las series

de consumo en Chile en los niveles de desagregación requeridos por el CDEC SIC, como los

sistemas interconectados SIC y SING (o niveles menores). Para ello utilizamos un modelo de

Corrección de Errores, que tiene por objetivo identificar las relaciones de largo plazo entre

consumo y sus determinantes en el entendido de que las variables son no estacionarias e

integradas en el mismo orden. El modelo incluye una ecuación de corto plazo, que permite

identificar la forma en que el consumo de energía se ajusta en torno a su tendencia de largo

plazo tras shocks que lo separan de la misma.

Los detalles técnicos del modelo, así como los resultados de estimación de las ecuaciones, se

muestran en el anexo (Anexo 4 y 5 respectivamente), pero aquí revisamos y analizamos las

relaciones de largo plazo en clientes libres y regulados del SIC, SING y de ambos sistemas en

conjunto.

La ecuación de largo plazo del Modelo de Corrección de Errores es de la siguiente forma:

𝑦𝑡 = 𝛼′𝑋𝑡 + 𝜖𝑡 (3)

En este caso en particular, la variable endógena 𝑦𝑡 corresponde al logaritmo natural del

consumo per cápita en el período 𝑡, mientras 𝑋𝑡 es la matriz de regresores, que incluye tanto

una medida de ingreso per cápita como una de precio, ambos en logaritmo natural. Se incluyen

también variables binarias (dummies) para capturar efectos estacionales en los distintos meses

del año. Los datos utilizados para aproximar este conjunto de variables, así como sus fuentes, se

muestran en la Tabla 5.

Page 41: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

23

Tabla 5: Variables Modelo de Corrección de Errores, datos y fuentes

Serie Unidad Período Fuente

Consumo de electricidad GWh 2005.1-2015.8 CDEC SIC -CDEC SING

IMACEC Índice, base 2008 2005.1-2015.8 Banco Central

Población Número de habitantes 2005.1-2015.8 INE

Costo marginal Quillota y Crucero US$/MWh 2005.1-2015.8 CDEC SIC, CDEC SING

Precio Medio de Mercado, SIC y SING US$/MWh 2005.1-2015.8 CNE

Precios de Nudo Promedio de Energía y Potencia

US$/MWh energía, US$/MW/mes potencia.

2010.1-2014.8 CNE

Precios de Nudo de Corto Plazo de Energía y Potencia

US$/MWh energía, US$/MW/mes potencia.

2005.1-2009.12 CNE

Fuente: Elaboración propia

Estimamos la ecuación (3) con los datos de la tabla anterior, hasta agosto de 2015, mediante

Mínimos Cuadrados Ordinarios, comenzando por el modelo más general, que incluye tanto

ingreso per cápita (IMACEC/Población), los precios relevantes para el sistema y tipo de cliente

respectivo y variables estacionales para todos los meses. En cuanto a los precios regulados,

utilizamos los Precios de Nudo Promedio de energía y potencia desde el año 2010 en adelante,

cuando comienza su aplicación como tal con la entrada en vigencia de los primeros contratos

de licitaciones de suministro a clientes regulados mandadas por la Ley 20.018 de 2005. Para años

previos utilizamos simplemente el Precio de Nudo de Corto Plazo, entonces medida de precio

regulado previo al cambio normativo5. Para precios libres de la energía usamos ambos, el costo

marginal y el precio medio de mercado, mientras que para precio de potencia en clientes libres

aplica igualmente el Precio de Nudo relevante.

5.1 CONSUMO AGREGADO Y POR SISTEMA

En Chile, el 99,3% de la electricidad generada se consume en el SIC (el 75,15%) o en el SING (el

24,15%), representando los sistemas medianos de Aysén, Los Lagos y Magallanes una porción

muy pequeña de la demanda total nacional. En los primeros, el consumo de electricidad ha

crecido a una tasa anual promedio de 3,5% en los últimos 10 años, pasando de órdenes de

magnitud de los 47 mil GWh el año 2005 a los 64 mil GWh en el 2014 (un aumento de un 36% en

10 años). El PIB real nacional, por su parte, ha aumentado a una tasa promedio de 4% anual

desde 2005, pasando desde cerca de MM$80 millones en 2005 a MM$116 millones en 2014 (un

5 Los Precios de Nudo Promedio y de Corto Plazo representan en cada caso los precios regulados de la

electricidad, pero no el valor final que paga el cliente final, en tanto este cubre además el costo de la distribución.

Page 42: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

24

42,4% en 10 años, referencia 2008). Esto muestra la Figura 7, en la que aparecen tanto el

consumo SIC+SING anual, en el eje izquierdo, como el PIB real en el derecho.

Figura 7: Consumo SIC + SING y PIB real, referencia 2008

Fuente: Elaboración propia con datos de CDEC y Banco Central

Por otra parte, tanto el consumo en el SIC como en el SING han crecido a tasas muy similares al

agregado. En el SIC lo ha hecho a 3,5% promedio entre 2005 y 2014 (pasando de los 35 mil GWh

a más de 48 mil), mientras que en el SING lo ha hecho a un 3,6% (pasando del orden de los 11

mil GWh a más de 15 mil). En consecuencia, durante la última década el SIC ha representado

en torno a un 75% del consumo agregado de forma muy estable, como se observa en la Figura

8, que muestra los retiros mensuales totales y por sistema desde enero de 2005 a diciembre de

2014. La figura muestra también el IMACEC en la línea gris punteada.

Figura 8: Consumo mensual e IMACEC, enero 2005 – agosto 2015

Fuente: Elaboración propia en base a datos CNE y Banco Central

0

20.000.000

40.000.000

60.000.000

80.000.000

100.000.000

120.000.000

140.000.000

0

50.000

100.000

150.000

200.000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

PIB

Co

nsu

mo

Consumo anual, GWh PIB real, referencia 2008

0

20

40

60

80

100

120

140

160

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

ene-

200

5

jul-

200

5

ene-

200

6

jul-

200

6

ene-

200

7

jul-

200

7

ene-

200

8

jul-

200

8

ene-

200

9

jul-

200

9

ene-

201

0

jul-

201

0

ene-

201

1

jul-

201

1

ene-

201

2

jul-

201

2

ene-

201

3

jul-

201

3

ene-

201

4

jul-

201

4

ene-

201

5

jul-

201

5

IMA

CEC

Co

nsu

mo

men

sual

, GW

h

Total SIC SING IMACEC

Page 43: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

25

La figura anterior muestra una tendencia y estacionalidad similar entre la demanda y la

actividad económica. Esta relación, que fue caracterizada en el modelo panel con la evidencia

internacional, es también estimada en distintas desagregaciones a nivel local de acuerdo al

modelo econométrico en la ecuación (3) para el largo plazo, utilizando los datos de la Tabla 5.

Los resultados principales de las estimaciones de demanda total y por sistema se detallan en la

Tabla 6, que muestra las elasticidades consumo-producto y precio, junto con el error estándar

en paréntesis (los output de Eviews para cada modelo se presentan en el Anexo 5):

Tabla 6: Elasticidades total y por sistema

Total SIC SING

LOG(IMA/POB) 0.873* (0.029)

0.812* (0.022)

0.636* (0.036)

LOG(CMGsing) -0.016* (0.003)

- -

LOG(CMGsic) - -0.013* (0.003)

-

𝑅2 ajustado 0.957 0.937 0.806 Durbin-Watson 0.800 1.072 1.089

*: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

El consumo per cápita a nivel global (columna Total) muestra una elasticidad con respecto al

IMACEC (dividido por población) algo mayor a 0,8, similar a la estimada en el SIC. El SING, por el

contrario, presenta una elasticidad menor. En cuanto a medidas de precio, en los dos primeros

casos el modelo acogió como variable significativa el costo marginal (del SING en la regresión

Total), arrojando elasticidades negativas, como era esperado, pero muy cercanas a cero. El

precio medio de mercado y los precios regulados, sin embargo, quedaron fuera de la regresión.

En el SING, en tanto, no ingresó ninguna medida de precio, lo que resulta consistente con su

estructura de consumo muy enfocada en el sector minero.

El test de Durbin-Watson, reportado en la tabla para cada regresión, es un indicador de la

existencia o no de autocorrelación en los residuos del modelo, el que, por tanto, nos permite

hacer inferencia respecto de la estacionariedad de los mismos y, por ende, de la cointegración

de 𝑋𝑡 e 𝑦𝑡. En efecto, la “cointegración” de 𝑋𝑡 e 𝑦𝑡 nos indica que, en caso de que los datos

posean una tendencia similar en el tiempo (una tendencia al alza, por ejemplo), la relación

estimada en los parámetros no sea espuria y exista efectivamente una causalidad de largo plazo

de 𝑋𝑡 a 𝑦𝑡 (más allá de una mera característica en común, como es la tendencia al alza). Dicha

Page 44: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

26

cointegración ocurre cuando, al regresionar 𝑦𝑡 contra 𝑋𝑡, obtenemos residuos estacionarios

en el modelo (sin autocorrelación).

El Durbin Watson es indicativo de estacionariedad cuando toma valores cercanos a 2, lo que no

ocurre en los modelos anteriores. Por lo mismo, no es posible concluir sobre cointegración sin

evaluar la ecuación de corto plazo del modelo de Corrección de Error, lo que hacemos en el

Anexo 5. En él mostramos que en todos los modelos que aquí presentaremos, existe

cointegración.

El R2 ajustado, por último, mide el ajuste del modelo, y es en general indicativo de un buen ajuste

al tomar valores cercanos a 1, lo que ocurre en todos los casos. Este ajuste puede apreciarse

además al observar las series en logaritmo reales y predichas por el modelo en cada caso, que

mostramos a continuación en las Figuras 9(a)-9(c).

Figura 9(a), 9(b) y 9(c): Consumo per cápita real, predicho y residuos,

(a) TOTAL

(b) SIC

-9,0

-8,9

-8,8

-8,7

-8,6

-8,5

-8,4

-8,3

-8,2

-8,1

-8,0

-0,06

-0,01

0,04

0,09

0,14

0,19

ene-

05

jul-

05

ene-

06

jul-

06

ene-

07

jul-

07

ene-

08

jul-

08

ene-

09

jul-

09

ene-

10

jul-

10

ene-

11

jul-

11

ene-

12

jul-

12

ene-

13

jul-

13

ene-

14

jul-

14

ene-

15

jul-

15

Ln(c

on

sum

o p

er c

ápit

a)

Res

idu

os

Residuo Real Predicho

-2,3

-2,2

-2,1

-2,0

-1,9

-1,8

-1,7

-1,6

-1,5

-1,4

-1,3

-0,06

-0,01

0,04

0,09

0,14

0,19

ene-

05

jul-

05

ene-

06

jul-

06

ene-

07

jul-

07

ene-

08

jul-

08

ene-

09

jul-

09

ene-

10

jul-

10

ene-

11

jul-

11

ene-

12

jul-

12

ene-

13

jul-

13

ene-

14

jul-

14

ene-

15

jul-

15

Ln(c

on

sum

o p

er c

ápit

a)

Res

idu

os

Residuo Real Predicho

Page 45: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

27

(c) SING

Fuente: Elaboración propia

5.2 CONSUMO POR TIPO DE CLIENTE EN CADA SISTEMA

Realizamos igual ejercicio que el anterior a continuación, pero ahora distinguiendo por tipo de

cliente, libre o regulado, en cada sistema. Mostramos los resultados de la estimación en las tablas

7 y 8, en la primera para el SIC y en la segunda para el SING. En ambos casos mostramos también

los resultados del sistema en su totalidad, revisados con anterioridad en la Tabla 6.

Tabla 7: Elasticidades en el SIC por tipo de cliente

SIC Libre Regulado

LOG(IMA/POB) 0.812* (0.022)

0.206* (0.060)

1.207* (0.046)

LOG(CMG) -0.013* (0.003)

- -0.026* (0.004)

𝑅2 ajustado 0.937 0.966 0.874 Durbin-Watson 1.072 1.409 0.881

*: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

En el SIC, el consumo regulado muestra una elasticidad mayor a 1 con respecto al IMACEC

(dividido por población), mientras que la del consumo libre es bastante menor. Mientras en

consumo regulado el costo marginal muestra una elasticidad baja pero negativa, en consumo

libre éstos quedan fuera de la regresión. Los precios regulados, en tanto, no ingresan en ningún

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

-0,06

-0,01

0,04

0,09

0,14

0,19

ene-

05

jul-

05

ene-

06

jul-

06

ene-

07

jul-

07

ene-

08

jul-

08

ene-

09

jul-

09

ene-

10

jul-

10

ene-

11

jul-

11

ene-

12

jul-

12

ene-

13

jul-

13

ene-

14

jul-

14

ene-

15

jul-

15

Ln(c

on

sum

o p

er c

ápit

a)

Res

idu

os

Residuo Real Predicho

Page 46: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

28

caso. Los modelos muestran buen ajuste, aunque los test de Durbin-Watson no son concluyentes,

por lo que la cointegración se revisa en las ecuaciones de corto plazo en el Anexo 5.

Tabla 8: Elasticidades en el SING por tipo de cliente

SING Libre Regulado

LOG(IMA) 0.624* (0.037)

0.564* (0.040)

1.148* (0.055)

LOG(CMG) - - -

LOG(PER) - - - 𝑅2 ajustado 0.768 0.759 0.871 Durbin-Watson 1.059 1.223 1131

*: Variable estadísticamente significativa al 1%.

Fuente: Elaboración propia

En el SING, a diferencia del SIC, el agregado se comporta de forma muy similar al consumo libre,

con una elasticidad del IMACEC sobre población en torno a 0,6 y con nula elasticidad precio.

Esto no es de extrañar si consideramos que el SING se compone mayoritariamente de consumo

libre (88%), en particular de la gran minería. Esto es distinto de lo que ocurre en el SIC, en que el

consumo libre es sólo algo mayor al 30%. Los test de Durbin-Watson, por su parte, son en todos

los casos insuficientes como para concluir que los residuos son estacionarios y existe

cointegración (existe, no obstante, cointegración, como muestran las ecuaciones de corto

plazo en el Anexo 5).

Page 47: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

29

6. PROYECCIÓN DE REGRESORES

Con el objeto de realizar proyecciones de las variables dependientes presentes en los modelos

econométricos estimados en las secciones anteriores, se deben, como paso previo, efectuar

proyecciones sobre las variables explicativas que rigen el comportamiento de aquellas.

Específicamente, es necesario realizar proyecciones del crecimiento del PIB, de la población y

de los precios de la electricidad para el periodo septiembre 2015 – diciembre 2035. En primer

lugar, para población hemos utilizado las proyecciones conjuntas de INE y CEPAL presentadas

en el documento “Chile: Proyecciones y Estimaciones de Población. Total País. 1950-2050” de

2009. En segundo lugar, para efectuar proyecciones de crecimiento económico utilizamos un

modelo Markov Switching que busca replicar el comportamiento de la economía chilena

mediante simulaciones. Finalmente, como proyecciones de precios se han utilizado las

brindadas por el propio CDEC SIC, elaboradas por la entidad en su “Revisión Anual del Estudio

de Transmisión Troncal 2015”, la que se encuentra disponible en la página web del organismo.

6.1 POBLACIÓN

Se utilizaron las proyecciones (mensualizadas) de población nacional elaboradas en conjunto

por el INE y la CEPAL, presentadas en el documento “Chile: Proyecciones y Estimaciones de

Población. Total País. 1950-2050” (Observatorio Demográfico de América Latina, 2009). Éstas se

presentan en la Tabla 9.

Tabla 9: Proyecciones de población 2015-2035

Año Población total Año Población total

2015 17.865.185 2026 19.220.429

2016 18.001.964 2027 19.312.102

2017 18.138.749 2028 19.403.774

2018 18.275.530 2029 19.495.446

2019 18.412.316 2030 19.587.121

2020 18.549.095 2031 19.652.544

2021 18.665.029 2032 19.717.971

2022 18.780.961 2033 19.783.397

2023 18.896.893 2034 19.848.824

2024 19.012.825 2035 19.914.249

2025 19.128.758 Fuente: Elaboración propia en base a datos INE y CEPAL

Page 48: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

30

Según muestran las proyecciones, la población total nacional se elevaría de los 17,9 millones en

el 2015 a los 19,9 millones en 2035, esto es, en un 11,5%.

Para los sistemas SIC y SING, en tanto, se asumieron tasas equivalentes de crecimiento

poblacional, esto en el entendido de que cualquier diferencia entre ellas se debe a un

fenómeno eminentemente migratorio ligado a booms de alguna industria que no pueden ser

extrapolados 20 años hacia el futuro (expansión minera en el norte, por ejemplo).

6.2 MARKOV SWITCHING SOBRE CRECIMIENTO ECONÓMICO

Siguiendo el enfoque metodológico propuesto, se estiman sendas de IMACEC consistentes con

las estructuras estocásticas que caracterizan los ciclos económicos históricos en Chile. Para

esto, utilizamos un modelo del tipo Hidden Markov-Switching (M-S, detallado en el Anexo 6), en

el que tres estados posibles de la economía pueden ocurrir en cada período: un estado de alta

actividad, uno de actividad media y uno de actividad baja. Dichos estados no son, empero,

directamente observables (de allí el adjetivo “hidden” en el nombre del modelo), sino más bien

los efectos de los mismos sobre una variable que sí es observable: IMACEC. Si el IMACEC de un

mes muestra un alto crecimiento respecto de igual mes del año anterior, entonces es muy

probable que dicho estado sea uno de alta actividad económica, pero existe también cierta

probabilidad de que sea un estado de actividad media y eventualmente una probabilidad muy

baja, pero distinta de cero, de que sea un estado de actividad baja. Esto es posible ya que cada

estado posee una distribución de posibilidades para el IMACEC en cada estado (p.ej. una

distribución normal) y dichas distribuciones se traslapan en parte del registro de tasas de

crecimiento. Esto ilustra la Figura 10, en la que se muestran tres distribuciones distintas: en color

verde, una alta, una media y una baja, y en color rojo la distribución agregada del total de los

datos. Para una tasa de crecimiento nulo, 0%, por ejemplo, el estado más probable según el

ejemplo es el estado medio y en segundo lugar el estado bajo, que tiene un valor esperado

negativo. Un estado alto es también posible, pero con una probabilidad considerablemente

menor.

Page 49: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

31

Figura 10: Distribuciones de tres estados y distribución agregada

Fuente: Elaboración propia

Mediante un programa elaborado en Matlab, basado en Rabiner (1989) y Hamilton (1994),

hemos estimado los parámetros de las distribuciones de cada estado (media y desviación

estándar), asumiendo que éstas son del tipo normal. Adicionalmente, dicho programa nos

permite estimar las probabilidades condicionales de pasar de un estado a otro, esto es, de pasar,

por ejemplo, a un estado alto dado que el último estado fue medio. El conjunto de las

probabilidades condicionales conforman la denominada “Matriz de Transición”, que adopta la

siguiente forma:

𝑇 = [

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

]

donde 𝑝11 es la probabilidad de permanecer en el estado 1 (alto), 𝑝12 es la probabilidad de

pasar del estado 1 al 2 (alto al medio) y así sucesivamente. La probabilidad de permanecer en

el estado 1 y luego pasar al 2 será, por tanto, 𝑝11 ∗ 𝑝12. Por último, la probabilidad incondicional

de cada estado no es más que la n-ésima pitatoria de la matriz de transición, que converge a

los valores incondicionales puesto que la condicionalidad al estado actual se va diluyendo a

medida que miramos más lejano en el futuro.

Los resultados del modelo para datos de variación a 12 meses del IMACEC, enero 1997 a agosto

2015, se muestran en las tablas 10 y 11. En la primera figuran los momentos estimados de las tres

distribuciones, junto con los de la distribución total (muestra completa), así como las

probabilidades incondicionales de cada estado. La segunda tabla, en cambio, muestra la

matriz de transición estimada. Esta matriz presenta características intuitivas: por una parte, las

probabilidades de pasar de un estado alto a uno bajo, o al revés, en el período inmediatamente

siguiente, son iguales a 0, lo que indica que el crecimiento económico transita en general

suavemente entre estados. Además, las probabilidades de permanecer en cualquiera de los

Tasa de crecimiento 12 meses, IMACEC 0%

Page 50: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

32

tres estados es muy alta (superior a 0,9 en todo caso), por lo que existe una alta persistencia en

cada caso. Esto debido, en parte, a la frecuencia mensual de la serie, esperándose una

persistencia menor en un modelo estimado en base a PIB trimestral o anual.

Tabla 10: Distribuciones estimadas, crecimiento 12 meses IMACEC

Estado Total

Alto Medio Bajo -

Media 5,97% 2,79% -2,74% 3,76%

Desviación Estándar 1,57% 1,37% 1,11% 2,99%

Probabilidad Incondicional 47,88% 42,09% 10,02% -

Fuente: Elaboración propia.

Tabla 11: Matriz de Transición

Alto Medio Bajo

Alto 95,6% 4,4% 0,0%

Medio 5,0% 92,7% 2,4%

Bajo 0,0% 10,0% 90,0%

Fuente: Elaboración propia.

6.2.1 Proyección al 2035

Para asegurar consistencia de las proyecciones de crecimiento con las expectativas actuales

que se manejan en el mercado, las que indican que la economía permanecerá en un estado

medio de crecimiento por algún tiempo, utilizamos para los años 2015 y 2016 las tasas que el

Fondo Monetario Internacional tiene previstas para el país a la fecha. Estas tasas son,

respectivamente, de 2,1% y 2,5% de crecimiento anual. Para dar varianza a las proyecciones,

simulamos 1.000 sendas posibles de crecimiento mensual del IMACEC para septiembre 2015 –

diciembre 2016, utilizando una distribución normal con las siguientes características: su media es

Page 51: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

33

igual a la tasa mensual de crecimiento que resulta acorde a las proyecciones del FMI6 y su

desviación estándar igual a la del estado medio presentada en la Tabla 10.

A contar de enero 2017, hasta diciembre 2035, utilizamos el modelo M-S estimado anteriormente.

Tomando el último estado más probable (estado medio en diciembre 2016), así como la matriz

de transición estimada, nos es posible simular cadenas de estados mensuales al futuro, las que

luego hemos de tomar a modo de insumo para simular tasas de crecimiento del IMACEC, así

como el índice mismo mes a mes. El procedimiento utilizado para ello se compone de los

siguientes pasos, que muestra el Box a continuación:

Box 1: Procedimiento para simulación de estados

Fuente: Elaboración propia

6 Ya que las tasas para enero-agosto 2015 ya se conocen, se ajustan las de los meses restantes para que el

crecimiento anual resulte acorde al 2,1% que proyecta el FMI. Para 2016 se utiliza una tasa fija de 2,5% mensual.

Simulación de estados en base a números pseudo-aleatorios

1) Se crean N (1.000 en este caso) números pseudo-aleatorios distribuidos uniforme entre 0 y 1 para

cada mes a proyectar (enero 2017 a diciembre 2035).

2) Se define el último estado más probable para diciembre 2016, que como hemos dicho es el

estado 2 o medio.

3) Para simular enero 2017, tomamos los valores de la segunda fila de la matriz de transición, que

muestra las probabilidades de pasar del estado 2 al 1, permanecer en el 2 o pasar al 3 (Tabla 11).

4) Para cada número aleatorio creado en las 1.000 simulaciones de enero 2017, se define la

siguiente regla: si el número es menor o igual a 𝑝21, el estado asociado será el 1; si es mayor a 𝑝21

pero menor a 𝑝21 + 𝑝22, entonces el estado asociado será el estado 2, mientras que si el número

aleatorio está entre 𝑝21 + 𝑝22 y 1, el estado asociado será el estado 3. De esta forma, ya que los

número aleatorios se distribuyen uniforme, aseguraremos que en aproximadamente un 𝑝21% de

los casos se transita al estado 1, en un 𝑝22% se permanece en el estado 2 y en un 𝑝23% se transita

al estado 3.

5) Para los meses siguientes se repite el paso 4) pero condicional al estado simulado en el mes

anterior. Por ejemplo, si en la simulación 1 el número aleatorio de enero 2017 resultó igual a 0,01

(menor a 𝑝21 = 0,05), entonces dicho mes quedó definido en estado 1. Luego febrero 2017 se

asociará al estado 1 si el número aleatorio respectivo es menor a 𝑝11, al estado 2 si está entre 𝑝11

y 𝑝11 + 𝑝12 y al estado 3 si está entre 𝑝11 + 𝑝12 y 1.

Page 52: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

34

Con los estados en cada mes y simulación, más los momentos estimados de las tres distribuciones

que muestra la Tabla 10, simulamos luego las tasas de crecimiento a 12 meses del IMACEC,

utilizando un procedimiento similar al descrito en el Box 1. Nuevamente creamos 1.000 números

pseudo-aleatorios de distribución uniforme entre 0 y 1 para cada mes de la proyección. Luego

usamos dichos números como la probabilidad acumulada de una distribución normal,

probabilidad que se encuentra asociada, dado un vector de parámetros (media y desviación

estándar), a un único valor de la variable aleatoria (tasa de crecimiento a 12 meses, en este

caso). Tomando el estado simulado y los parámetros respectivos de la distribución del estado

respectivo, calculamos la tasa como la inversa de una distribución normal, aplicada sobre la

variable aleatoria uniforme. Por último, con las tasas de crecimiento simuladas, podemos

fácilmente hacer lo mismo con el índice aplicando dichas tasas sobre sus últimos valores

observados.

6.2.2 Ajuste de largo plazo al crecimiento

El valor esperado de la distribución normal sobre la que se simulan las tasas de crecimiento del

IMACEC puede depender sólo del estado latente de la economía, como en el procedimiento

descrito anteriormente, o más precisamente también del nivel de desarrollo del país en el

período. En efecto, las tasas de crecimiento del IMACEC desde el 2001 han promediado un

auspicioso 4,2%, cifra que es probablemente mayor al crecimiento observado en economías

con mayor producto per cápita. Esto en efecto muestra la Tabla 12, en la que figuran los

promedios simples de las tasas de crecimiento del PIB trimestral (variación con respecto a igual

trimestre del año anterior), desde el 2001 a la fecha para los países que conforman la OCDE.

La tasa promedio de Chile, 3,98%, es la cuarta más alta del conjunto de países, y exceptuando

Corea del Sur e Israel, todos los países cercanos, con tasas superiores al 3%, poseen productos

per cápita menores a los US$ 30.000 en PPP. Las tasas de los países más perjudicados por la última

crisis económica son los que bordean el 0% (Italia, Grecia y Portugal), sin embargo países como

Alemania, Japón, Países Bajos o Dinamarca tienen tasas que se encuentran a penas en torno al

1%. En torno a esta cifra se encuentran además los promedios de la Unión Europea (28 países) y

de la Zona Euro (19 países).

Page 53: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

35

Tabla 12: Crecimiento del PIB trimestral (a igual trimestre de año anterior), promedio 2001-2015

País Tasa crecimiento

PIB per cápita PPP, US$

País Tasa crecimiento

PIB per cápita PPP, US$

Turquía 4.15% 18,994 Suiza 1.81% 56,839

República Eslovaca 4.08% 27,150 Estados Unidos 1.81% 52,939

Corea 4.02% 33,791 Reino Unido 1.78% 38,225

Chile 3.98% 22,470 Noruega 1.62% 65,295

Estonia 3.79% 26,052 España 1.44% 32,681

Polonia 3.59% 23,926 Austria 1.38% 45,789

Israel 3.38% 31,965 Bélgica 1.30% 42,078

Australia 2.95% 45,094 Finlandia 1.22% 40,011

Luxemburgo 2.89% 90,298 Alemania 1.09% 44,697

Islanda 2.67% 42,767 Francia 1.09% 39,818

Irlanda 2.53% 46,441 Países Bajos 1.05% 46,435

Nueva Zelanda 2.51% 34,061 Japón 0.75% 36,793

República Checa 2.50% 28,900 Dinamarca 0.62% 43,467

México 2.16% 17,449 Portugal 0.10% 26,188

Canadá 2.03% 43,590 Grecia -0.02% 25,132

Suecia 1.99% 44,849 Italia -0.06% 35,284

Eslovenia 1.94% 28,512 Unión Europea 1.22%

Hungría 1.90% 23,645 Zona Euro 0.95%

Fuente: Elaboración propia en base a datos OECD y FMI

Dada esta relación negativa que la tabla anterior muestra para el crecimiento económico y el

PIB per cápita PPP, consideramos necesario realizar un ajuste a las simulaciones del IMACEC,

específicamente en el valor esperado de las distribuciones de los tres estados, alto, medio y bajo.

Este ajuste apunta a que el crecimiento de largo plazo simulado para el país capture dicha

relación negativa antes descrita.

Para realizar el ajuste, se han tomado datos de crecimiento trimestral del PIB en los países de la

OCDE desde 2001 a la fecha y se ha estimado para cada país el modelo de M-S aplicado ya al

IMACEC chileno. Esto es, se han estimado las tasas medias de crecimiento en estado alto, medio

y bajo para cada país a partir del PIB trimestral (tal como en el caso IMACEC, pero sin las

simulaciones a futuro). Los valores estimados fueron luego contrastados gráficamente con el PIB

per cápita PPP de cada país, como muestran las Figuras 11(a)-11(c), en las que además se

muestra una línea de tendencia logarítmica (se excluye Luxemburgo, pues constituya una

observación extrema con US$ 90.000 de PIB pc PPP).

Page 54: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

36

Figuras 11(a), 11(b) y 11(c): Tasa media del estado contra PIB pc PPP, OCDE

(a) Estado Alto

(b) Estado Medio

(c ) Estado Bajo

Fuente: Elaboración propia con datos Banco Mundial e IEA

El primer gráfico muestra las medias estimadas en cada país para el estado alto. Éstas van desde

1,7% en Italia hasta 9% en Islandia. Existe una alta dispersión que decae a medida que el PIB pc

aumenta. Noruega, el país de mayor PIB pc PPP, posee una tasa de crecimiento en este estado

Page 55: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

37

de apenas un 2,6%. Similar situación se observa en el estado medio, en que las tasas van desde

-0,6% en Japón hasta 4,5% en Chile y en que la tendencia logarítmica se muestra también con

cierta claridad, a pesar de la dispersión. Distinto es el caso, sin embargo, del estado bajo, en

que no aparece nítida la relación; muy por el contrario, se observa una nube de puntos y una

tendencia ligeramente positiva, pero dudosamente significativa.

La significancia estadística y los coeficientes de la tendencia logarítmica en cada estado se

muestran en la Tabla 13. Estos números son producto de una simple regresión de la tasa de

crecimiento contra el logaritmo natural del PIB pc PPP7.

Tabla 13: Regresiones de crecimiento contra PIB pc PPP

Variable Coeficiente Error Estándar PValue

Estado 1, Alto C 0.310053 0.100937 0.0044

LOG(PIB) -0.025357 0.009642 0.0132 Estado 2, Medio

C 0.173601 0.067617 0.0153 LOG(PIB) -0.014877 0.006459 0.0281

Estado 3, Bajo C -0.090069 0.143005 0.5334

LOG(PIB) 0.006041 0.013661 0.6614 Fuente: Elaboración propia

Las regresiones confirman lo que podíamos ya conjeturar a partir de los gráficos anteriores. En

los estados alto y medio, la tendencia es negativa y significativa al 5% (no así al 1%), mientras

que en el estado bajo, la tendencia es positiva pero no es significativa en absoluto.

Con estos lineamientos realizamos entonces el ajuste al crecimiento del IMACEC en el largo

plazo, el que definimos a contar de 48 meses del inicio de las simulaciones (diciembre 2020).

Para los meses previos, mantenemos los parámetros de las distribuciones como estimadas en el

M-S, mientras que de esta fecha en adelante, hacemos decrecer las tasas paulatinamente, de

acuerdo al siguiente ajuste:

1) La media del estado bajo se deja inalterado en -2,7% (Tabla 10), por no haberse

encontrado relación clara entre desarrollo y crecimiento en dicho caso.

7 Se utiliza el PIB pc PPP para controlar por diferencias en precios entre países y capturar la relación entre

crecimiento e ingreso per cápita en términos reales.

Page 56: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

38

2) Las medias en los estados alto y medio de cada mes se ajustan de acuerdo al PIB pc

real 8 promedio que resulta de las simulaciones de crecimiento (y proyecciones de

población) del mes anterior. Para ello:

I. Suponemos que en su tendencia de largo plaza, la tasa de crecimiento de Chile

se relaciona con el ingreso per cápita como en el modelo de la Tabla 13.

II. Hacemos converger linealmente las tasas medias en los estados alto y medio a

la tendencia hacia diciembre de 2035.

Las consecuencias de este ajuste son que la media de las distribuciones de los tres estados

permanece constante entre 2017 y 2020 y de allí decrece linealmente hacia diciembre de 2035

en los estados alto y medio, pasando de 6% a 4,5% hacia el final de las simulaciones en el primer

caso, y de 2,8% a 1,2% en el segundo caso. La esperanza incondicional (independiente del

último estado ocurrido) de la tasa de crecimiento, decrece, en consecuencia, de 3,76% en 2017-

2020, a 2,38% en diciembre 2035.

Las tasas promedio de crecimiento anual, en tanto, que resultan de las simulaciones a partir de

las proyecciones del FMI para 2015 y 2016 y del modelo M-S para el resto del período,

comenzando en un estado medio, se muestran en la Tabla 14, junto con las proyecciones del

FMI y del Banco Central. La tabla muestra que las tasas aquí utilizadas se encuentran en línea

con lo previsto por ambas instituciones para el futuro cercano.

Tabla 14: Tasas anuales de crecimiento económico

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 . . .

2030 . . .

2035

Promedio Simulaciones

2,3% 2,5% 3,0% 3,5% 3,6% 3,6% 3,6% 3,6% 3,6% 3,6% 3,3% 2,8% 2,4%

FMI 2,3% 2,5% 2,9% 3,1% 3,3% 3,5% - - - - - - -

Banco Central

2% - 2,5%

2,5%-3,5%

- - - - - - - - - - -

Fuentes: Elaboración propia en base a datos World Economic Outlook (FMI) e Informe de Política Monetaria, septiembre 2015

(Banco Central)

Las tasas simuladas comienzan en nivel bajo el tendencial o incondicional (3,76%) y se recuperan

progresivamente hasta el 2020, en el que el promedio se acerca a la media incondicional,

8 Ya que proyectamos PIB pc real y no PPP, suponemos, para simplificar, que la diferencia entre ambos es una constante, de modo que 𝑃𝐼𝐵 𝑝𝑐 𝑟𝑒𝑎𝑙 = 𝑃𝐼𝐵 𝑝𝑐 𝑃𝑃𝑃 – Δ. Si bien esto no debe necesariamente ocurrir en la práctica,

en este caso el supuesto es pertinente, ya que buscamos una relación entre crecimiento y PIB real, dejando de

lado los efectos de cambio en precios en el tiempo.

Page 57: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

39

diluyéndose entonces los efectos del último estado observado (2016 medio). Ya a partir del año

2021los ajustes a la media se hacen notar (la media debiera acercarse a 3,76% pero se estanca

en 3,6%), reduciéndose ésta progresivamente en el tiempo hasta alcanzar el 2,4% en 2035.

6.2.3 Resultados

Producto de la metodología anterior obtuvimos 1.000 trayectorias distintas de crecimiento entre

septiembre de 2015 y diciembre de 2035. Estas trayectorias simulan todo el rango de trayectorias

esperadas de la actividad económica, y el modelo final de proyección de demanda eléctrica

será evaluado en todas ellas.

A modo introductorio, presentamos en la siguiente figura los deciles de las 1.000 simulaciones

para cada año de la serie de IMACEC (promedio anual). Cada franja de color representa un

decil, esto es, un 10% del total de la distribución. Los deciles se van angostando al acercase a la

mediana, donde se concentra una mayor densidad de resultados. La mediana, que se muestra

en una línea blanca al centro de las proyecciones, aumenta desde 131,04 en 2015 (septiembre-

diciembre, base 2008=100) hasta 237,6 en 2035, en un 83%. Los deciles 1 y 9, en tanto, aumentan

de 129,8 a 189,2 en el primer caso y de 132,2 a 284 en el segundo, evidenciando cómo la

varianza de las simulaciones se va ampliando hacia el futuro. Los mínimos y máximos, a la par,

muestran resultados aún más extremos (116 y 342,9 respectivamente hacia el 2035).

Figura 12: Deciles de las simulaciones de IMACEC (promedio anual)

Fuente: Elaboración propia

La siguiente figura, por otra parte, muestra los deciles de las simulaciones de PIB real per cápita

que resultaron de las tasas de crecimiento del IMACEC, así como de la proyección de población.

80

130

180

230

280

330

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

Page 58: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

40

Este PIB pc crece a tasas más bajas que el IMACEC (el que crece por ambos factores: mayor

producto por persona y crecimiento poblacional), pero muestra un comportamiento similar a

dicha serie.

Figura 13: Deciles de las simulaciones de PIB real per cápita (US$ 2013)

Fuente: Elaboración propia

En la Figura 12 se mostraba que el escenario más optimista logra un IMACEC a 2035 de 342,9,

esto es 2.8 veces el IMACEC de agosto 2015, de 123,6 (base 2008=100). Esto implicaría, a las

proyecciones de crecimiento poblacional aquí consideradas, niveles de producto para dicho

año de US$ 38.204 per cápita, que corresponde al máximo en 2035 que muestra la Figura 13

(tomando de base US$ 15.438 en 2014, a dólares de 2013, según datos del Fondo Monetario

Internacional). En el escenario más pesimista, en tanto, un IMACEC de 116 se encuentra

asociado a un ingreso de US$ 12.726 per cápita, cerca de un 18% menor al actual. Por último, la

mediana al 2035 del PIB pc se encuentra en los US$ 26.239.

Ahora bien, los escenarios más optimistas y pesimistas poseen una muy baja probabilidad de

realización, mientras que el escenario promedio es sin duda más probable. Para mostrar ello

presentamos, por último, un histograma con el resultado de los cómputos realizados para el PIB

real pc de 2035 (a dólares 2013) a partir de las 1.000 simulaciones de IMACEC. Se destaca la

barra del percentil 50 (US$27.000-28.000).

10.000

15.000

20.000

25.000

30.000

35.000

40.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

Page 59: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

41

Figura 14: Histograma de 1.000 simulaciones de PIB real pc (US$ 2013) al 2035

Fuente: Elaboración propia

Los resultados más probables se encuentran entre los UD$ 25.000 y los US$ 30.000 per cápita al

2035, donde los intervalos del histograma (cada mil dólares) acumulan una frecuencia de 495

simulaciones, esto es, casi la mitad de las 1.000 totales. El promedio de la distribución, en tanto,

se ubica en los US$ 26.131.

6.3 PRECIOS

Las proyecciones de precios se basaron en el resultado de la “Revisión Anual del Estudio de

Transmisión Troncal 2015” de CDEC SIC. En él, la entidad proyecto costos marginales para

distintas barras mediante un proceso de simulación de equilibrios de mercado a futuro basado

en los planes de obras de generación y transmisión publicados en el Informe de Precio de Nudo

de Corto Plazo de abril de 2015, elaborado por la Comisión Nacional de Energía.

La Figura 15 muestra las proyecciones de CDEC SIC para una barra representativa por región,

las que se detallan también a continuación en la Tabla 15. Como representativo del costo

marginal del SIC se toma el de la barra Quillota 220 kV, mientras en el SING el de Crucero 220 kV.

0

20

40

60

80

100

120

15

000

16

000

17

000

18

000

19

000

20

000

21

000

22

000

23

000

24

000

25

000

26

000

27

000

28

000

29

000

30

000

31

000

32

000

33

000

34

000

35

000

36

000

37

000

38

000

y m

ayo

r...Fr

ecu

en

cia

(n°

de

sim

ula

cio

ne

s)

PIB pc real, US$ 2013

Page 60: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

42

Figura 15: Proyecciones de costo marginal por región, US$

Fuente: CDEC SIC

Tabla 15: Barra representativa por región

SING II-III IV V y SIC RM

Barra Crucero 220 Cardones 220 Pan de Azúcar 220 Quillota 220 Cerro Navia 220

VI VII VIII IX X-XIV

Barra Rancagua 154 Itahue 220 Charrúa 220 Temuco 220 Puerto Montt 220

Fuente: Elaboración propia

En cuanto a los precios regulados de energía y potencia, estos se proyectan simplificadamente

como una función lineal del costo marginal. Utilizamos las variaciones a 12 meses del costo

marginal regional y aplicamos dicha tasa sobre los precios regulados, para evitar traspasar a

estos últimos la estacionalidad del primero.

0

50

100

150

200se

p-1

5

may-…

ene-…

sep

-17

may-…

ene-…

sep

-19

may-…

ene-…

sep

-21

may-…

ene-…

sep

-23

may-…

ene-…

sep

-25

may-…

ene-…

sep

-27

may-…

ene-…

sep

-29

may-…

ene-…

sep

-31

may-…

ene-…

sep

-33

may-…

ene-…

I II III IV V RM VI VII VIII IX X

Page 61: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

43

7. PROYECCIONES AL 2035

Habiendo proyectado los distintos regresores que forman parte de las ecuaciones estimadas,

corresponde ahora proyectar el consumo eléctrico para los principales agregados. Para ello

utilizamos las elasticidades obtenidas de cada una de los Modelos de Corrección de Errores

estimados, ajustadas conforme a la dinámica decreciente que se identificó a partir de los

paneles de datos internacionales. Este proceso se realizó para el consumo eléctrico total, del

SIC, del SING; y para el de clientes libres y regulados en cada sistema. El procedimiento de

proyección fue el siguiente:

1. Para cada una de las trayectorias de ingreso per cápita proyectadas, calculamos las

elasticidades consumo-producto respectivas, según los parámetros estimados en el

modelo de datos de panel (que, como observamos en la sección 4, disminuyen en

función de un aumento de este último).

2. Ajustamos las elasticidades estimadas en los Modelos de Corrección de Errores de

acuerdo a la variación de las elasticidades obtenidas mediante el modelo de datos de

panel al incrementarse el ingreso per cápita. Para demanda libre ajustamos las

elasticidades en base a las estimaciones del panel de consumo industrial (Figura 6), para

demanda regulada lo hacemos en base al panel de consumo residencial y para

demanda total, al panel de consumo total.

3. Con las elasticidades ajustadas y las proyecciones de crecimiento económico,

proyectamos 1.000 sendas de crecimiento de consumo per cápita de electricidad.

4. Finalmente, utilizando las proyecciones de población, obtuvimos estimaciones de

consumo total.

La Figura 16 muestra los deciles de las simulaciones de consumo eléctrico anual proyectado

hasta el 2035. Cada área de color representa un 10% de la densidad de las simulaciones,

mientras que la línea blanca centrada representa la mediana de las proyecciones. Esta última

asciende desde los 66.076 GWh al año en 2015 hasta los 109.754 GWh en 2035, esto es, en un

66%. Los deciles 1 y 9, en tanto, aumentan de 65.889 a 92.678 en el primer caso (90% de la

distribución se encuentra sobre estos valores) y de 66.239 a 123.957 en el segundo (10% de la

distribución se encuentra sobre estos valores).

Page 62: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

44

Figura 16: Deciles de proyecciones de consumo eléctrico anual para todo el país (GWh)

Fuente: Elaboración propia

La Figura 17, en tanto, muestra el histograma de frecuencias de las distintas simulaciones el año

2035 para todo el país. Más de un 94% de las simulaciones resulta en un consumo eléctrico

superior a los 90.000 GWh por año y más de un 55% resulta en un consumo superior a los 110.000

GWh. Además, el histograma muestra una ligera asimetría que no estaba presente en las

proyecciones de PIB per cápita, la que se debe a las menores elasticidades consumo-producto

que aplican sobre aquellos escenarios de mayor crecimiento.

Figura 17: Histograma de las proyecciones de consumo eléctrico anual para el 2035, GWh

Fuente: Elaboración propia

A su turno, las figuras 18 y 19 dan cuenta de los deciles de las simulaciones de consumo eléctrico

en el SIC y su respectivo histograma de frecuencias al 2035 (destacada la mediana). Como

puede observarse en la primera de ellas, la mediana de las proyecciones (línea blanca al centro)

incrementa desde 49.413 GWh a 80.355 entre el 2015 y el 2035. Los deciles 1 y 9, en tanto,

aumentan de 49.283 a 68.642 (90% de la distribución se encuentra sobre estos valores) y de 49.527

50.000

60.000

70.000

80.000

90.000

100.000

110.000

120.000

130.000

140.000

150.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

0

10

20

30

40

50

60

70

80

76

000

78

000

80

000

82

000

84

000

86

000

88

000

90

000

92

000

94

000

96

000

98

000

10

000

0

10

200

0

10

400

0

10

600

0

10

800

0

11

000

0

11

200

0

11

400

0

11

600

0

11

800

0

12

000

0

12

200

0

12

400

0

12

600

0

12

800

0

13

000

0

13

200

0

13

400

0

13

600

0

13

800

0

y m

ayo

r...

Fre

cue

nci

a (n

°d

e s

imu

laci

on

es)

Consumo total, GWh

Page 63: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

45

a 90.033 GWh (10% de la distribución se encuentra sobre estos valores) respectivamente. Por otra

parte, un 91% de las simulaciones resultan en un consumo agregado en el SIC superior a los

70.000 GWh al 2035, y un 61% dan cuenta de un consumo por sobre los 80.000 GWh. El

histograma, al igual que en el consumo total, muestra además una distribución ligeramente

sesgada, con una mayor concentración de eventos al lado izquierdo producto, nuevamente,

de la disminución de la elasticidad a niveles mayores de ingreso.

Figura 18: Deciles de proyecciones de consumo eléctrico anual, SIC (GWh)

Fuente: Elaboración propia

Figura 19: Histograma de las proyecciones de consumo anual para el 2035 en el SIC

Fuente: Elaboración propia

Por otro lado, las figuras 20 y 21 exponen lo mismo para el SING. Como puede observarse en la

primera de ellas, la mediana incrementa desde 16.753 GWh a 25.169 GWh entre el 2015 y el 2035.

Los deciles 1 y 9, en tanto, aumentan de 16,718 a 22,229 y de 16,783 a 27,525 GWh

respectivamente. La figura 21, en tanto, muestra nuevamente una distribución algo sesgada, en

40.000

50.000

60.000

70.000

80.000

90.000

100.000

110.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

0

20

40

60

80

100

120

Fre

cue

nci

a (n

°d

e s

imu

laci

on

es)

Consumo SIC, GWh

Page 64: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

46

la que un 94% de las simulaciones se traducen en un consumo superior a los 22.000 GWh, mientras

que más de un 63% lo hace en consumos de más de 25.000 GWh.

Figura 20: Deciles de proyecciones de consumo eléctrico anual, SING (GWh)

Fuente: Elaboración propia

Figura 21: Histograma de las proyecciones de consumo anual para el 2035 en el SING

Fuente: Elaboración propia

Finalmente, la Tabla 16 expone el consumo eléctrico anual (promedio de las simulaciones) para

el SIC y el SING (detalle mensual en Anexo 8). Estos resultados son ajustadas para hacer coincidir

las proyecciones agregadas con la suma de las desagregadas (el método de ajuste se detalla

en el Anexo 9). Como se observa, en promedio, el consumo eléctrico aumenta a una tasa anual

de 2,5%, la que disminuye desde un 2,7% en 2015 a un 1,8% en 2035. En todo el período, el

consumo de energía eléctrica se incrementa un 65%, alcanzando los 108.918 GWh en 2035. Para

el caso del SIC, el consumo de electricidad se incrementa a una tasa promedio anual de 2,5%

también, la que desciende desde su máxima de 3,2% en 2018 a 1,8% en 2035. El consumo total

de electricidad en el SIC alcanzaría los 81.863 GWh en 2035. Finalmente, el SING mostraría, en

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

32.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

0

20

40

60

80

100

120

Fre

cue

nci

a (n

°d

e s

imu

laci

on

es)

Consumo SING, GWh

Page 65: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

47

promedio, un aumento del consumo eléctrico de 2,6% por año, desde 5,2% en 2015 a 1,8% en

2035. El consumo total del sistema alcanzaría los 27.056 GWh en 2035, esto es, mostraría un

incremento del 63% en el período.

Tabla 16: Proyecciones de consumo eléctrico 2015-2035

Año Total Variación SIC Variación SING Variación

2015 66.070 2,7% 49.288 1,6% 16.617 5,2% 2016 67.656 2,4% 50.574 2,6% 17.083 2,8% 2017 69.456 2,7% 51.906 2,6% 17.550 2,7% 2018 71.509 3,0% 53.579 3,2% 17.930 2,2% 2019 73.676 3,0% 55.222 3,1% 18.455 2,9% 2020 75.932 3,1% 56.904 3,0% 19.028 3,1% 2021 78.162 2,9% 58.611 3,0% 19.551 2,8% 2022 80.466 2,9% 60.338 2,9% 20.128 2,9% 2023 82.786 2,9% 62.077 2,9% 20.709 2,9% 2024 85.196 2,9% 63.883 2,9% 21.313 2,9% 2025 87.535 2,7% 65.652 2,8% 21.882 2,7% 2026 89.745 2,5% 67.335 2,6% 22.410 2,4% 2027 92.105 2,6% 69.121 2,7% 22.984 2,6% 2028 94.448 2,5% 70.895 2,6% 23.553 2,5% 2029 96.727 2,4% 72.621 2,4% 24.106 2,3% 2030 98.906 2,3% 74.271 2,3% 24.635 2,2% 2031 101.025 2,1% 75.877 2,2% 25.148 2,1% 2032 103.023 2,0% 77.392 2,0% 25.631 1,9% 2033 104.988 1,9% 78.882 1,9% 26.107 1,9% 2034 106.973 1,9% 80.387 1,9% 26.587 1,8% 2035 108.918 1,8% 81.863 1,8% 27.056 1,8%

Promedio 2,5% 2,5% 2,6% Promedio 15-25 2,8% 2,8% 3,0% Promedio 26-35 2,2% 2,2% 2,1%

Fuente: Elaboración propia

7.1 POR TIPO DE CLIENTE

En ejercicios similares a los anteriores, mostramos a continuación los deciles de las proyecciones

de clientes libres y regulados de cada sistema. Para empezar, las figuras 22 y 23 presentan el

caso del SIC. La mediana (línea blanca) en la distribución de clientes libres aumenta de 17.746

GWh en 2015 a 21.369 GWh en 2035, esto es, un 20%. Al 2035, en tanto, un 90% de las simulaciones

arrojan un consumo libre mayor a 20.698 GWh (decil 1), mientras que un 10% lo hacen sobre los

21.842 (decil 9). En cuanto al consumo regulado, la mediana aumenta de 31.597 GWh en 2015

a 60.813 GWh (un 92%). Además, un 90% de las simulaciones arrojan al 2035 un consumo

regulado anual sobre los 48.594 GWh, mientras que un 10% lo hacen sobre los 71.068 GWh. Por

último, en ambos casos, el decil 1 (el primero de abajo a arriba) es más ancho que todos los

Page 66: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

48

demás, lo que, al igual que en los resultados agregados por sistema, es indicativo de una

distribución asimétrica de las simulaciones, producto de la disminución en la elasticidad a niveles

mayores de ingreso.

Figura 22: Deciles de proyecciones de consumo eléctrico anual, SIC libre (GWh)

Fuente: Elaboración propia

Figura 23: Deciles de proyecciones de consumo eléctrico anual, SIC regulado (GWh)

Fuente: Elaboración propia

La Figura 24, finalmente, presenta el promedio de las proyecciones anuales desagregadas por

tipo de cliente en el SIC (normalizadas para coincidir con la proyección agregada). Como se

observa, el mayor aumento del consumo de los clientes regulados se traduce en un aumento

de la participación de éstos en el consumo agregado del sistema, mientras que el consumo libre

se mantiene bastante estable.

17.500

18.000

18.500

19.000

19.500

20.000

20.500

21.000

21.500

22.000

22.500

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

Page 67: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

49

Figura 24: Proyecciones desagregadas de consumo eléctrico en el SIC (GWh)

Fuente: Elaboración propia

En cuanto al SING, las figuras 25 y 26 muestran los deciles de las proyecciones de consumo anual

de clientes libres y regulados. La mediana del consumo de clientes libres aumenta de 15,015

GWh en 2015 a 21,530 GWh en 2035 (un 43%). Al 2035, en tanto, un 90% de las simulaciones

arrojan un consumo libre mayor a 19,446 GWh (decil 1), mientras que un 10% lo hacen sobre los

23,087 (decil 9). En cuanto al consumo regulado, la mediana aumenta de 1,893 GWh a 3,549

GWh. Un 90% de las simulaciones al 2035 se encuentran sobre los 2,867 GWh, mientras que un

10% lo hacen sobre los 4,118 GWh.

Figura 25: Deciles de proyecciones de consumo eléctrico anual, SING libre (GWh)

Fuente: Elaboración propia

0

20000

40000

60000

80000

100000Libres Regulados

13.000

15.000

17.000

19.000

21.000

23.000

25.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

Page 68: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

50

Figura 26: Deciles de proyecciones de consumo eléctrico anual, SING regulado (GWh)

Fuente: Elaboración propia

La Figura 27, por su parte, presenta los promedios anuales de las proyecciones desagregadas

por tipo de cliente en el SING. Como se observa, la participación del consumo regulado

aumenta levemente en el período, aunque continúa siendo preponderante el consumo libre.

Figura 27: Proyecciones desagregadas de consumo eléctrico en el SING (GWh)

Fuente: Elaboración propia

Finalmente, la Tabla 17 presenta un resumen de las proyecciones recién expuestas (promedio

anual). El año 2015 muestra un crecimiento negativo tanto en consumo libre del SIC como en

regulado del SING. En consumo libre del SING, en cambio, se percibe un aumento importante

de la demanda en este año, producto del ingreso de actores importantes en la minería. En todo

caso, se perciben tasas menores de crecimiento en los años cercanos, producto del menor

crecimiento económico, las que tienden a recuperarse hacia fines de la década para luego

decaer gradualmente de la mano del desarrollo.

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035

0

5000

10000

15000

20000

25000

30000Libres Regulados

Page 69: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

51

Tabla 17: Proyecciones de consumo eléctrico por tipo de cliente 2015-2035

SIC SING

Año Libres Variación Regulados Variación Libres Variación Regulados Variación

2015 17,739 -1.0% 31,549 3.2% 14,903 7.1% 1,880 -0.1% 2016 17,953 1.2% 32,621 3.4% 15,153 1.7% 1,929 2.6% 2017 18,161 1.2% 33,745 3.4% 15,547 2.6% 2,004 3.9% 2018 18,396 1.3% 35,183 4.3% 15,855 2.0% 2,075 3.6% 2019 18,619 1.2% 36,603 4.0% 16,290 2.7% 2,165 4.4% 2020 18,834 1.2% 38,070 4.0% 16,764 2.9% 2,264 4.6% 2021 19,039 1.1% 39,572 3.9% 17,193 2.6% 2,359 4.2% 2022 19,242 1.1% 41,096 3.9% 17,666 2.8% 2,462 4.4% 2023 19,441 1.0% 42,637 3.7% 18,141 2.7% 2,568 4.3% 2024 19,643 1.0% 44,240 3.8% 18,634 2.7% 2,678 4.3% 2025 19,835 1.0% 45,817 3.6% 19,098 2.5% 2,784 4.0% 2026 20,007 0.9% 47,328 3.3% 19,524 2.2% 2,885 3.6% 2027 20,186 0.9% 48,935 3.4% 19,989 2.4% 2,995 3.8% 2028 20,362 0.9% 50,534 3.3% 20,449 2.3% 3,104 3.7% 2029 20,533 0.8% 52,088 3.1% 20,895 2.2% 3,211 3.4% 2030 20,688 0.8% 53,583 2.9% 21,320 2.0% 3,315 3.2% 2031 20,827 0.7% 55,050 2.7% 21,730 1.9% 3,418 3.1% 2032 20,960 0.6% 56,432 2.5% 22,116 1.8% 3,515 2.8% 2033 21,090 0.6% 57,792 2.4% 22,496 1.7% 3,611 2.7% 2034 21,220 0.6% 59,167 2.4% 22,878 1.7% 3,709 2.7% 2035 21,337 0.6% 60,526 2.3% 23,250 1.6% 3,806 2.6%

Promedio 1,3% 3,1% 2,0% 2,6% Promedio 15-25 1,5% 3,6% 2,3% 2,9% Promedio 26-35 1,0% 2,6% 1,6% 2,3%

Fuente: Elaboración propia

Page 70: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

52

8. DESAGREGACIÓN REGIONAL EN EL SIC

El consumo eléctrico en Chile es altamente heterogéneo en las distintas zonas geográficas. Así,

en el norte (en el SING y el norte del SIC) existe una preeminencia de clientes libres asociados a

proyectos mineros, fundamentalmente del cobre –cuya producción depende de la demanda

internacional por este metal―. Por otro lado, los sectores central y sur del SIC muestran una

preponderancia de clientes regulados. Así, por ejemplo, el consumo libre de electricidad de la

región de Atacama alcanza el 78% sobre el total regional (2014), mientras que en la Región

Metropolitana alcanza sólo el 26%.

Las figuras 28 y 29 muestran la participación de cada cliente en el consumo de estas regiones

para el año 2014 (de mayor a menor también en la leyenda). En Atacama, los clientes más

importantes son Minera La Candelaria, EMELAT, Codelco en Diego de Almagro y Compañía

Minera del Pacífico (CMP), con participaciones, respectivamente, de 21%, 18%, 13% y 11%. De

estos, el primero y los dos últimos corresponden a compañías mineras, mientras EMELAT es la

distribuidora de electricidad a clientes regulados. Además, los 10 mayores clientes, a excepción

de EMELAT, pertenecen a minería, y entre ello suman un 73% de la demanda eléctrica total.

Figura 28: Consumo por cliente en la región de Atacama del SIC (2013-2014)

Fuente: Elaboración propia a partir de información de CDEC SIC

En la Región Metropolitana, el escenario es completamente distinto. Chilectra, la compañía

distribuidora de energía eléctrica en el Gran Santiago, suma en el abastecimiento de sus clientes

regulados un 61% del consumo total, y es por lejos el más importante de todos. El segundo mayor

21%

18%

13%11%

7%

5%

5%

3%

3%

3%2%

9%MIN. LA CANDELARIA

EMELAT

CODELCO A-D.ALMAGRO

MIN. CASERONES

CMP PELLETS

ENAMI PAIPOTE

MANTO VERDE-ALMAGRO

PLANTA MAGNETITA

MIN. MARICUNGA

MIN. CNN

R_PUCOBRE

OTROS

Page 71: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

53

cliente (CGED), en tanto, es también distribuidor regulado de electricidad, al sur de la región. En

las grandes compañías de consumo libre, figura Chilectra Libre (incluyendo suministro a La

Farfana y Metro), Minera Los Bronces y Metro S.A.

Figura 29: Participación en el consumo de electricidad por Clientes en la Región Metropolitana

Fuente: Elaboración propia a partir de información de CDEC SIC

En lo que respecta al resto de las regiones, la Tabla 18 muestra que el consumo de clientes libres

es mucho mayor en las dos del norte (en el pequeño sector de la Región de Antofagasta que

forma parte del SIC, el único cliente libre es Minera Cenizas). En el resto del SIC, en tanto, la

participación del sector libre es mayor en las regiones V y VI, superando el 50%, lo que se debe

a la presencia de las minas Pelambres (Antofagasta Minerals) y Andina (Codelco) en la primera

y El Teniente (Codelco) en la segunda. En el resto de las regiones, el consumo es

mayoritariamente regulado y desde la Región Metropolitana hacia el sur el consumo libre se

encuentra disgregado entre múltiples clientes manufactureros y comerciales. En la Región

Metropolitana, la participación minera es relevante debido a la presencia de Los Bronces

(AngloAmerican), pero su consumo es contrarrestado por el de los clientes industriales y

comerciales.

61%

11%

9%

6%

2%

2% 1%

1%1%1%

1% 4%CHILECTRA (R)

CGED (R)

CHILECTRA LIBRE

LOS BRONCES

METRO ENOR

CMPC PAPELES CORDILLERA

EMELECTRIC (R)

LAS TORTOLAS

CGED LIBRE

EEPA ENDESA (R)

CMPC TISSUE

OTROS

Page 72: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

54

Tabla 18: Participación del sector libre y grandes clientes en retiros, 2014

Región % Libres Consumo 3 mayores

clientes libres % sobre total regional

Sector

2 (SIC) 65.3% 100%* Minería 3 81.5% 45.0% Minería 4 36.6% 30.9% Minería 5 50.5% 34.1% Minería 6 53.3% 49,5% Minería y varios 7 22.1% 20.5% Manufactura 8 42.6% 13.6% Manufactura 9 21.5% 18.6% Papel y Celulosa

10 0% 0% - 14 8.3% 8.3% Papel y Celulosa RM 25.4% 16.1% Minería y varios

*: Un solo cliente libre: Minera Cenizas.

Fuente: Elaboración propia

Por la importancia de la minería en el norte, así como por la relevancia de algunas minas en

particular en las regiones más céntricas, se ha considerado necesario complementar la

metodología de proyección vía econometría con una revisión de los planes de obras registrados

en COCHILCO. Para esto, comenzamos por separar de las estimaciones econométricas a

aquellas mineras cuyo consumo fue, al año 2014, igual o superior a un 10% del total regional.

Estas mineras se muestran, por región, en la Tabla 19 (por una mayor disponibilidad de datos

antiguos, se consideran juntas las regiones X y XIV, como antes de su escisión en el 2007, mientras

que por el pequeño consumo que de la II región corresponde al SIC, éste se agrega a la III

región).

Tabla 19: Mineras con participación mayor al 10%, 2014

Región Minera (participación 2014)

Región Minera (participación 2014)

Metropolitana - O'Higgins Codelco El Teniente (38.2%)

Antofagasta- Atacama

Minera la Candelaria (20.5%) Maule - Codelco El Salvador (13.4%) Biobío - Minera Caserones (11.1%) Araucanía -

Coquimbo Minera Carmen de Andacollo (24%) Los Ríos-Los Lagos -

Valparaíso Pelambres (17.8%) Codelco Andina (11.1%)

Fuente: Elaboración propia con información provista por CDEC SIC

En base al consumo total de la región excluyendo el de estos grandes clientes, se realizan

estimaciones por el Modelo de Corrección de Errores que servirán de base a las proyecciones

Page 73: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

55

de la zona. Las variables incluidas en este caso en los modelos son: IMACEC9, costo marginal y

precios regulados de energía y potencia (y tendencia, en algunos casos), estos tres últimos en

una barra representativa por región, las que se indicaron anteriormente en la Tabla 15.

Los modelos estimados son los de consumo regulado por región y consumo total, descontando

en este último el de los grandes clientes. Se opta por esta metodología, que permite obtener el

consumo libre regional como la diferencia entre ambos, por presentar estos datos un

comportamiento sistemático más fácil de estimar, producto de su menor volatilidad. A esto, sin

embargo, hemos presentado tres excepciones: las regiones VIII, X-XIV y Metropolitana. En la

primera, el consumo libre viene en sostenido deceso, el que no logra ser compensado por el

incremento gradual del consumo regulado, de modo que el consumo total también decrece.

En las regiones X-XIV y Metropolitana, en tanto, el consumo libre se encuentra estancado en los

últimos años. Por estas particularidades observadas en el consumo libre en los tres casos, que no

logran ser adecuadamente capturadas por la metodología utilizada en las demás regiones,

optamos por proyectar en ambos casos el consumo libre con Modelos de Corrección de Errores,

obteniendo el total ya sea a partir del mismo modelo MCE o como la suma de la proyección

libre y regulada (según qué modelo presente mejores características: el regulado o el total). Los

resultados se resumen en las tablas 20, 21 y 22 (total, regulado y libre, respectivamente), en las

que figuran las elasticidades estimadas, el error estándar del coeficiente entre paréntesis, y el R2

ajustado para evaluar ajuste (outputs de Eviews en Anexo 5):

9 A diferencia de los modelos agregados, esta vez no se incluye IMACEC sobre población regional pues la variable

no captura las variaciones del ingreso per cápita regional y carece de una interpretación clara. Se prueban en

todo caso las variables IMACEC y población por separado en el modelo, pero problemas de colinealidad entre

ambas no posibilitan la estimación de un modelo adecuado. Por esta razón, se opta finalmente por un modelo

sólo con IMACEC contra consumo expresado en términos totales y no per cápita, presentando este un mejor ajuste.

Adicionalmente, se prueba con una mensualización del INACER de cada región como medida de producto, en

vez del IMACEC, pero se opta finalmente por modelar con este último por presentar también un mejor ajuste, lo

que muy probablemente se debe a los problemas de medición que presenta la serie de INACER mensualizada

(errores de medición provenientes de la serie misma, así como de su mensualización).

Page 74: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

56

Tabla 20: Coeficientes estimados en modelos regionales, consumo TOTAL

II-III IV V VI VII IX RM

LOG(IMACEC) 0,77* (0,03)

1,21* (0,02)

0,97* (0,04)

1,66* (0,03)

1,05* (0,04)

1,05* (0,04)

0,91* (0,03)

LOG(CMG) - - -0,02** (0,009)

- - - -0,04* (0,01)

LOG(PER) - - - - - -0,04** (0,014)

-

𝑅2 ajustado 0,81 0,95 0,89 0,96 0,92 0,94 0,89 * y ** denotan significancia estadística al 1% y 5% respectivamente

Fuente: Elaboración propia

Tabla 21: Coeficientes estimados en modelos regionales, consumo REGULADO

II-III IV V VI VII VIII IX X-XIV

LOG(IMACEC) 0,99* (0,09)

1,17* (0,02)

0,96* (0,05)

1,20* (0,03)

1,20* (0,05)

0.40* (0,10)

1,09* (0,03)

1,23* (0,04)

LOG(CMG) - - -0,01* (0,01)

- - - - -0,04* (0,01)

LOG(PER) - - - - - - -0,07* (0,01)

-

𝑅2 ajustado 0,87 0,95 0,89 0,93 0,90 0,90 0,94 0,92

* y ** denotan significancia estadística al 1% y 5% respectivamente

Fuente: Elaboración propia

Tabla 22: Coeficientes estimados en modelos regionales, consumo LIBRE

VIII X-XIV RM

LOG(IMACEC) 2,14* (0,25)

- -

Tendencia -0.009*

(0,00) - -

Tendencia^2 9,2E-06

(0,00) - -

LOG(CMG) - - -

𝑅2 ajustado 0,88 0,10 0,91 * denota significancia estadística al 1%

Fuente: Elaboración propia

Como puede observarse en la primera de las tablas indicadas, todas las regiones consideradas

muestran elasticidades ingreso positivas y significativas, que se ubican entre 0,77 (Antofagasta-

Atacama) y 1,66 (O’Higgins). Por otra parte, tan solo 3 de las regiones muestran elasticidades

precio estadísticamente distintas de cero. En los tres casos son negativas pero muy cercanas a

cero. En cuanto a la segunda tabla, las elasticidades ingreso son nuevamente positivas y

cercanas a la unidad, en tanto los precios regulados solo fueron significativos en la región de la

Araucanía (en la V y la Metropolitana ingresaron, en cambio, los costos marginales). En el

Page 75: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

57

consumo libre, finalmente, observamos que las regiones X-XIV y Metropolitana resultaron carecer

de una tendencia significativa, como era esperado. En la VIII región, en tanto, se muestra una

elasticidad producto positiva, pero una tendencia negativa que contrarresta dicho efecto.

Estos modelos se utilizan para proyectar consumo regulado y libre por región, así como consumo

total, descontando el de los grandes clientes. A este último, hemos de sumar las previsiones de

consumo de aquellos clientes, las que analizamos caso a caso, junto con el de aquellos grandes

proyectos nuevos o de expansión de los que da cuenta COCHILCO a la fecha.

En cuando a los grandes clientes que se encuentran ya operando, todas mineras cupríferas,

hemos proyectado la producción regional de mineral (la suma de lo producido por las grandes

mineras en cada región) extrapolando las tasas observadas en enero-agosto 2015 al resto de

este año, y para 2016 en adelante, utilizando las tasas de crecimiento proyectadas por

COCHILCO para la capacidad de producción de cobre de plantas ya operativas en cada

región hasta el 202610, las que se presentan en la Tabla 23. Dada la relevancia de las minas aquí

consideradas (ver Tabla 19), parece razonable que el agregado regional se comporte a futuro

de forma muy similar a como lo haga la suma de lo que produzcan estas grandes mineras por

región. Para el resto del horizonte de previsión (2027-2035) hemos proyectado una tendencia

polinómica simple a las proyecciones de COCHILCO para las regiones IV-VI, en las que la

actividad cuprífera posee poca renovación, y la hemos dejado estacionada en su nivel de 2026

en la III región, en la que sí existe una mayor inversión en proyectos de reposición, expansión y

nuevos que permitiría eventualmente mantener por algunos años los niveles de producción.

Tabla 23: Crecimiento proyectado de la capacidad de producción de cobre

Proyecciones COCHILCO

2015* 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 Atacama 10,1% 4,1% 0,8% -0,5% 4,2% -16,3% -3,9% -3,1% -3,9% -3,2% -3,4% -2,6%

Coquimbo -3,2% 1,2% -1,3% 1,1% -1,7% -2,0% -1,2% 0,0% -1,2% 0,0% -1,3% 0,0%

Valparaíso -1,3% 3,5% -1,7% -2,9% -3,6% 2,2% -0,7% 7,3% 4,6% 5,6% 5,4% -6,3%

O’Higgins -3.4% 1,0% -2,2% -1,9% 0,1% -2,9% -0,6% -7,8% -15,2% -13,8% -16,1% -18,3%

Extrapolaciones

2027 2028 2029 2030 2031 2032 2033 2034 2035 Atacama 0% 0% 0% 0% 0% 0% 0% 0% 0%

Coquimbo -1% -1% -1% -1% -1% -1% -1% -1% -1%

Valparaíso 13% 6% 7% 8% 9% 9% 10% 11% 12%

O’Higgins 22% -6% -6% -6% -6% -6% -6% -6% -6% *: Tasas observadas a la fecha

Fuente: Elaboración propia en base a datos COCHILCO

10 COCHILCO (2015)

Page 76: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

58

El consumo eléctrico derivado de esta producción, en tanto, se ha hecho crecer a las mismas

tasas que ésta. El resultado de ello es que el consumo proyectado de cada región por razón de

estas grandes mineras es el que indica la tabla siguiente:

Tabla 24: Consumo proyectado de grandes mineras, GWh

III región IV región V región VI región

Salvador +

Caserones + Candelaria

Carmen de Andacollo

Pelambres + Andina

Teniente

2014 1,656 500 2,068 1,789

2015 1,824 484 2,042 1,728

2016 1,899 490 2,114 1,745

2017 1,914 483 2,078 1,707

2018 1,904 489 2,018 1,674

2019 1,984 480 1,945 1,676

2020 1,661 471 1,988 1,627

2021 1,596 465 1,974 1,618

2022 1,547 465 2,118 1,491

2023 1,486 460 2,216 1,265

2024 1,439 460 2,340 1,090

2025 1,390 454 2,466 915

2026 1,354 454 2,311 747

2027 1,354 449 2,611 912

2028 1,354 445 2,768 857

2029 1,354 440 2,961 806

2030 1,354 436 3,198 757

2031 1,354 431 3,486 712

2032 1,354 427 3,800 669

2033 1,354 423 4,180 629

2034 1,354 419 4,640 591

2035 1,354 414 5,196 556

Fuente: Elaboración propia

Adicionalmente, agregamos al consumo de estos grandes clientes el de aquellos proyectos que

hoy se encuentran en cartera. Para esto, seleccionamos todos los proyectos nuevos o de

expansión en las regiones III-VI con inversión estimada en más de MMUS$500 y que presentan

según COCHILCO una condición de “Base”, “Probable” o “Posible” (dejando fuera los proyectos

“potenciales”, que poseen probabilidades aún muy bajas de materialización11). La Tabla 25

muestra el año estimado de puesta en marcha, la inversión, la condición del proyecto, su

11 Criterio utilizado por COCHILCO para dividir los en COCHILCO (2015)

Page 77: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

59

capacidad productiva y su demanda eléctrica estimada, según figura en los respectivos

Estudios de Impacto Ambiental presentados al Servicio de Evaluación de Impacto Ambiental.

Tabla 25: Grandes proyectos, nuevos o de expansión, COCHILCO

Año Proyecto Operador Inversión (Julio 2015 MMUS$)

Condición Cobre (Mt/año)

Oro (kg/año)

Hierro (Mt/año)

Demanda eléctrica (GWh/año)

III

2017 Pascua Cía. Minera

Nevada 4,250 Probable 80 19830 0

700 x 3 años,

luego 964

2018 Santo

Domingo Santo Domingo

SCM 1,700 Probable 250 0 4200 876

2018 Diego de Almagro

Compañía Minera Sierra Norte S.A

597 Probable 33 0 0 231

2018 Cerro

Maricunga Minera Atacama Pacific Gold Chile

587 Posible 0 6840 0 300*

IV 2017 El Espino Pucobre 624 Posible 40 0 0 315 2019 Dominga Andes Iron 2,888 Posible 150 0 11000 1417

V 2023 Nueva

Andina II Codelco Div.

Andina 6,524 Posible 350 0 0 1470

VI - - - - - - - - - *: Cerro Maricunga no posee EIA. Su consumo fue estimado a partir del de las demás mineras en la tabla

Fuente: Elaboración propia en base a datos COCHILCO y a Estudios de Impacto Ambiental de cada proyecto

Siendo la capacidad máxima de producción de cobre en la Región de Atacama de 430 Mt/año

en 2014, los proyectos de la Tabla 25 serán en general de alto impacto a nivel local, significando

el menor de ellos un aumento en la capacidad de un 8%. En el caso del oro, en tanto, las

inversiones en cartera podrían elevar la producción nacional de oro en un 58% respecto de la

de 2014 (46 toneladas en el año). En la región de Coquimbo, en tanto, el proyecto más

importante es Dominga, que aumentaría con su producción secundaria la capacidad de

producción de cobre en la región (de 493 Mt/año en 2014) en un 20%, mientras que El Espino lo

haría en un 8%. En cuanto a la producción de hierro, ésta podría elevarse a nivel nacional en un

58% (desde las 18,87 Mt/año del 2014) sólo con los aportes de Dominga. En la región de

Valparaíso, por otra parte, el único proyecto de envergadura es la expansión de División Andina:

éste más que duplicaría la capacidad de producción regional de cobre al 2014 (290 Mt/año).

Finalmente, en la VI región no existen grandes proyectos mineros a considerar.

El consumo estimado de estos proyectos se agrega a nuestras proyecciones de grandes clientes

de la minería en su valor esperado, esto es, considerando que con una cierta probabilidad,

mayor en aquellos que ostentan la condición de “probable” que en los “posible”, los proyectos

serán efectivamente materializados y demandarán, por ende, electricidad en las fechas y

magnitud que detalla la Tabla 25 anterior. Esta probabilidad se estima en 0,8 para el estado

Page 78: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

60

“probable”, considerando que, como detalla COCHILCO en su documento “Inversión en la

minería chilena – Cartera de proyectos 2015-2024”, se cataloga como tal a proyectos que en

general tienen su Resolución de Calificación Ambiental (RCA) aprobada y se encuentran ya en

etapa de estudios de factibilidad. Para los proyectos “posibles”, en tanto, se considera una

probabilidad de materialización de 0,5, pues estos han alcanzado en general las etapas de

estudios de factibilidad pero carecen aún de una RCA aprobada (ver Tabla 1 en COCHILCO,

2015).

Como producto de lo anterior, las siguientes proyecciones de consumo eléctrico resultaron para

los proyectos grandes de cada una de las regiones:

Tabla 26: Consumo de proyectos mineros, GWh

III región IV región V región VI región

2015 - - - -

2016 - - - -

2017 560.0 157.5 - -

2018 1,595.6 157.5 - -

2019 1,595.6 866.0 - -

2020 1,806.8 866.0 - -

2021 1,806.8 866.0 - -

2022 1,806.8 866.0 - -

2023 1,806.8 866.0 735.0 -

2024-2035 1,806.8 866.0 735.0 -

Fuente: Elaboración propia en base a datos COCHILCO y SEIA

En consecuencia, las proyecciones de consumo regional resultado de la suma de las tres

metodologías (econometría, grandes mineras operando y grandes proyectos), son como

muestra la Figura 30. Como puede observarse, las regiones V y Metropolitana son las de mayor

consumo, y continuarán siéndolo en el horizonte de proyección.

Page 79: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

61

Figura 30: Proyecciones desagregadas de consumo eléctrico en el SIC (GWh)

Fuente: Elaboración propia

Las tablas 27-29, en tanto, muestra las tasas de crecimiento anual del consumo total, regulado y

libre de cada región, respectivamente. En la primera de ellas se evidencia que el consumo

proyectado decrecerá en el largo plazo en el norte del SIC (III región), mientras que en el resto

aumentará, aunque de forma dispar, más pronunciadamente en regiones como la V y la X.

Tabla 27: Proyecciones de consumo TOTAL por región 2015-2035 (tasas crecimiento)

Total, incluyendo a mineras, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 4.9% -0.4% 0.9% 0.6% 3.3% 1.7% 8.2% 2.3% 0.9%

2016 2.3% 2.4% 2.4% 2.7% 2.7% 1.8% 3.4% 3.5% 2.6%

2017 9.0% 8.9% -0.4% 0.2% 3.2% 2.1% 2.9% 3.5% 2.3%

2018 13.6% 1.5% -1.5% 0.1% 3.1% 2.1% 3.9% 3.4% 3.8%

2019 -3.6% 30.3% -0.2% 1.8% 3.8% 2.8% 3.4% 4.2% 3.0%

2020 0.2% 2.4% 3.7% 3.6% 4.2% 3.3% 3.4% 4.2% 3.0%

2021 0.5% 2.4% 2.6% 4.1% 3.9% 3.0% 3.6% 4.4% 3.1%

2022 0.1% 2.5% 4.4% 2.0% 4.0% 3.0% 3.2% 4.8% 2.9%

2023 -4.5% 1.2% 10.2% -0.9% 4.0% 2.7% 3.0% 4.0% 2.8%

2024 0.6% 2.6% 3.9% 1.8% 4.1% 2.9% 3.2% 4.1% 2.9%

2025 0.6% 2.3% 3.6% 1.6% 3.6% 2.4% 3.3% 4.0% 3.0%

2026 2.5% 2.7% 1.5% 2.2% 3.4% 2.2% 3.1% 3.7% 2.8%

2027 -2.9% 1.3% 3.5% 5.3% 3.4% 1.9% 3.1% 3.9% 2.8%

2028 -0.3% 1.9% 3.0% 2.8% 3.3% 1.8% 3.0% 3.8% 2.8%

2029 -0.6% 1.7% 3.1% 2.7% 3.2% 1.6% 2.9% 3.6% 2.7%

2030 -0.9% 1.6% 3.1% 2.4% 3.0% 1.3% 2.7% 3.4% 2.5%

2031 -1.4% 1.4% 3.1% 2.2% 2.8% 1.1% 2.6% 3.2% 2.4%

2032 -1.5% 1.3% 3.0% 2.0% 2.6% 0.9% 2.4% 3.0% 2.2%

2033 -1.9% 1.2% 3.1% 1.8% 2.5% 0.9% 2.3% 2.9% 2.1%

2034 -2.4% 1.1% 3.3% 1.7% 2.5% 1.0% 2.2% 2.8% 2.1%

2035 -3.0% 1.0% 3.4% 1.5% 2.4% 1.0% 2.1% 2.7% 2.0% Fuente: Elaboración propia

0

20000

40000

60000

80000

100000II-III IV V VI VII VIII IX X-XIV XIII

Page 80: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

62

El consumo regulado, en cambio, muestra un comportamiento más parejo para la totalidad de

las regiones, con tasas que comienzan en torno al 4% y luego decrecen.

Tabla 28: Proyecciones de consumo REGULADO por región 2015-2035 (tasas crecimiento)

Consumo regulado, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 -3.0% 2.0% 1.8% 5.1% 3.8% 4.2% 4.9% 2.5% 3.3%

2016 2.3% 2.9% 2.5% 2.9% 2.9% 4.9% 4.1% 3.6% 3.4%

2017 3.1% 3.5% 2.9% 3.6% 3.7% 5.0% 3.0% 3.6% 3.2%

2018 2.3% 3.8% 2.7% 3.7% 3.5% 4.2% 4.6% 3.5% 5.1%

2019 3.7% 4.1% 3.5% 4.2% 4.3% 4.7% 3.5% 4.3% 4.0%

2020 4.1% 4.2% 3.8% 4.4% 4.5% 4.6% 3.2% 4.2% 3.8%

2021 3.6% 4.0% 3.4% 4.1% 4.2% 4.1% 3.6% 4.5% 3.9%

2022 3.9% 4.0% 3.6% 4.2% 4.3% 4.0% 3.0% 4.9% 3.6%

2023 4.1% 4.0% 3.7% 4.2% 4.4% 3.9% 2.9% 4.1% 3.5%

2024 4.0% 4.0% 3.7% 4.2% 4.4% 3.6% 3.0% 4.2% 3.6%

2025 3.5% 3.6% 3.3% 3.7% 3.9% 3.1% 3.3% 4.0% 3.6%

2026 3.2% 3.4% 3.1% 3.5% 3.6% 2.7% 3.0% 3.8% 3.3%

2027 3.4% 3.4% 3.2% 3.5% 3.7% 2.5% 3.2% 3.9% 3.5%

2028 3.3% 3.3% 3.1% 3.4% 3.6% 2.2% 3.1% 3.8% 3.4%

2029 3.1% 3.1% 3.0% 3.2% 3.4% 1.9% 2.9% 3.6% 3.2%

2030 3.0% 2.9% 2.8% 3.0% 3.2% 1.6% 2.7% 3.4% 3.0%

2031 2.9% 2.8% 2.7% 2.9% 3.0% 1.3% 2.6% 3.3% 2.9%

2032 2.6% 2.5% 2.5% 2.7% 2.8% 1.1% 2.4% 3.0% 2.6%

2033 2.5% 2.4% 2.4% 2.5% 2.7% 1.1% 2.3% 2.9% 2.5%

2034 2.5% 2.4% 2.4% 2.5% 2.6% 1.0% 2.3% 2.9% 2.5%

2035 2.4% 2.3% 2.3% 2.4% 2.6% 1.0% 2.2% 2.8% 2.4% Fuente: Elaboración propia

El consumo libre, por último, es muy dispar y volátil, sobre todo en las regiones mineras. Éste se

mantiene estancado además, con tasas en ocasiones a la baja, en las regiones X y

Metropolitana.

Page 81: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

63

Tabla 29: Proyecciones de consumo LIBRE por región 2015-2035 (tasas crecimiento)

Consumo libre, GWh

II-III IV V VI VII VIII IX X-XIV XIII

2015 6.7% -4.6% 0.0% -3.4% 1.2% -1.7% 20.6% -5.8% -6.0%

2016 2.3% 1.6% 2.4% 2.5% 1.8% -2.7% 1.1% -0.1% -0.1%

2017 10.3% 19.1% -3.8% -3.1% 1.5% -2.4% 2.4% -0.5% -0.5%

2018 15.8% -2.1% -5.9% -3.5% 1.7% -1.4% 1.6% -0.6% -0.6%

2019 -4.9% 75.7% -4.6% -0.8% 2.0% -0.6% 3.0% -0.5% -0.5%

2020 -0.5% 0.6% 3.6% 2.7% 2.9% 0.8% 4.0% 0.1% 0.1%

2021 -0.1% 0.7% 1.6% 4.0% 2.8% 0.8% 3.4% 0.0% 0.0%

2022 -0.6% 0.7% 5.4% -0.5% 2.7% 0.9% 3.9% 0.0% 0.0%

2023 -6.4% -1.9% 18.4% -7.1% 2.2% 0.3% 3.7% -0.4% -0.4%

2024 -0.3% 1.0% 4.1% -1.5% 2.8% 1.3% 4.0% 0.0% 0.0%

2025 -0.1% 0.7% 3.9% -1.5% 2.6% 1.0% 3.2% 0.0% 0.0%

2026 2.3% 1.9% -0.3% 0.2% 2.7% 1.2% 3.2% 0.1% 0.1%

2027 -4.5% -1.4% 3.8% 8.2% 2.1% 0.5% 2.7% -0.3% -0.3%

2028 -1.3% -0.1% 2.8% 1.9% 2.3% 1.0% 2.9% -0.1% -0.1%

2029 -1.7% -0.2% 3.1% 1.8% 2.2% 0.9% 2.7% -0.1% -0.1%

2030 -2.2% -0.4% 3.3% 1.4% 2.1% 0.7% 2.5% -0.2% -0.2%

2031 -2.8% -0.6% 3.6% 1.1% 2.0% 0.7% 2.4% -0.2% -0.2%

2032 -2.9% -0.6% 3.6% 0.9% 1.8% 0.6% 2.2% -0.2% -0.2%

2033 -3.5% -0.8% 3.9% 0.7% 1.7% 0.6% 2.1% -0.2% -0.2%

2034 -4.3% -1.0% 4.2% 0.4% 1.7% 0.8% 2.1% -0.2% -0.2%

2035 -5.2% -1.3% 4.5% -0.1% 1.6% 0.9% 2.0% -0.3% -0.3% Fuente: Elaboración propia

Los detalles de las proyecciones mensuales y anuales por región, desagregadas por tipo de

cliente y en cada una de las tres metodologías aquí presentadas, pueden revisarse en el Anexo

8.

Page 82: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

64

9. EJERCICIOS DE PREVISIÓN AL 2050

Los métodos econométricos constituyen una buena herramienta de proyección mientras las

dinámicas que consideran los mismos se mantengan vigentes. En efecto, dichos métodos son

flexibles a la evaluación de múltiples historias futuras para los drivers de la demanda, en este

caso, pero no lo son a cambios estructurales en la relación entre las variables, al menos no a

cambios que no hayan ya ocurrido en los datos. Pero, sin duda, la relación entre las variables

del modelo puede cambiar en el futuro, lo que ocurriría si, por ejemplo, emerge una nueva

tecnología que haga más o menos atractivo a los consumidores el uso de la electricidad.

Por lo anterior, una metodología quizás más ilustrativa que el uso exclusivo de métodos

econométricos para proyectar al 2050, sea el planteamiento de escenarios (tecnológicos,

ecológicos o algún otro) para el futuro. Dichos escenarios nos permitirían revisar qué implicancias

podrían tener ciertos cambios probables sobre la demanda eléctrica.

Parte del análisis con el que abordaremos los mundos posibles de consumo eléctrico hacia el

2050 incluyen cambios en eficiencia energética, penetración del auto eléctrico y

autogeneración.

9.1 EFICIENCIA ENERGÉTICA

Para abordar las posibilidades de observar una mayor eficiencia en el consumo a futuro resulta

relevante la experiencia internacional que ya hemos observado en las previsiones hacia el 2035,

en particular en el modelo panel estimado y desarrollado en la sección 3 de este Estudio. En

efecto, al estimar una elasticidad consumo-producto con los países de mayor ingreso, sin

controlar (incluir como regresores en la ecuación del panel) por períodos en los que se aplicaron

políticas públicas pro-eficiencia en los distintos países, estamos también midiendo en la

elasticidad consumo-producto el efecto de dichas políticas. Esto es efectivo si, como

esperamos, existe una correlación positiva entre la preocupación por la eficiencia y el desarrollo

de un país. En dicho caso, el coeficiente para ingreso estará también capturando de forma

indirecta el efecto de dichas políticas, omitidas en el modelo pero correlacionadas con ingreso.

En ese caso, parte de la explicación de por qué la elasticidad consumo-producto decrece con

el tiempo sería que en países más desarrollados, la preocupación por la eficiencia energética

es también mayor.

Page 83: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

65

Para abordar este punto en las previsiones al 2050 entonces, simplemente extendemos la

metodología utilizada en el horizonte 2015-2035, obteniendo ahora 1.000 simulaciones del

consumo anual agregado (SIC más SING) extendidas en otros 15 años. Para ello continuamos

hacia adelante en el tiempo con: 1) el ajuste de las tasas de crecimiento del producto

(recordemos que en la sección 6 mostramos la necesidad de reducir las tasas a medida que el

país logra un mayor desarrollo); y 2) el ajuste en la elasticidad consumo-producto. El resultado

de este ejercicio se muestra en la Figura 31, en la que se presentan el promedio anual de las

1.000 simulaciones de consumo agregado expresado en GWh (barras verdes en el gráfico), así

como el mismo expresado en términos per cápita, en kWh (línea gris en el gráfico). En azul,

además, se muestran las cifras efectivas entre 2005 y 20014.

Figura 31: Promedio anual de simulaciones para consumo total (GWh) y per cápita (kWh)

Fuente: Elaboración propia

La figura anterior nos muestra una demanda que aumenta cada vez menos con el tiempo, a la

forma de lo observado en los datos internaciones en la sección 3, al tiempo que muestra

también una demanda per cápita con tasas aún menores de crecimiento. En efecto, la

demanda proyectada comienza creciendo a tasas del 2,7% el 2015 y termina haciéndolo al 1,3%

al 2050, con lo que alcanza a ese año los 137.107 GWh en total y un incremento de 113% desde

el 2014. La demanda expresada en términos per cápita, en tanto, comienza en 3.633 kWh en

2014 y crece sólo un 87% al 2050, alcanzando los 6.786 kWh.

La Tabla 30 muestra el promedio de las simulaciones realizadas hacia el 2050, junto con su tasa

de crecimiento y la desviación estándar. Entre 2035 y 2050 las proyecciones aumentan otro 26%,

pero también lo hace progresivamente la desviación estándar. En efecto, en necesario tener en

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

Co

nsu

mo

per

cáp

ita,

pro

med

io (

kWh

)

Co

nsm

o T

ota

l, p

rom

edio

(G

Wh

)

Efectivo Total Proyectado Total Efectivo Per Cápita Proyectado Per Cápita

Page 84: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

66

cuenta que, dado el extenso horizonte de previsión en el que nos situamos, los intervalos de

confianza de nuestras proyecciones van abriéndose rápidamente, haciendo cada vez menos

informativo el resultado que pueda arrojarnos el modelo. Las mismas simulaciones de

crecimiento económico van divergiendo hacia escenarios radicalmente distintos, desde

algunos tremendamente pesimistas hasta otros demasiado optimistas.

Tabla 30: Proyecciones de consumo eléctrico al 2050, promedio simulaciones

Año Consumo

total, GWh

Variación Desviación estándar

simulaciones Año

Consumo total, GWh

Variación Desviación estándar

simulaciones

2035 108,918 1.82% 12,280.2 2043 124,307 1.51% 15,632.5

2036 110,865 1.79% 12,654.3 2044 126,131 1.47% 15,993.7

2037 112,832 1.77% 13,084.4 2045 127,995 1.48% 16,400.4

2038 114,838 1.78% 13,513.9 2046 129,883 1.47% 16,834.1

2039 116,798 1.71% 13,943.1 2047 131,778 1.46% 17,279.1

2040 118,750 1.67% 14,396.3 2048 133,555 1.35% 17,716.6

2041 120,635 1.59% 14,827.1 2049 135,334 1.33% 18,085.7

2042 122,460 1.51% 15,224.6 2050 137,107 1.31% 18,436.1 Fuente: Elaboración propia

9.2 AUTO ELÉCTRICO

La creciente incorporación de autos eléctricos en el mercado es el factor más importante a

considerar al proyectar el consumo de electricidad en el largo plazo. Las causas de dicho

fenómeno son tanto económicas como idiosincráticas. Por un lado, los motores eléctricos se han

vuelto crecientemente más eficientes, lo que ha redundado en una disminución en el costo

variable de su utilización. Por otro, han disminuido los precios de los automóviles que poseen

dicha tecnología. Ambos factores han hecho más atractiva, desde una perspectiva

exclusivamente económica, la utilización de autos eléctricos en desmedro de autos que utilizan

derivados del petróleo como combustible. Adicionalmente, cada vez es más notoria la

preocupación de la sociedad (especialmente las de economías desarrolladas) por el cuidado

del medio ambiente, hecho que hace más atractiva la utilización de autos eléctricos en vista

de la menor contaminación provocada por ellos en relación con la generada por autos

convencionales. En virtud de lo anterior, modelaremos la entrada de este tipo de automóviles

al mercado chileno emulando el ingreso de ellos a mercados desarrollados, especialmente

europeos.

Page 85: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

67

Utilizaremos los siguientes supuestos para el cálculo:

Supondremos que al año 2025 la proporción de autos eléctricos vendidos en Chile

respecto del total de autos será equivalente a la de Europa en la actualidad, esto es, un

2% de las ventas totales de automóviles12.

Supondremos un período de transición desde el 2015 al 2025 donde dicha tasa se

acrecentará gradualmente hasta alcanzar el citado 2% (desde un 0% en 2015).

Supondremos tres escenarios de crecimiento desde 2025 a 2050: acelerado, que

considera una tasa de venta de autos eléctricos aumentando un 0,4% por año hasta

2035 y luego 0,6% por año hasta 2050, llegando a un 15% de las ventas totales de

automóviles; medio, que contempla un aumento de 0,3% los primeros 10 años y de 0,5%

los siguientes, alcanzando un 12,5% de las ventas en 2050; y bajo, que considera una

tasa de crecimiento de 0,2% hasta 2035 y 0,3% desde ese año, que se traduce en una

tasa de 8,5% de las ventas a 2050.

Utilizaremos un rendimiento de 5,5 kilómetros por kWh, que es equivalente al promedio

de rendimiento actual de los autos eléctricos Nissan Leaf, Renault Zoe, Opel Ampera y

Tesla S.

Supondremos que el recorrido promedio de cada auto alcanza los 29.000 kilómetros por

año13.

Utilizaremos una elasticidad demanda de autos-PIB decreciente: 1,4 desde 2015 a 2024

(estimada con un modelo econométrico simple reportado al final del Anexo 5), 1 desde

2025 a 2034 y 0,8 desde 2035 a 205014.

Consideraremos una tasa de obsolescencia del 4% del parque automotriz total.

La Figura 32 expone los distintos escenarios de participación de autos eléctricos en el parque

automotriz nacional en vista de las alternativas de crecimiento en la demanda consideradas.

Como puede observarse, proyectamos que la participación de los autos eléctricos fluctuará

entre el 7% y el 11% del parque total. La Figura 33, en tanto, da cuenta del consumo eléctrico

adicional por año como consecuencia de la incorporación de los autos eléctricos. Como puede

apreciarse, el consumo eléctrico podría aumentar hasta los 7.600 GWh en el 2050 producto de

12 European Market vehicles statistics (2014). Disponible en:

http://www.theicct.org/sites/default/files/publications/EU_pocketbook_2014.pdf 13 Fuente: The Economist Pocket World in Figures 2015. 14 Para el cálculo de la elasticidad se utilizan datos anuales desde 1994 a 2014.

Page 86: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

68

la incorporación al mercado de autos eléctricos lo que corresponde a un 5,5% de la demanda

total proyectada para entonces.

Figura 32: Participación de autos eléctricos en el parque automotriz chileno

Fuente: Elaboración propia

Figura 33: Consumo eléctrico de automóviles 2014-2050, MWh

Fuente: Elaboración propia

9.3 AUTOGENERACIÓN

En lo que a autogeneración refiere, no parece probable que adquiera una gran relevancia en

Chile, a diferencia de lo que ha ido paulatinamente ocurriendo en otros países, como Alemania,

que han incluso recurrido a incentivos subsidiarios para la expansión de la misma. En efecto, si

asociamos el impulso de la autogeneración en un país, vía políticas de gobierno, con la

0%

2%

4%

6%

8%

10%

12%

20

14

20

16

20

18

20

20

20

22

20

24

20

26

20

28

20

30

20

32

20

34

20

36

20

38

20

40

20

42

20

44

20

46

20

48

20

50

Medio Bajo Acelerado

0

2000000

4000000

6000000

8000000

10000000 Medio Bajo Acelerado

Page 87: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

69

preocupación por diversificar y “limpiar” la matriz energética aumentando la generación solar

(a nivel residencial, la gran mayoría de la autogeneración de produce vía paneles

fotovoltaicos), entonces es razonable pensar que dicha preocupación en Chile ha sido cubierta

por métodos alternativos, como lo es la rápida expansión de la tecnología solar en la generación

solar a escala que hemos venido observando en el norte del país, esto tras la reducción de los

costos del panel y los incentivos adicionales proporcionados por la Ley 20/2515.

En efecto, mientras algunos países de mayor ingreso asumieron la vanguardia en la

preocupación del impacto medioambiental de la generación eléctrica hace ya tiempo (ver

Anexo 7), Chile se ha sumado tardíamente a la misma pero aprovechando: 1) la gran necesidad

de capacidad de generación adicional que enfrentan los dos grandes sistemas

interconectados, y en particular el SIC, por la creciente demanda y la mayor judicialización de

los proyectos de inversión; y 2) la caída en los costos de inversión de las ENRC, en particular de

la generación solar. Así hoy, por ejemplo, tan sólo un 1,5% de la actual matriz energética en el

SIC y SING es solar, pero se encuentra aumentando aceleradamente con los nuevos proyectos

que se están materializando. En efecto, un importante 38% de la capacidad de generación que

hoy se encuentra en construcción es de tecnología solar (CNE). De esta forma, no parece

probable que en un escenario como el actual, el Estado chileno opte, por ejemplo, por subsidiar

la compra de paneles solares, en circunstancias en que los inversionistas lo están haciendo a

gran escala sin la necesidad de subsidio.

Ahora bien, el aprovechamiento de las economías de escala del que gozan las centrales, a

diferencia de los autogeneradores, hace que esta alternativa tampoco sea rentable de forma

privada, a pesar de la caída en los precios del panel fotovoltaico. En efecto, la forma en que la

autogeneración sería privadamente rentable es si los menores rendimientos a escala que ella

posee, que elevan los costos de la inversión, logran ser compensados por el ahorro en el costo

de transmisión y distribución que implica el no retirar la electricidad del sistema sino

autogenerarla. Ahora bien, siendo estimados los costos de transmisión y distribución en 0,04 US$

por kWh, así como los mayores costos de la autogeneración en 0,11 US$ por kWh, el

requerimiento anterior no es satisfecho.

Por último, la brecha existente en el precio del panel a residenciales y utilities se ha mantenido

estable en los últimos años aun habiendo disminuido considerablemente los mismos. No parece

15 Ley de Fomento de las ERNC, Ley 20.698, que obliga a las empresas que retiran a contratar hacia el año 2025 un

20% de electricidad proveniente de estas fuentes

Page 88: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

70

probable que, aun cuando los precios sigan cayendo, dicha brecha sea a futuro anulada,

revirtiendo la situación antes descrita.

Los detalles de los cálculos aquí referidos pueden revisarse en el Anexo 7 del Estudio.

Page 89: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

71

10. SÍNTESIS Y CONCLUSIONES

El presente estudio ha presentado una previsión de la demanda de energía eléctrica en Chile

en sus dos grandes sistemas: el Interconectado Central y el Interconectado del Norte Grande.

Dichas previsiones se realizaron en un horizonte de 20 años al futuro (hasta el 2035), con

frecuencia mensual y distinguiendo por tipo de cliente (libre o regulado), así como por región.

La metodología empleada para la proyección ha sido una de tipo econométrico: mediante un

Modelo de Corrección de Errores, se realizó una proyección base hacia el futuro, la que fue

luego ajustada de acuerdo a los resultados de un modelo panel estimado de forma paralela.

Este último busca observar las sendas de crecimiento del consumo a nivel internacional, en

distintos niveles de desarrollo económico, para luego aplicar a las proyecciones locales los

resultados obtenidos. En particular, se estima en dicho modelo que la elasticidad consumo-

producto es una función decreciente del ingreso per cápita nacional, de modo que a medida

que el país crece, es de esperar que la demanda eléctrica lo haga en una menor medida. Los

cambios estimados en la elasticidad son aplicados luego a modo de ajuste al modelo local.

Como resultado de dicha metodología, el Estudio concluye que el consumo eléctrico del SIC

podría aumentar de 49.288 GWh en el año 2015 a 81.863 GWh al año en 2035 (un incremento

de 66%) y en el SING de 16.617 GWh al año en 2015 a 27.056 GWh al año en 2035 (+63%). En el

primer caso, el mayor incremento provendría del consumo regulado, el que pasaría de

representar un 64% del consumo total del sistema en 2015 a un 74% en 2035. En el SING, en

cambio, el consumo seguiría siendo preponderantemente libre, aunque su participación se

reduciría ligeramente de 90% a un 86% en igual período.

En suma a lo anterior, el Estudio presenta una extensión de las previsiones con frecuencia anual

hasta el año 2050. Para ello, se aborda la creciente incertidumbre en la previsión mediante el

análisis de escenarios, en los que se revisa la posibilidad de que ocurran cambios de

envergadura en la demanda. En particular, se revisan los casos de una mayor eficiencia

energética en el consumo, un incremento sustantivo en la penetración del auto eléctrico y, por

último, de una masificación de la autogeneración. Al respecto, se concluye que la eficiencia,

entre otros factores, podría reducir el crecimiento anual del consumo desde el 2,7% en 2015

hasta apenas un 1,3% hacia el 2050. Adicionalmente, se estima que si el auto eléctrico alcanza

hacia el 2050 una penetración del 11% en el parque automotriz, el consumo eléctrico total

podría aumentar en 7.600 GWh hacia el 2050 (un 5,5%). Finalmente, las previsiones del Estudio

suponen un escenario en que la autogeneración no se despliega de manera significativa, esto

Page 90: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

72

por cuanto las condiciones que se observan en la experiencia comparada no concurren en el

caso de Chile.

Page 91: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

73

REFERENCIAS

Avdaković, S., E. Becirovic, N. Hasanspahic, M., Music, A. Merzic, A., Tuhcic & J. Karadza, 2015,

Long Term Forecasting of Energy, Electricity and Active Power Demand –Bosnia and

Herzegovina case study, Balkan Journey of Electrical and Computer Engineering, 3 (1).

Bhattacharyya, S. C. & G.R. Timilsina, 2009, Energy Demand Models for Policy Formulation, A

Comparative Study of Energy Demand Models, Banco Mundial.

Brown, M. A, M. D. Levine, W. Short and J. G. Koomey, 2001, Scenarios for a clean energy future,

Energy Policy, 29, pp. 1179-96.

CNE, 2014, Análisis de Consumo Eléctrico en el Corto, Mediano y Largo Plazo, Santiago.

COCHILCO, 2015, Inversión en la Minería Chilena, Cartera de Proyectos 2015-2024, Comisión

Chilena del Cobre, Santiago.

EIA, 2009, The National Energy Modelling System: An Overview 2009, Energy Information

Administration, Washington D.C.

Fletcher, K., & M. Marshall, 1995, Forecasting regional industrial energy demand: The ENUSIM end-

use model, Regional Studies, 29(8), pp. 801-11.

Hainoun, A., M. K. Seif-Eldin & S. Almoustafa, 2006, Analysis of the Syrian long-term energy and

electricity demand projection using the end-use methodology, Energy Policy, 34, pp.

1958-70.

Hamilton, J, 1994, Time Series Analysis, Princeton.

IAEA, 2006, Model for Analysis of Energy Demand, User’s Manual, International Atomic Energy

Agency, Vienna.

Jefferson, M., 2000, Long-term energy scenarios: the approach of the World Energy Council, Int J.

of Global Energy Issues, 13 (1-3), pp. 277-84.

Kichonge, B., J.R. Geoffrey, I.S.N. Mkilaha & S. Hameer, 2014, Modelling of Future Energy Demand

for Tanzania, Journal of Energy Technologies and Policy, 4 (7).

Page 92: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

74

MINMINAS, 2015, Proyección de Demanda de Energía Eléctrica en Colombia: Revisión marzo de

2015, Ministerio de Minas y Energía, Colombia.

OEF, 2006, Research on output growth rates and Carbon Dioxide emissions of the industrial sectors

of the EU-ETS, Oxford Economic Forecasting, Oxford.

Ozlap, N. & B. Hyman, 2006, Energy end-use model of paper manufacturing in the US, Applied

Thermal Engineering, 26 (5-6), pp. 540-48. Price et al (2001)

Price, L., D. Phylipsen, & E. Worrel, 2001, Energy use and carbon dioxide emissions in the steel

sector in key developing countries, LBNL – 46987, Lawrence Berkeley National Laboratory,

California.

Rabiner, 1989, A tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition, Proceeding of the IEEE, 77(2).

Transpower, 2011, Long-term Demand Forecast, Transpower, New Zealand.

Wooldridge, J, 2010, Econometric Analysis of Cross Section and Panel Data, Massachussets

Institute of Technology, 2nd ed.

Page 93: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

75

ANEXO 1: ESTUDIOS DE PREVISIÓN DE DEMANDA

Los estudios analizados a continuación constituyen aquellos solicitados por el propio CDEC SIC

en las Bases del proceso de licitación (Anexo 12.4), así como otros escogidos por el consultor

debido al tamaño y desarrollo del mercado eléctrico donde se utiliza y la relevancia de la

institución de respaldo.

NUEVA ZELANDA: LONG TERM DEMAND FORECAST, 2011

Este estudio fue realizado el año 2011 por Transpower, compañía estatal neozelandesa

encargada de la transmisión de energía eléctrica en dicho país. Su objetivo era proyectar

demanda de punta a nivel nacional, por isla y regional con frecuencia estacional hasta el año

2030. Ello, con el objeto de planificar la expansión de redes de transmisión considerando, no

sólo crecimiento anual, sino también su ciclo en las distintas temporadas del año.

Aunque el foco del estudio está, como antes se señaló, en la demanda de punta, el mismo

elabora también una proyección anual de consumo en el mismo horizonte, el que utiliza en

muchos casos como insumo en la proyección de demanda de punta. Para ello recurre a una

proyección que se basa en los resultados de cuatro modelos distintos que son ponderados

dando origen a un único resultado final que los autores denominan “modelo ensamblado”. Los

modelos que utilizan los autores son:

1) Un modelo econométrico en logaritmos con población y PIB (Mínimos Cuadrados

Ordinarios en sus valores coetáneos, sin rezagos).

2) Un modelo de tendencia determinística (tasa de crecimiento constante).

3) Criterio experto de Transpower.

4) Modelo ajustado de proyección utilizado por el Ministerio de Desarrollo Económico.

En el modelo econométrico se utilizan proyecciones estocásticas de población y PIB, ambas

correlacionadas positivamente (no habrían episodios de bajo crecimiento económico y

demográfico a la vez)16. Luego, los resultados incluyen una trayectoria de consumo de carácter

estocástico –esto es, una variable aleatoria con su distribución de probabilidades–, la que es

16 Para ello se utiliza un modelo del tipo ARMA(2,1)𝑃𝐼𝐵𝑡 = 𝛼 + 𝛽𝑃𝐼𝐵𝑡−1 + 𝛾𝑃𝐼𝐵𝑡−2 + 𝛿𝜖𝑡−1 + 𝜖𝑡 , donde 𝜖 es un shock

persistente en dos períodos.

Page 94: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

76

simulada N veces y finalmente presentada en su valor esperado (media de la distribución),

percentil 90 (escenario optimista) y una combinación de ambos, denominada “prudente”

(percentil 90 para los primeros 5 años y de allí en adelante un crecimiento a igual tasa que el

valor esperado). Este último escenario se justifica, según indican los mismos autores, por la

necesidad de no subestimar las decisiones de inversión que deben tomarse en el presente y que

son luego irrevocables (de allí que se use percentil 90 para los primeros 5 años), necesidad que

hacia el largo plazo se diluye debido a la posibilidad de reevaluar el crecimiento efectivo de la

demanda y las obras requeridas. La Figura A1.1 ejemplifica esta presentación de resultados para

una serie proyectada desde el 2012:

Figura A1.1: Metodología de previsión, Nueva Zelanda

Fuente: Elaboración propia

En suma, la siguiente figura resume en términos generales la metodología expuesta, donde

𝑤1, 𝑤2, 𝑤3 y 𝑤4 son los ponderadores aplicados sobre cada uno de los modelos ensamblados.

90

95

100

105

110

115

120

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Real Esperado P90 Prudente

Page 95: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

77

Figura A1.2: Metodología de previsión, Nueva Zelanda

Fuente: Elaboración propia

Ahora bien, más allá de las previsiones de consumo hasta ahora caracterizadas, cabe resaltar

de la metodología aplicada a demanda de punta lo siguiente:

1) Las proyecciones base son luego evaluadas en tres escenarios tecnológicos distintos.

Estos son: 1) alto uso de bombas de calor (acondicionamiento del aire) a nivel

residencial; 2) expansión del auto eléctrico; y 3) desmantelamiento anticipado de Tiwai

(horno de fundición de aluminio que es por lejos el mayor demandante de punta en

Nueva Zelanda).

2) A las proyecciones base se introducen posteriormente shocks de grandes clientes en

distintas regiones del país, de modo de evaluar los requerimientos de la línea de

transmisión en tales casos. Los shocks incluyen nueva demanda, reasignación entre

regiones, entre otras cosas. En el corto plazo se utiliza la información disponible respecto

de nuevas obras, asociándolas a demandas aleatorias con cierta distribución (p.ej. para

Tiwai se utiliza una distribución uniforme con cota inferior en los 620 MW y percentil 90 en

las proyecciones de la compañía). En el largo plazo, en cambio, se simulan shocks de

distinto tamaño y frecuencia, como 3 nuevas cargas pequeñas al año (de 5MW cada

𝑤1

𝑤2 𝑤3

𝑤4

Modelo

econométrico

Modelo

tendencia

Criterio Experto Modelo MDE,

Energy Outlook

PIB y población

aleatorios

Valor esperado Percentil 90 Prudente

Modelo

ensamblado

N simulaciones

Page 96: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

78

una) y un 25% de probabilidad de una carga grande, cuyo tamaño se distribuye log-

normal con media de 50MW.

COLOMBIA: PROYECCIÓN DE DEMANDA DE ENERGÍA ELÉCTRICA Y POTENCIA MÁXIMA, 2015

Este estudio del 2015 fue encomendado por el Ministerio de Minas y Energía de Colombia,

Unidad de Planeación Minero Energética, para actualizar las proyecciones mensuales de

demanda eléctrica y potencia máxima realizadas en noviembre de 2014 (actualizadas cada

cuatro meses) con un horizonte de largo plazo, hasta el 2029. Dicha actualización se concentra

mayoritariamente en la revisión de la coyuntura macroeconómica y la consecuente evaluación

de las proyecciones de las variables utilizadas para la proyección, como PIB. Por lo mismo, parte

importante del estudio está orientado a observar el comportamiento reciente del crecimiento

económico, inflación, desempleo, tipo de cambio entre otras cosas.

En cuanto a la metodología del estudio, ésta es la misma que en sus actualizaciones anteriores,

y consiste, como en el caso de Nueva Zelanda, en un modelo ensamblado que pondera los

resultados anuales de tres modelos distintos. Estos son:

1) Un modelo autorregresivo endógeno, en el que se utilizan rezagos del mismo consumo

(ponderado en 20%)

2) Un modelo autorregresivo exógeno, que incluye como regresores la población, el PIB y

la temperatura (ponderado en 60%)

3) Un modelo de corrección de errores, con variables como población y temperatura

(ponderado en 20%)

La ponderación de los modelos para su ensamblaje se realizó dando mayor peso a los que

presentan mayores bondades en criterios de información, como Akaike y Schwartz. Además, el

modelo final se evalúa en un escenario alto, uno medio y uno bajo.

Estas proyecciones son realizadas para demanda eléctrica excluyendo a grandes

consumidores, los que se tratan separadamente, considerando un análisis caso a caso y

revisiones de las solicitudes pendientes de conexión al sistema de transmisión. Su demanda

estimada es luego añadida al total proyectado por medio de los modelos econométricos.

La mensualización de las proyecciones se lleva a cabo mediante el método de Denton, que

estima por Mínimos Cuadrados Ordinarios una relación (correlación parcial) entre la variable de

Page 97: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

79

frecuencia anual y otra de frecuencia mensual. Dicha relación es luego utilizada para

desagregar la primera en frecuencia mensual, incorporando a ésta una variación estacional.

Por último, un modelo MAED (Model for Analysis of Energy Demand) es ajustado paralelamente

para realizar evaluaciones generales del mercado eléctrico hacia el 2050 considerando 5

escenarios: 1) escenario base, con crecimiento del PIB de 4,6% al 2030 y 3,5% en adelante; 2)

Escenario tecnológico 1, caracterizado por mayor consumo de energías limpias (entre ellas

electricidad) y eficiencia tecnológica; 3) Escenario tecnológico 3, de alto crecimiento en la

ERNC (Energías Renovables No Convencionales) y penetración del auto eléctrico; 4) Escenario

Mundo Eléctrico, en que el energético más usado es la electricidad, ya sea en transporte,

calefacción, industria, etc.; y 5) Escenario Eficiencia Energética, en el que se cumplen metas de

eficiencia de 30% de ahorro al 2050.

El modelo econométrico final empleado para la proyección al 2030 tiene buen ajuste a los datos,

y ha logrado predecir con cierta precisión el consumo de clientes regulados en sus versiones

anteriores (ver figura de la página 53 en el estudio). En consumo libre éste ha tenido resultados

algo peores en su actualización de julio 2014, probablemente producto de un quiebre estructural

no predicho en la tendencia de crecimiento, pero nuevamente precisos en su actualización de

noviembre 2014, una vez incorporado a la historia de datos este quiebre.

La Figura A1.3 resume la metodología empleada por el estudio en mención. En el cuadro superior

se sintetiza el modelo econométrico utilizado para las proyecciones hasta el 2030, mientras en el

inferior, se sintetiza el modelo MAED empleado en las proyecciones al 2050.

Page 98: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

80

Figura A1.3: Metodología de previsión, Colombia

Fuente: Elaboración propia

PR

OY

EC

CIO

NES 2

01

5-2

030

REV

ISIO

NES A

L 20

50

tod

o d

e

De

nto

n

Alto anual Medio anual Bajo anual

Modelo

ensamblado

Alto mensual Medio mensual Bajo mensual

𝑤1 𝑤2 𝑤3

Modelo

autorregresivo

endógeno

Modelo

autorregresivo

exógeno

Modelo de

Corrección de

Errores

Tecnología

industrias Crecimiento

población

habitantes

por vivienda

Consumo

energético

industrias

Consumo

energético

residencial

Consumo

energético

transporte

Consumo

energético

servicios

Equipamiento

hogares DATOS

SUPUESTOS

Cambios

demográficos

Crecimiento

económico y

de consumo

Eficiencia

energética

Cambios

tecnológicos

Política

energética

Emisiones de

carbono

MAED

calibrado

Escenario base

Escenario tecnológico 1

Escenario tecnológico 2

Escenario mundo eléctrico

Escenario eficiencia energética

Consumo de

combustibles

y

electricidad

Page 99: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

81

EE.UU: NATIONAL ENERGY MODELLING SYSTEM, NEMS

La Administración de Información de Energía (Energy Information Administration, EIA) de Estados

Unidos ha elaborado este modelo, que actualiza anualmente en su Annual Energy Outlook, para

evaluar los impactos energéticos económicos, medioambientales y de seguridad que tienen

distintas políticas alternativas de gobierno, así como diferentes supuestos respecto del mercado

eléctrico. El modelo es computacional de tipo híbrido, que combina proyecciones de orden

econométrico con otras del tipo “uso-final”, como el MAED antes descrito. De esta forma reúne

las bondades de ambas estructuras: con su parte econométrica consigue pronósticos confiables

en algunas variables, así como validación para algunos de sus resultados, mientras que su parte

de tipo “uso-final” agrega alta flexibilidad para la evaluación de cambios de tipo tecnológico,

político, demográfico, de comportamiento de los usuarios, etc., que no serían capturados por

un modelo exclusivamente econométrico.

El NEMS arroja proyecciones anuales en un horizonte aproximado de 25 años al futuro para

producción, importaciones, conversión de energía (a, por ejemplo, electricidad), consumo y

precios. Para ello somete el modelo a restricciones de tipo macroeconómicas y financieras, así

como a caracterizaciones de los mercados internacionales, disponibilidad de recursos y costos,

comportamiento de los usuarios y decisiones tecnológicas, rendimiento de distintas tecnologías

y demografía17 .

El modelo busca capturar dinámicamente las interacciones entre oferta y demanda en los

distintos mercados energéticos (petróleo, gas, electricidad, etc.), de modo de simular un

equilibrio simultáneo en los mercados desde el cual obtener cantidades y precios para los

distintos combustibles, así como para la electricidad. Para esto, desagrega la demanda en

cuatro grandes sectores (residencial, comercial, industrial y transporte) y la oferta también en

cuatro (oferta de petróleo y gas, transmisión y distribución de gas natural, carbón y combustibles

renovables). A esto suma dos sectores de “conversión de la energía”, que son electricidad y

conversión del petróleo. Cada sector de oferta, demanda y conversión constituye un “módulo”

del modelo.

Guiando las generalidades del modelo, un módulo de Actividad Macroeconómica y otro de

Energía Internacional proyectan los drivers principales de los módulos de oferta, demanda y

17 EIA (2009). The National Energy Modeling Sys tem: An Over view 2009.

Page 100: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

82

conversión. El primero aporta proyecciones de variables económicas, como crecimiento y

empleo, tomando como dados los precios de los combustibles. El segundo, en cambio, toma el

crecimiento como dado y en cambio estima las reacciones de los mercados internacionales a

la oferta y demanda energética nacional, arrojando como resultado el nuevo equilibrio de

mercado, esto es, cantidades y precio, junto con las importaciones a Estados Unidos.

Finalmente, un módulo “integrador” extrae resultados de un módulo (por ejemplo, el precio del

petróleo en Energía Internacional) y los introduce a modo de insumo en otro (por ejemplo,

Producción de Petróleo en la oferta nacional), consiguiendo así, luego de algunas iteraciones,

un equilibrio simultáneo en todos los mercados. El equilibrio es simulado de forma anual para

todo el horizonte de proyección, a nivel nacional y regional, y estima además las emisiones de

carbono resultantes del mismo.

La Figura A1.4 ilustra la relación entre los módulos del modelo NEMS.

Figura A1.4: Módulos del modelo NEMS

Fuente: Elaboración propia en base a EIA (2009)

Oferta de

petróleo y gas

Transmisión y

distribución de

gas

Mercado del

carbón

Combustibles

renovables

Demanda

residencial

Demanda

comercial

Demanda de

transportes

Demanda

industrial

Actividad

Macroeconómica

Energía

Internacional

Mercado eléctrico Mercado del

petróleo

OFERTA DEMANDA

CONVERSIÓN

Módulo Integrador

Page 101: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

83

REINO UNIDO: DTI ENERGY MODEL

El antiguo “Departamento de Comercio e Industria” del Reino Unido (Department of Trade and

Industry, DTI), elaboró un modelo econométrico de equilibrio parcial para sus proyecciones

energéticas de combustibles y electricidad (modelo que pasó posteriormente a manos del

Departamento de Energía y Cambio Climático). El modelo estima tanto oferta como demanda

a través de un Modelo de Corrección de Errores basado en precios y actividad económica. Las

estimaciones de demanda se realizan sobre 13 usuarios finales, los que son agregados a 4

sectores (residencial, servicios, transporte e industria).

En cuanto a la oferta eléctrica, el modelo toma la capacidad dada en el corto plazo, de modo

que la curva queda determinada por los precios de los combustibles, que alteran los costos

variables de cada tecnología de generación. En el largo plazo, en cambio, se libera la

capacidad instalada, proyectándose también ésta en base a costos de construcción y

operación de las plantas, así como algunas restricciones exógenas (tales como lograr un cierto

objetivo en emisiones de carbono).

Los insumos del modelo son supuestos sobre precios, actividad económica y demografía.

La Figura A1.5 sintetiza la metodología para el caso particular del mercado eléctrico.

Figura A1.5: Modelo de proyección de electricidad, Reino Unido

Fuente: Elaboración propia

SUPUESTOS EQUILIBRIO DE MERCADO DEMANDA

Modelo Corrección

de Errores

OFERTA

1) Capacidad de

generación

2) Ordenamiento

por mérito

Actividad

económica

Precios

Demografía

Pre

cio

MWh

Page 102: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

84

CHILE: ESTUDIO CNE 2014

El estudio encomendado por la Comisión Nacional de energía el año 2014, realizado por

Mercados Energéticos Consultores, propone un modelo econométrico para proyectar

demanda libre y regulada en los sistemas SIC y SING en lo que el mismo trabajo denomina

“mediano plazo”, esto es desde el 2014 hasta el 2028. Adicionalmente, el estudio estima un cierto

porcentaje de ahorro energético esperado para el largo plazo, esto en relación al “consumo

tendencial”.

Proyección de Mediano Plazo (2014-2028)

Se estiman 19 modelos distintos en logaritmos, 17 de frecuencia anual, uno de frecuencia

trimestral y uno de frecuencia mensual. Estos son modelos de tipo AR(1) (autorregresivo con un

rezago), con uno o varios regresores adicionales, los que puede ser PIB agregado de las regiones

del sistema, producto minero o manufacturero, población, precio de la electricidad o precio del

cobre. El modelo más general que puede ser obtenido de esta estructura es el siguiente:

𝑙𝑛(𝐺𝐸𝑁𝑡) = 𝛼 + 𝛽 𝑙𝑛(𝐺𝐸𝑁𝑡−1) + ∑ 𝛾𝑖𝑙𝑛(𝑋𝑖,𝑡)

6

𝑖=1

+ 𝜇𝑡

Donde 𝑙𝑛(𝐺𝐸𝑁𝑡) es el logaritmo natural del total de generación en el sistema, ya sea SIC o SING,

en el período 𝑡, 𝑙𝑛(𝐺𝐸𝑁𝑡−1) es el rezago de la misma variable, esto es, el componente AR(1) de la

ecuación, 𝑙𝑛 (𝑋𝑖,𝑡) es el regresor 𝑖 dentro de los 6 totales, también expresado en logaritmo

natural, y finalmente 𝜇𝑡 es el residuo de la regresión.

Dentro de los 19 modelos estimados, se escogen finalmente los que cumplen con las siguientes

características: i) presentan buen ajuste, medido por el 𝑅2 − 𝑎𝑗𝑢𝑠𝑡𝑎𝑑𝑜 de la regresión (superior a

0,97); ii) presentan bajos criterios de información (Akaike y Schwartz por bajo -4,9 para el SIC y -

4,0 para el SING); iii) presentan coherencia en los signos de los coeficientes; y por último iv) no

incluyen ningún precio entre sus regresores, ni del cobre ni de la electricidad (se excluyen debido

al alto error de predicción que tienen las variables de precio en general).

Como resultado de dicha metodología, se obtuvieron tres modelos anuales seleccionados en el

SIC y uno en el SING, así como uno mensual y uno trimestral en cada sistema. Los modelos

seleccionados, con los coeficientes estimados y el grado de significancia estadística de las

variables, se muestran a continuación en la Tabla A1.1 para el SIC y en la A1.2 para el SING.

Page 103: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

85

Tabla A1.1: Modelos seleccionados, SIC

Anual Trimestral mensual

Modelos MINPOB MINMAN MINMANPOB TRIM MEN

constante -16.464** -2.594*** -11.584 -1.24*** 0.19***

ln(PIB) - - - 0.19*** 0.11***

ln(población) 1.11** - 0.65 - -

ln(Producto Manuf) - 0.24*** 0.19** - -

ln(Producto Minero) 0.14** 0.16** 0.16** - -

AR(1) 0.66*** 0.74*** 0.63*** 0.83*** 0.90***

R2 Adjusted 0.997 0.998 0.998 0.996 0.997

Akaike -5.162 -5.304 -5.297 -4.044 -4.712

Scwharz -4.964 -5.107 -5.050 -3.900 -4.546

*: significativa al 1%. , **: significativa al 5% , ***: significativa al 10%

Fuente: Elaboración propia

Tabla A1.2: Modelos seleccionados, SING

ANUAL Trimestral Mensual

Modelos MINPOB MINPOB MENS

constante -43.23*** 1.24** 0.15**

TENDENCIA - 0.001* 0.001***

ln(población) 3.34*** - -

ln(Producto Minero) 0.42*** - -

AR(1) 0.09 0.84*** 0.80***

R2 Adjusted 0.997 0.991 0.986

Akaike -4.403 -4.897 -4.492

Scwharz -4.204 -4.689 -4.249

*: significativa al 1%. , **: significativa al 5% , ***: significativa al 10%

Fuente: Elaboración propia

1) Proyecciones base

Los modelos seleccionados, arriba resumidos, dieron paso a proyecciones de consumo

en base a las cuales se crean tres escenarios para cada sistema: uno alto, uno medio y

uno bajo. En cada caso se toma uno de los modelos seleccionados (ya sea anual,

trimestral o mensual) o un promedio de dos similares.

La Figura A1.6 resume la metodología de proyección de mediano plazo

Page 104: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

86

Figura A1.6: Ejemplo metodología Estudio CNE, proyección mediano plazo (2014-2028)

Fuente: Elaboración propia

Ahorro energético al 2029

La metodología propuesta para proyectar demanda eléctrica en el largo plazo puede

sintetizarse como sigue:

1) Elaboración de escenarios de ahorro energético

En su segundo tomo, el estudio de Mercados Energéticos Consultores reconoce la

importancia del desarrollo económico en la demanda energética. Entre otras cosas,

menciona la posibilidad de una denominada “desmaterialización de las economías”,

proceso en el cual el desarrollo se “desvincularía” del consumo eléctrico. Esto ocurriría,

según indican los autores, por un cambio progresivo hacia tecnologías más eficientes,

por un cambio de comportamiento en los usuarios, un aumento en las regulaciones que

fuerzan estos cambios, así como también por probables giros en la sectorización de la

economía, la que pasaría de concentrarse en industrias altamente demandantes de

energía a otros sectores menos intensivos, tales como servicios. Adicionalmente, las

economías pasarían a importar de países con leyes medioambientales más laxas.

Para hacerse cargo de esto el estudio incorpora al modelo escenarios de posibles niveles

de ahorro de electricidad. Para busca en experiencias internacionales, en particular de

Modelo

11 anual

anual

Modelo

4 anual

Modelo

14 anual

anual

Modelo

13 anual

anual Modelo

9 anual

anual

Modelo

6 anual

Modelo

3 anual

Modelo

1 anual

Modelo

2 anual

Modelo

5 anual

Modelo

7 anual

Modelo

8 anual

anual

Modelo

10 anual

anual Modelo

12 anual

anual

Modelo

15 anual

anual Modelo

16 anual

anual

Modelo

17 anual

anual

Modelo

trimestral

anual

Modelo

mensual

Proyección base

Alto (Modelo 2 anual)

Medio (Promedio anual 10 y

mensual)

Bajo (Promedio anual 16 y

trimestral)

Page 105: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

87

México, Brasil, Holanda y Estados Unidos, magnitudes posibles de dicho ahorro para

proyectar a futuro. En base a estas experiencias se crean 4 escenarios hacia el 2029, a

los que se suman un escenario denominado “constante”, en que el consumo eléctrico

disminuye siempre a la misma tasa, igual a la observada, y uno “Agenda”, en que se

hacen efectivos los objetivos de la agenda energética del gobierno de la presidenta

Michelle Bachelet, según la cual un ahorro de 12% sería logrado al año 2020. Tomando

luego una probabilidad de ocurrencia de cada escenario estiman el ahorro esperado

al 2029. La Figura A1.7 ilustra el procedimiento y los resultados.

Figura A1.7: Estimación de ahorro esperado al 2029

Fuente: Elaboración propia

Finalmente, el estudio asume que a partir del año 2014 el nivel de ahorro aumenta

linealmente, hasta alcanzar el 22,9% el 2029. La Tabla A1.3 muestra las tasas de ahorro.

Tabla A1.3: Porcentaje estimado de ahorro anual

2014 2015 2016 2017 2018 2019 2020 2021

12.5% 13.2% 13.9% 14.6% 15.3% 16.0% 16.7% 17.3%

2022 2023 2024 2025 2026 2027 2028 2029

18.0% 18.7% 19.4% 20.1% 20.8% 21.5% 22.2% 22.9% Fuente: Elaboración propia

Consumo

proyectado

2029

Ahorro

esperado

2029

(22,9%)

Probabilidad

de ocurrencia

5%

50%

8%

12%

15%

10%

11,9% (Constante)

14% (Agenda)

% de

ahorro al

2029

21% (Emergente bajo)

34,7% (Desarrollado bajo)

35,2% (Emergente alto)

41,7% (Desarrollado alto)

Page 106: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

88

2) Proyección de consumo de largo plazo

Para proyectar consumo eléctrico al 2044 se toma como base la proyección realizada

para el año 2028, según la metodología de mediano plazo, y se hace esta crecer a una

tasa constante anual. Para dicha tasa: 1) primero se estiman “ventas tendenciales” al

2025 de electricidad en caso de que ninguna política de ahorro energético sea

implementada (Tabla 60 en el estudio); 2) a estas cifras se descuentan los porcentajes

de ahorro esperado en cada año; 3) a las “ventas tendenciales” se suman estimaciones

de “ventas extra-tendenciales”, que corresponden al consumo de grandes clientes

proyectado en base a datos de Cochilco, así como a proyecciones entregadas por las

mismas empresas ; y 4) finalmente, sobre la suma de las ventas tendenciales y extra-

tendenciales, considerando ahorro energético, se calcula la tasa de crecimiento anual

promedio (geométrico) de los años 2022-2025, la que es utilizada para hacer crecer la

proyección 2028 hasta el 2044.

Page 107: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

89

ANEXO 2: EFECTOS FIJOS Y EFECTOS ALEATORIOS

Los modelos de Efectos Fijos y Efectos Aleatorios son atingentes en aquellos casos en que

queremos modelar el comportamiento de un agente que responde, no sólo a algunas variables

que se pueden medir, como ingreso, edad, país, etc., sino también a características no

observables, o al menos no medibles, que son fundamentales para explicar las diferencias entre

individuos. A modo de ejemplo, podemos decir que las preferencias de los consumidores por

una marca de yogur dependerán del precio del mismo, de su ingreso, de algunos observables

como si tiene o no fragmentos de fruta, entre otros, pero dependerá también de preferencias

personales que harán a un individuo valorar más un yogur que otro, aunque ambos tengan las

mismas características.

Llamamos “efecto no-observable” al factor anterior, y para lidiar con él es frecuente utilizar uno

de dos enfoques:

1) Efectos Fijos: asume que este efecto es constante a través del tiempo para cada

individuo, pero distinto para todos ellos. Modela dicho efecto como un parámetro

adicional en el modelo, de la forma:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝑐𝑖 + 𝑢𝑖𝑡 (𝐴2.1)

En la ecuación, la variable a explicar es 𝑦𝑖𝑡, que es medida para distinto individuos 𝑖 =

1, … , 𝑁 en distintos períodos 𝑡 = 1, … . 𝑇 . 𝑋𝑖𝑡 es la matriz de datos que mide aquellas

características observables, 𝛼 y 𝛽 son los parámetros del modelo comunes a todas las

observaciones, 𝑐𝑖 es el efecto fijo (que depende sólo de 𝑖 porque es constante en el

tiempo) y 𝑢𝑖𝑡 es el residuo del modelo.

Dado que a menudo la muestra incluye una gran cantidad 𝑁 de individuos, la

estimación de (𝐴2.1) incluyendo variables binarias por individuo para estimar 𝑐𝑖 puede

ser altamente ineficiente. Por lo mismo, es común recurrir al “Estimador de Efectos Fijos”,

en el que se reescribe el modelo de la siguiente forma:

𝑦𝑖𝑡 − �̅�𝑖 = 𝛽(𝑋𝑖𝑡 − 𝑋�̅�) + 𝜖𝑖𝑡 (𝐴2.2)

Donde 𝑧�̅� es el promedio de las observaciones de 𝑧𝑖𝑡 en el tiempo (un promedio por

individuo), y 𝜖𝑖𝑡 es el nuevo residuo, que es igual a 𝑢𝑖𝑡 − �̅�𝑖𝑡 . Este modelo se logra

simplemente promediando (𝐴2.1) en el tiempo y sustrayendo el resultado sobre la misma

ecuación. Ya que la constante 𝛼 y el efecto 𝑐𝑖 son constantes en el tiempo, su promedio

es igual a sí mismos, por lo que al restar desaparecen del modelo.

Page 108: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

90

Con este estimador es posible entonces obtener un �̂� consistente incluso cuando la

cantidad de períodos de la muestra es pequeña. Para estimar los parámetros faltantes,

𝛼 y 𝑐𝑖, se utilizan las diferencias entre los datos reales y los predichos, es decir, 𝑦𝑖𝑡 − �̂�𝑋𝑖𝑡 =

𝛼 + 𝑐𝑖 + 𝑢𝑖𝑡 , esto considerando que 𝐸(𝑢𝑖𝑡) = 0 y 𝐸(𝑐𝑖) = 0 . En efecto, si tomamos el

promedio como un buen estimador de la media, entonces podemos obtener �̂� =

1

𝑁𝑇∑ ∑ (𝑦𝑖𝑡 − �̂�𝑋𝑖𝑡)𝑇

𝑡=1𝑁𝑖=1 y 𝑐�̂� =

1

𝑇∑ (𝑦𝑖𝑡 − �̂�𝑋𝑖𝑡)𝑇

𝑡=1 − �̂�. Para más información al respecto,

revisar Wooldridge (2010).

2) Efectos Aleatorios: En este segundo modelo el efecto no observable se considera una

variable aleatoria con una distribución de probabilidad dada. En ese caso no

caracterizamos el efecto no observable como un parámetro, sino como un residuo del

modelo, a la forma:

𝑦𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖𝑡 (𝐴2.3)

Donde 𝜇𝑖𝑡 = 𝑢𝑖𝑡 + 𝑒𝑖 es ahora el residuo, siendo 𝑒𝑖 el efecto aleatorio.

Estos residuos ya no serán independientes (no correlacionados), como en el clásico

modelo de Mínimos Cuadrados Ordinarios, pues el componente 𝑒𝑖 hará correlacionar

todos los residuos de observaciones correspondientes a un mismo individuo. Por ello, el

estimador eficiente será el de Mínimos Cuadrados Generalizados, que adopta la forma

corregida �̂� = (𝑋′Ω−1𝑋)−1𝑋′Ω−1𝑌, donde Ω es la matriz de varianza y covarianza de los

residuos correlacionados 𝜇𝑖𝑡. En la práctica, dicha matriz se estima en una primera etapa,

para luego proceder a estimar 𝛽 . Para ello es frecuente utilizar estimadores de la

varianza de 𝑢𝑖𝑡 y de 𝑒𝑖 obtenidos mediante el Estimador de Efectos Fijos o algún otro,

para luego construir con ellos la matriz Ω.

El estimador anterior será eficiente pero no consistente, sin embargo, si el efecto no

observado, 𝑒𝑖, está correlacionado con los regresores 𝑋𝑖𝑡. En ese caso la estimación de

𝛽 incluirá un sesgo de variable omitida, pues no sólo capturará el efecto de 𝑋𝑖𝑡 sobre 𝑦𝑖𝑡,

sino también parte del efecto de 𝑒𝑖 . Para más información al respecto, revisar

Wooldridge (2010).

Page 109: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

91

ANEXO 3: MODELO PANEL: OUTPUTS DE EVIEWS

El anexo contiene las estimaciones del panel realizadas en Eviews, tal como arrojadas por este

software.

Tabla A3.1: Regresión de consumo total, modelo Efectos Fijos

Dependent Variable: LOG(CONS_T/POB)

Method: Panel Least Squares

Sample: 1980 2013

Periods included: 34

Cross-sections included: 31

Total panel (unbalanced) observations: 915

Variable Coefficient Std. Error t-Statistic Prob.

C -20.17495 0.932980 -21.62420 0.0000

LOG(IN_R) 2.855172 0.189714 15.04988 0.0000

LOG(IN_R)^2 -0.108073 0.009446 -11.44081 0.0000

LOG(PRE_IR) -0.153175 0.025203 -6.077756 0.0000

LOG(PRE_RR) -0.401455 0.026377 -15.21971 0.0000 Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.964765 Mean dependent var -5.164368

Adjusted R-squared 0.963404 S.D. dependent var 0.686018

S.E. of regression 0.131237 Akaike info criterion -1.186129

Sum squared resid 15.15628 Schwarz criterion -1.001799

Log likelihood 577.6540 Hannan-Quinn criter. -1.115769

F-statistic 708.6789 Durbin-Watson stat 0.209929

Prob(F-statistic) 0.000000

Tabla A3.2: Regresión de consumo total, modelo Efectos Aleatorios

Dependent Variable: LOG(CONS_T/POB)

Method: Panel EGLS (Cross-section random effects)

Sample: 1980 2013

Periods included: 34

Cross-sections included: 31

Total panel (unbalanced) observations: 915

Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -20.17844 0.931466 -21.66311 0.0000

LOG(IN_R) 2.859866 0.189165 15.11840 0.0000

LOG(IN_R)^2 -0.107978 0.009421 -11.46151 0.0000

LOG(PRE_IR) -0.154752 0.025111 -6.162686 0.0000

LOG(PRE_RR) -0.405704 0.026262 -15.44847 0.0000

Page 110: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

92

Effects Specification

S.D. Rho

Cross-section random 0.284458 0.8245

Idiosyncratic random 0.131237 0.1755 Weighted Statistics

R-squared 0.727936 Mean dependent var -0.433496

Adjusted R-squared 0.726740 S.D. dependent var 0.254585

S.E. of regression 0.131617 Sum squared resid 15.76399

F-statistic 608.7009 Durbin-Watson stat 0.204722

Prob(F-statistic) 0.000000 Unweighted Statistics

R-squared 0.766326 Mean dependent var -5.164368

Sum squared resid 100.5144 Durbin-Watson stat 0.032107

Tabla A3.3: Regresión de consumo residencial, modelo Efectos Fijos

Dependent Variable: LOG(CONS_R/POB)

Method: Panel Least Squares

Sample: 1980 2013

Periods included: 34

Cross-sections included: 31

Total panel (unbalanced) observations: 915

Variable Coefficient Std. Error t-Statistic Prob.

C -25.43978 1.182161 -21.51972 0.0000

LOG(IN_R) 3.624127 0.240383 15.07647 0.0000

LOG(IN_R)^2 -0.147457 0.011969 -12.31975 0.0000

LOG(PRE_RR) -0.365881 0.033422 -10.94725 0.0000

LOG(PRE_IR) -0.160642 0.031934 -5.030473 0.0000 Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.959615 Mean dependent var -6.556051

Adjusted R-squared 0.958055 S.D. dependent var 0.811932

S.E. of regression 0.166287 Akaike info criterion -0.712698

Sum squared resid 24.33332 Schwarz criterion -0.528367

Log likelihood 361.0591 Hannan-Quinn criter. -0.642338

F-statistic 615.0143 Durbin-Watson stat 0.179540

Prob(F-statistic) 0.000000

Tabla A3.4: Regresión de consumo industrial, modelo Efectos Fijos

Dependent Variable: LOG(CONS_I/POB)

Page 111: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

93

Method: Panel Least Squares

Sample: 1980 2013

Periods included: 34

Cross-sections included: 31

Total panel (unbalanced) observations: 915

Variable Coefficient Std. Error t-Statistic Prob.

C -21.03913 1.000866 -21.02092 0.0000

LOG(IN_R) 2.956330 0.203518 14.52613 0.0000

LOG(IN_R)^2 -0.124327 0.010134 -12.26875 0.0000

LOG(PRE_IR) -0.079437 0.027036 -2.938144 0.0034

LOG(PRE_RR) -0.360500 0.028297 -12.74006 0.0000 Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.956740 Mean dependent var -6.130549

Adjusted R-squared 0.955068 S.D. dependent var 0.664175

S.E. of regression 0.140786 Akaike info criterion -1.045655

Sum squared resid 17.44215 Schwarz criterion -0.861324

Log likelihood 513.3870 Hannan-Quinn criter. -0.975295

F-statistic 572.4128 Durbin-Watson stat 0.215282

Prob(F-statistic) 0.000000

Tabla A3.5: Regresión de consumo comercial y fiscal, modelo Efectos Fijos

Dependent Variable: LOG(CONS_O/POB)

Method: Panel Least Squares Sample: 1980 2013

Periods included: 34

Cross-sections included: 31

Total panel (unbalanced) observations: 915

Variable Coefficient Std. Error t-Statistic Prob.

C -19.44190 1.302343 -14.92840 0.0000

LOG(IN_R) 2.356638 0.264821 8.898985 0.0000

LOG(IN_R)^2 -0.068863 0.013186 -5.222438 0.0000

LOG(PRE_RR) -0.450286 0.036820 -12.22941 0.0000

LOG(PRE_IR) -0.271068 0.035180 -7.705106 0.0000 Effects Specification

Cross-section fixed (dummy variables)

R-squared 0.940773 Mean dependent var -6.230638

Adjusted R-squared 0.938485 S.D. dependent var 0.738613

S.E. of regression 0.183193 Akaike info criterion -0.519056

Sum squared resid 29.53240 Schwarz criterion -0.334726

Log likelihood 272.4682 Hannan-Quinn criter. -0.448696

F-statistic 411.1209 Durbin-Watson stat 0.250787

Prob(F-statistic) 0.000000

Page 112: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

94

ANEXO 4: MODELO DE CORRECCIÓN DE ERRORES

Econométricamente, un proceso de ajuste dinámico como el que sigue la demanda por energía

puede ser estimado a través de un Modelo de Corrección de Errores. En este tipo de modelos

el proceso de ajuste de la variable dependiente (en este caso la demanda por energía) es

caracterizado por dos ecuaciones. La primera corresponde a una ecuación de largo plazo, que

recoge la relación de largo plazo entre la demanda por energía y sus determinantes.

Agrupando a los determinantes de largo plazo en un vector 𝑋𝑡, donde el subíndice indica el

mes de que se trata, y denotando por 𝑦𝑡 el nivel de energía eléctrica demandada por el sector

industrial, se postula entonces una relación de largo plazo entre ambas:

𝑦𝑡 = 𝛼′𝑋𝑡 + 𝜖𝑡 (𝐴4.1)

Donde 𝛼 es un vector de parámetros de igual dimensión que 𝑋𝑡, 𝜖𝑡 es un error aleatorio que se

supone estacionario con respecto al tiempo (de no ser estacionario la relación (A4.1) es espuria

en los niveles), y como es usual, todas las variables se expresan transformadas por el logaritmo

natural. La relación (A4.1) se llama de largo plazo puesto que establece que en el largo plazo

no puede haber diferencias relevantes y crecientes entre la variable 𝑦 y los determinantes de

largo plazo resumidos en X.

La ecuación (A4.1) se estima usualmente por Mínimos Cuadrados Ordinarios. Para efectos de

realizar predicciones sin embargo, ésta no es suficiente puesto que típicamente el error

𝜖𝑡 contiene todavía información sistemática que puede ser explotada: se trata de un error

estacionario pero no de una innovación, estadísticamente hablando. A efectos de derivar un

modelo predictivo eficiente sobre la base de (A1.1), lo que se hace usualmente es

complementar con un Modelo de Corrección de Errores18, el cual toma la forma:

Δ𝑦𝑡 = 𝑐 + ∑ Δ𝑋𝑡−𝑗𝛽𝑗

𝑛

𝑗=0

+ ∑ Δ𝑦𝑡−𝑖𝛿𝑖

𝑚

𝑗=1

+ 𝜏𝜖𝑡−1 + 𝜈𝑡 (𝐴4.2)

18 Para mas detalles ver Hamilton (1994).

t

Page 113: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

95

La ecuación (A4.2) establece que los cambios porcentuales en la variable dependiente (notar

que el cambio pequeño del logaritmo natural es aproximadamente un cambio porcentual19),

dependen de la secuencia de cambios pasados de los determinantes de largo plazo y de la

variable dependiente, “más una corrección de errores” representada por el término 𝜏𝜖𝑡−1. Si

𝜏 < 0 y es significativo, habrá cointegración entre 𝑦 y 𝑋, pues los “errores” o distancias de corto

plazo respecto del largo plazo serán anuladas en una cantidad finita de períodos. A modo de

ejemplo, 𝜏 < 0 implica que si en el período 𝑡 − 1 los determinantes en la ecuación de largo

plazo sugerían un mayor nivel de demanda que el que efectivamente hubo, esto es 𝜖𝑡−1 < 0,

generando un “error” de corto plazo distinto de 0, entonces en el período 𝑡 se producirá una

aceleración de la demanda en dicha dirección (dada por 𝜏𝜖𝑡−1 > 0) que hará retornar la serie

a su equilibrio de largo plazo.

Se puede demostrar que el modelo dado por (A4.1) y (A4.2) es el modelo lineal dinámico más

general posible entre la variable dependiente y los indicadores líderes. A partir de éste, luego,

se retiran del modelo las variables que resultan ser no significativas, bajo un criterio estricto de

significancia estadística (test mayor a 2,5).

A modo de ventajas, hemos de mencionar que su notación en diferencias, más que en niveles,

reduce considerablemente eventuales problemas de colinealidad que puedan existir entre

regresores, pues aunque dos variables tengan igual tendencia (y sean por ello altamente

colineales o “similares”), sus variaciones de período en período presentan seguramente una

correlación menor.

Finalmente, un modelo bien formulado debe arrojar un error 𝜈𝑡 que sea una innovación (la

esperanza de dicho error, condicional a la información disponible anterior a 𝑡 es 0) y un valor de

𝜏 negativo y estadísticamente significativo, entre otras propiedades20.

19 Recordar, quienes se familiaricen con las matemáticas, que: 𝜕log (𝑋)

𝜕𝑥=

1

𝑥, lo que implica que dlogX =

dX

X, esto es,

que una diferencia simple en logaritmos es equivalente a la diferencia porcentual en niveles de la misma variable.

20La capacidad predictiva del modelo (A4.1)-(A4.2) se mide por diversos indicadores, los que incluyen, dentro de

los más comunes, el ajustado (con un valor de 1 para un ajuste “perfecto”), el estadístico de Akaike (mejor

predicción cuanto más negativo sea), y el error estándar de la ecuación, entre otros.

2R

Page 114: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

96

ANEXO 5: MODELO DE CORRECCIÓN DE ERRORES 2:

OUTPUTS DE EVIEWS

En este anexo presentamos los outputs de Eviews para las ecuaciones de largo plazo resumidas

en las Tablas 6-8 y sus respectivas ecuaciones de corto plazo, en caso de que el Durbin-Watson

de la primera no permita concluir sobre cointegración.

1) TOTAL

Tabla A5.1: Ecuación de largo plazo, modelo TOTAL

Dependent Variable: LOG(TOTAL_Q/TOTAL_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C 2.310015 0.355979 6.489189 0.0000

LOG(IMA/TOTAL_POB) 0.873276 0.029284 29.82137 0.0000

@SEAS(1) 0.082207 0.005828 14.10579 0.0000

@SEAS(2) 0.041501 0.006416 6.468739 0.0000

@SEAS(6) 0.043585 0.005728 7.608720 0.0000

@SEAS(7) 0.062931 0.005720 11.00145 0.0000

LOG(SING_CMG) -0.015872 0.002624 -6.048035 0.0000

@SEAS(3) 0.027939 0.005621 4.970421 0.0000

@SEAS(5) 0.037974 0.005644 6.727697 0.0000

@SEAS(8) 0.057287 0.005687 10.07398 0.0000

@SEAS(10) 0.021896 0.005829 3.756236 0.0003

DU1015*LOG(IMA) -0.003545 0.001142 -3.105453 0.0024

R-squared 0.960585 Mean dependent var -8.211333

Adjusted R-squared 0.956847 S.D. dependent var 0.079545

S.E. of regression 0.016524 Akaike info criterion -5.278929

Sum squared resid 0.031673 Schwarz criterion -5.011551

Log likelihood 349.8514 Hannan-Quinn criter. -5.170292

F-statistic 257.0024 Durbin-Watson stat 0.797278

Prob(F-statistic) 0.000000

Tabla A5.2: Ecuación de corto plazo, modelo TOTAL

Dependent Variable: DLOG(TOTAL_Q/TOTAL_POB)

Method: Least Squares

Sample (adjusted): 2006M03 2015M08

Included observations: 114 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

Page 115: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

97

C 0.001845 0.001928 0.956695 0.3409

DLOG(TOTAL_Q(-1)/TOTAL_POB(-1)) -0.459749 0.066423 -6.921527 0.0000

DLOG(TOTAL_Q(-12)/TOTAL_POB(-12)) 0.505500 0.060256 8.389229 0.0000

DLOG(IMA(-3)/TOTAL_POB(-3)) 0.145418 0.044120 3.295966 0.0013

DLOG(IMA(-4)/TOTAL_POB(-4)) -0.111603 0.043696 -2.554072 0.0121

DLOG(IMA(-6)/TOTAL_POB(-6)) -0.221588 0.050123 -4.420888 0.0000

DLOG(IMA(-13)/TOTAL_POB(-13)) 0.338097 0.059935 5.641062 0.0000

R_TOT(-1) -0.365102 0.125683 -2.904930 0.0045

R-squared 0.854548 Mean dependent var 0.002504

Adjusted R-squared 0.844943 S.D. dependent var 0.051573

S.E. of regression 0.020308 Akaike info criterion -4.888003

Sum squared resid 0.043716 Schwarz criterion -4.695989

Log likelihood 286.6162 Hannan-Quinn criter. -4.810075

F-statistic 88.96615 Durbin-Watson stat 1.971393

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

2) SIC

Tabla A5.3: Ecuación de largo plazo, modelo SIC

Dependent Variable: LOG(SIC_Q/SIC_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C 8.185218 0.265374 30.84413 0.0000

LOG(IMA/SIC_POB) 0.811635 0.021724 37.36106 0.0000

@SEAS(1) 0.088536 0.006732 13.15224 0.0000

@SEAS(2) 0.047442 0.007184 6.603716 0.0000

@SEAS(3) 0.053264 0.007037 7.569571 0.0000

@SEAS(5) 0.040288 0.006833 5.895796 0.0000

@SEAS(6) 0.043633 0.006742 6.472170 0.0000

@SEAS(7) 0.070765 0.006696 10.56854 0.0000

@SEAS(8) 0.057545 0.006662 8.638064 0.0000

DU2 -0.109743 0.021018 -5.221375 0.0000

LOG(SIC_CMG) -0.012642 0.002938 -4.303168 0.0000

R-squared 0.942048 Mean dependent var -1.521717

Adjusted R-squared 0.937095 S.D. dependent var 0.079683

S.E. of regression 0.019985 Akaike info criterion -4.905627

Sum squared resid 0.046731 Schwarz criterion -4.660530

Log likelihood 324.9601 Hannan-Quinn criter. -4.806043

F-statistic 190.1912 Durbin-Watson stat 1.077265

Prob(F-statistic) 0.000000

Page 116: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

98

Tabla A5.4: Ecuación de corto plazo, modelo SIC

Dependent Variable: DLOG(SIC_Q/SIC_POB)

Method: Least Squares

Sample (adjusted): 2006M02 2015M08

Included observations: 115 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.003615 0.002501 1.445503 0.1512

DLOG(SIC_Q(-1)/SIC_POB(-1)) -0.301498 0.053875 -5.596214 0.0000

DLOG(SIC_Q(-12)/SIC_POB(-12)) 0.477675 0.067871 7.038024 0.0000

DLOG(IMA(-2)/SIC_POB(-2)) -0.199995 0.056593 -3.533895 0.0006

DLOG(IMA(-4)/SIC_POB(-4)) -0.321160 0.069153 -4.644204 0.0000

DLOG(IMA(-5)/SIC_POB(-5)) -0.181117 0.057197 -3.166547 0.0020

DLOG(IMA(-6)/SIC_POB(-6)) -0.390322 0.075045 -5.201176 0.0000

R_REGSIC(-1) -0.284541 0.102415 -2.778307 0.0065

R-squared 0.805692 Mean dependent var 0.001543

Adjusted R-squared 0.792980 S.D. dependent var 0.057310

S.E. of regression 0.026076 Akaike info criterion -4.388602

Sum squared resid 0.072754 Schwarz criterion -4.197650

Log likelihood 260.3446 Hannan-Quinn criter. -4.311096

F-statistic 63.38178 Durbin-Watson stat 2.273928

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

3) SING

Tabla A5.5: Ecuación de largo plazo, modelo SING

Dependent Variable: LOG(SING_Q/SING_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C 5.932694 0.337403 17.58341 0.0000

LOG(IMA/SING_POB) 0.635661 0.036495 17.41761 0.0000

@SEAS(1) 0.018495 0.008937 2.069406 0.0407

@SEAS(2) -0.036047 0.009463 -3.809485 0.0002

@SEAS(4) -0.021771 0.008825 -2.467055 0.0150

@SEAS(11) -0.025520 0.009241 -2.761495 0.0067

DU15 0.055805 0.011268 4.952584 0.0000

DU1503 -0.062461 0.029487 -2.118260 0.0362

R-squared 0.817062 Mean dependent var 0.051058

Adjusted R-squared 0.806391 S.D. dependent var 0.062422

S.E. of regression 0.027466 Akaike info criterion -4.291240

Page 117: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

99

Sum squared resid 0.090529 Schwarz criterion -4.112988

Log likelihood 282.6394 Hannan-Quinn criter. -4.218816

F-statistic 76.56593 Durbin-Watson stat 1.088579

Prob(F-statistic) 0.000000

Tabla A5.6: Ecuación de corto plazo, modelo SING

Dependent Variable: DLOG(SING_Q/SING_POB)

Method: Least Squares

Sample (adjusted): 2006M03 2014M12

Included observations: 106 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000721 0.002370 0.304109 0.7617

DLOG(SING_Q(-1)/SING_POB(-1)) -0.218087 0.085313 -2.556317 0.0121

DLOG(SING_Q(-9)/SING_POB(-9)) 0.248035 0.055585 4.462258 0.0000

DLOG(SING_Q(-10)/SING_POB(-10)) 0.214217 0.055912 3.831316 0.0002

DLOG(SING_Q(-12)/SING_POB(-12)) 0.176731 0.069221 2.553131 0.0122

DLOG(IMA/SING_POB) 0.633820 0.084096 7.536859 0.0000

DLOG(IMA(-4)/SING_POB(-4)) -0.173641 0.048691 -3.566169 0.0006

DLOG(IMA(-13)/SING_POB(-13)) 0.287672 0.076408 3.764955 0.0003

R_SING(-1) -0.412532 0.098187 -4.201485 0.0001

R-squared 0.809052 Mean dependent var 0.002672

Adjusted R-squared 0.793303 S.D. dependent var 0.052850

S.E. of regression 0.024028 Akaike info criterion -4.538123

Sum squared resid 0.056002 Schwarz criterion -4.311982

Log likelihood 249.5205 Hannan-Quinn criter. -4.446467

F-statistic 51.37389 Durbin-Watson stat 2.021438

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

4) SIC libre

Tabla A5.7: Ecuación de largo plazo, modelo SIC libre

Dependent Variable: LOG(SIC_QL/SIC_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C -0.337198 0.730445 -0.461633 0.6452

LOG(IMA/SIC_POB) 0.205656 0.060881 3.377988 0.0010

@SEAS(2) -0.044618 0.012856 -3.470596 0.0007

Page 118: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

100

@SEAS(7) 0.024796 0.011730 2.113842 0.0366

@SEAS(8) 0.037590 0.011683 3.217473 0.0017

@SEAS(10) 0.044885 0.012141 3.696928 0.0003

DU10*LOG(IMA/SIC_POB) -0.029903 0.000976 -30.64634 0.0000

DU2 -0.247842 0.022906 -10.82007 0.0000

R-squared 0.968265 Mean dependent var -2.602582

Adjusted R-squared 0.966414 S.D. dependent var 0.197686

S.E. of regression 0.036229 Akaike info criterion -3.737449

Sum squared resid 0.157505 Schwarz criterion -3.559197

Log likelihood 247.1967 Hannan-Quinn criter. -3.665024

F-statistic 523.0442 Durbin-Watson stat 1.409768

Prob(F-statistic) 0.000000

Tabla A5.8: Ecuación de corto plazo, modelo SIC libre

Dependent Variable: DLOG(SIC_QL/SIC_POB)

Method: Least Squares

Sample (adjusted): 2005M04 2014M12

Included observations: 117 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.002784 0.004742 0.587227 0.5583

DLOG(SIC_QL(-1)/SIC_POB(-1)) -0.298813 0.095364 -3.133386 0.0022

DLOG(SIC_QL(-2)/SIC_POB(-2)) -0.253439 0.096848 -2.616875 0.0101

DLOG(IMA) 0.575182 0.116717 4.927997 0.0000

DLOG(IMA(-1)/SIC_POB(-1)) 0.267856 0.114606 2.337192 0.0212

DLOG(IMA(-2)/SIC_POB(-2)) 0.382487 0.117931 3.243323 0.0016

R_LIBSIC(-1) -0.292208 0.140426 -2.080867 0.0398

R-squared 0.368525 Mean dependent var 0.003653

Adjusted R-squared 0.334081 S.D. dependent var 0.061229

S.E. of regression 0.049965 Akaike info criterion -3.097019

Sum squared resid 0.274616 Schwarz criterion -2.931761

Log likelihood 188.1756 Hannan-Quinn criter. -3.029926

F-statistic 10.69923 Durbin-Watson stat 2.051671

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

5) SIC regulado

Tabla A5.9: Ecuación de largo plazo, modelo SIC regulado

Dependent Variable: LOG(SIC_QR/SIC_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Page 119: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

101

Variable Coefficient Std. Error t-Statistic Prob.

C 12.42091 0.551194 22.53456 0.0000

LOG(IMA/SIC_POB) 1.191112 0.045543 26.15382 0.0000

@SEAS(1) 0.148092 0.009185 16.12333 0.0000

@SEAS(2) 0.129807 0.010524 12.33473 0.0000

@SEAS(3) 0.099094 0.008993 11.01884 0.0000

@SEAS(5) 0.074084 0.009167 8.081514 0.0000

@SEAS(6) 0.094116 0.009080 10.36496 0.0000

@SEAS(7) 0.111387 0.008996 12.38159 0.0000

@SEAS(8) 0.083121 0.008864 9.377588 0.0000

DU10*LOG(IMA/SIC_POB) 0.016039 0.000673 23.83958 0.0000

@SEAS(4) 0.048863 0.009142 5.344710 0.0000

LOG(SIC_CMG) -0.026330 0.003906 -6.741638 0.0000

R-squared 0.885305 Mean dependent var -1.943911

Adjusted R-squared 0.874429 S.D. dependent var 0.072028

S.E. of regression 0.025524 Akaike info criterion -4.409359

Sum squared resid 0.075569 Schwarz criterion -4.141981

Log likelihood 294.1990 Hannan-Quinn criter. -4.300722

F-statistic 81.39796 Durbin-Watson stat 0.881244

Prob(F-statistic) 0.000000

Tabla A5.10: Ecuación de corto plazo, modelo SIC regulado

Dependent Variable: DLOG(SIC_QR/SIC_POB)

Method: Least Squares

Sample (adjusted): 2006M02 2015M08

Included observations: 115 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.003524 0.003237 1.088769 0.2787

DLOG(SIC_QR(-1)/SIC_POB(-1)) -0.328701 0.058188 -5.648974 0.0000

DLOG(SIC_QR(-12)/SIC_POB(-12)) 0.459463 0.072465 6.340479 0.0000

DLOG(IMA(-2)/SIC_POB(-2)) -0.227715 0.075108 -3.031849 0.0030

DLOG(IMA(-4)/SIC_POB(-4)) -0.322270 0.092581 -3.480969 0.0007

DLOG(IMA(-5)/SIC_POB(-5)) -0.250649 0.076175 -3.290448 0.0014

DLOG(IMA(-6)/SIC_POB(-6)) -0.441847 0.097868 -4.514733 0.0000

R_REGSIC(-1) -0.348471 0.134166 -2.597307 0.0107

R-squared 0.753150 Mean dependent var 0.000739

Adjusted R-squared 0.737001 S.D. dependent var 0.066197

S.E. of regression 0.033948 Akaike info criterion -3.860937

Sum squared resid 0.123315 Schwarz criterion -3.669985

Log likelihood 230.0039 Hannan-Quinn criter. -3.783431

F-statistic 46.63745 Durbin-Watson stat 2.263590

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Page 120: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

102

6) SING libre

Tabla A5.11: Ecuación de largo plazo, modelo SING libre

Dependent Variable: LOG(SING_QL/SING_POB)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C 5.156412 0.362118 14.23960 0.0000

LOG(IMA/SING_POB) 0.564070 0.039149 14.40827 0.0000

@SEAS(2) -0.045818 0.010142 -4.517824 0.0000

@SEAS(4) -0.024155 0.009524 -2.536256 0.0125

@SEAS(11) -0.023172 0.010008 -2.315271 0.0223

DU 0.063773 0.030023 2.124127 0.0357

DU15 0.061112 0.012191 5.012910 0.0000

DU1503 -0.073927 0.032014 -2.309212 0.0226

R-squared 0.772220 Mean dependent var -0.064786

Adjusted R-squared 0.758933 S.D. dependent var 0.060799

S.E. of regression 0.029851 Akaike info criterion -4.124713

Sum squared resid 0.106932 Schwarz criterion -3.946461

Log likelihood 271.9816 Hannan-Quinn criter. -4.052289

F-statistic 58.11774 Durbin-Watson stat 1.223476

Prob(F-statistic) 0.000000

Tabla A5.12: Ecuación de corto plazo, modelo SING libre

Dependent Variable: DLOG(SING_QL/SING_POB)

Method: Least Squares

Sample (adjusted): 2006M03 2014M12

Included observations: 106 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.000665 0.002485 0.267521 0.7896

DLOG(SING_QL(-1)/SING_POB(-1)) -0.158424 0.084549 -1.873765 0.0640

DLOG(SING_QL(-9)/SING_POB(-9)) 0.253811 0.053412 4.751936 0.0000

DLOG(SING_QL(-10)/SING_POB(-10)) 0.214837 0.053653 4.004208 0.0001

DLOG(SING_QL(-13)/SING_POB(-13)) -0.172146 0.076405 -2.253067 0.0265

DLOG(IMA/SING_POB) 0.737802 0.069476 10.61945 0.0000

DLOG(IMA(-4)/SING_POB(-4)) -0.213790 0.049977 -4.277766 0.0000

DLOG(IMA(-13)/SING_POB(-13)) 0.382198 0.092530 4.130529 0.0001

R_LIBSING(-1) -0.460739 0.095214 -4.838998 0.0000

R-squared 0.805065 Mean dependent var 0.002689

Adjusted R-squared 0.788988 S.D. dependent var 0.054980

S.E. of regression 0.025256 Akaike info criterion -4.438440

Sum squared resid 0.061872 Schwarz criterion -4.212299

Log likelihood 244.2373 Hannan-Quinn criter. -4.346784

F-statistic 50.07521 Durbin-Watson stat 1.978554

Prob(F-statistic) 0.000000

Page 121: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

103

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

7) SING regulado

Tabla A5.13: Ecuación de largo plazo, modelo SING regulado

Dependent Variable: LOG(SING_QR/SING_POB)

Method: Least Squares

Sample: 2009M01 2015M08

Included observations: 80

Variable Coefficient Std. Error t-Statistic Prob.

C 8.428609 0.508477 16.57619 0.0000

@SEAS(1) 0.066619 0.012318 5.408422 0.0000

@SEAS(2) 0.051221 0.013438 3.811780 0.0003

@SEAS(3) 0.048246 0.012055 4.002016 0.0002

@SEAS(5) 0.051081 0.012105 4.219804 0.0001

@SEAS(6) 0.062089 0.012209 5.085323 0.0000

@SEAS(7) 0.102271 0.012210 8.375889 0.0000

@SEAS(8) 0.072423 0.012161 5.955402 0.0000

@SEAS(10) 0.032984 0.012820 2.572931 0.0122

LOG(IMA/SING_POB) 1.148677 0.055329 20.76068 0.0000

R-squared 0.885950 Mean dependent var -2.112500

Adjusted R-squared 0.871286 S.D. dependent var 0.078574

S.E. of regression 0.028190 Akaike info criterion -4.183239

Sum squared resid 0.055627 Schwarz criterion -3.885486

Log likelihood 177.3296 Hannan-Quinn criter. -4.063861

F-statistic 60.41837 Durbin-Watson stat 1.131254

Prob(F-statistic) 0.000000

Tabla A5.14: Ecuación de corto plazo, modelo SING regulado

Dependent Variable: DLOG(SING_QR/SING_POB)

Method: Least Squares

Sample (adjusted): 2009M02 2015M01

Included observations: 72 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.003988 0.002629 1.517364 0.1342

DLOG(SING_QR(-1)/SING_POB(-1)) -0.315872 0.061469 -5.138721 0.0000

DLOG(SING_QR(-12)/SING_POB(-12)) 0.716709 0.078887 9.085209 0.0000

DLOG(IMA(-2)/SING_POB(-2)) -0.290109 0.081564 -3.556838 0.0007

DLOG(IMA(-3)/SING_POB(-3)) -0.238374 0.076243 -3.126499 0.0027

DLOG(IMA(-4)/SING_POB(-4)) -0.347281 0.091592 -3.791624 0.0003

DLOG(IMA(-5)/SING_POB(-5)) -0.252856 0.074709 -3.384535 0.0012

DLOG(IMA(-6)/SING_POB(-6)) -0.312051 0.080164 -3.892673 0.0002

R_REGSING(-1) -0.461150 0.113107 -4.077100 0.0001

R-squared 0.890314 Mean dependent var 0.002911

Page 122: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

104

Adjusted R-squared 0.876386 S.D. dependent var 0.060414

S.E. of regression 0.021241 Akaike info criterion -4.749300

Sum squared resid 0.028424 Schwarz criterion -4.464717

Log likelihood 179.9748 Hannan-Quinn criter. -4.636007

F-statistic 63.92093 Durbin-Watson stat 1.937730

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

8) Modelos regionales de consumo total (o libre, si corresponde)

Tabla A5.15: Ecuación de largo plazo, modelo regiones 2 y 3 total

Dependent Variable: LOG(Q23)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 1.524839 0.162132 9.404921 0.0000

LOG(IMA) 0.766040 0.034789 22.01978 0.0000

@SEAS(3) -0.063567 0.016193 -3.925623 0.0001

@SEAS(4) -0.106804 0.016159 -6.609370 0.0000

@SEAS(5) -0.063741 0.016161 -3.944075 0.0001

@SEAS(6) -0.066179 0.016158 -4.095691 0.0001

@SEAS(7) -0.060524 0.016159 -3.745626 0.0003

@SEAS(8) -0.038573 0.016158 -2.387280 0.0185

R-squared 0.820017 Mean dependent var 5.060620

Adjusted R-squared 0.809518 S.D. dependent var 0.113157

S.E. of regression 0.049387 Akaike info criterion -3.117817

Sum squared resid 0.292683 Schwarz criterion -2.939565

Log likelihood 207.5403 Hannan-Quinn criter. -3.045393

F-statistic 78.10429 Durbin-Watson stat 1.466061

Prob(F-statistic) 0.000000

Tabla A5.16: Ecuación de corto plazo, modelo regiones 2 y 3 total

Dependent Variable: DLOG(Q23)

Method: Least Squares

Sample (adjusted): 2005M02 2014M12

Included observations: 119 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.002326 0.004579 0.507919 0.6125

Page 123: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

105

DLOG(IMA) 0.498931 0.091463 5.454990 0.0000

R3(-1) -0.728835 0.097608 -7.466971 0.0000

R-squared 0.441545 Mean dependent var 0.003426

Adjusted R-squared 0.431916 S.D. dependent var 0.066007

S.E. of regression 0.049750 Akaike info criterion -3.138724

Sum squared resid 0.287108 Schwarz criterion -3.068662

Log likelihood 189.7541 Hannan-Quinn criter. -3.110274

F-statistic 45.85795 Durbin-Watson stat 1.938125

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.17: Ecuación de largo plazo, modelo región 4 total

Dependent Variable: LOG(Q4)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -1.019486 0.117789 -8.655210 0.0000

LOG(IMA) 1.208667 0.025040 48.26927 0.0000

@SEAS(1) 0.129529 0.011754 11.02015 0.0000

@SEAS(2) 0.117447 0.012024 9.767541 0.0000

@SEAS(4) -0.043278 0.011654 -3.713511 0.0003

@SEAS(5) -0.045783 0.011649 -3.930048 0.0001

@SEAS(6) -0.073227 0.011678 -6.270453 0.0000

@SEAS(7) -0.040050 0.011681 -3.428643 0.0008

@SEAS(8) -0.050542 0.011664 -4.333223 0.0000

@SEAS(9) -0.047197 0.012166 -3.879253 0.0002

R-squared 0.957717 Mean dependent var 4.609268

Adjusted R-squared 0.954492 S.D. dependent var 0.160428

S.E. of regression 0.034224 Akaike info criterion -3.836896

Sum squared resid 0.138208 Schwarz criterion -3.614082

Log likelihood 255.5614 Hannan-Quinn criter. -3.746366

F-statistic 296.9666 Durbin-Watson stat 0.697531

Prob(F-statistic) 0.000000

Tabla A5.18: Ecuación de corto plazo, modelo región 4 total

Dependent Variable: DLOG(Q4)

Method: Least Squares

Sample (adjusted): 2006M02 2014M12

Included observations: 107 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.000252 0.002921 -0.086421 0.9313

Page 124: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

106

DLOG(Q4(-5)) -0.159581 0.059488 -2.682549 0.0086

DLOG(Q4(-6)) -0.246400 0.074603 -3.302836 0.0014

DLOG(Q4(-7)) -0.253709 0.074320 -3.413738 0.0009

DLOG(Q4(-12)) 0.298094 0.082882 3.596590 0.0005

DLOG(IMA) 0.507267 0.104299 4.863608 0.0000

DLOG(IMA(-2)) 0.182227 0.079842 2.282357 0.0247

DLOG(IMA(-7)) 0.427250 0.099821 4.280168 0.0000

DLOG(IMA(-8)) 0.284292 0.084475 3.365412 0.0011

DLOG(IMA(-9)) 0.329668 0.093092 3.541322 0.0006

DLOG(IMA(-10)) 0.501599 0.096790 5.182348 0.0000

R4(-1) -0.403996 0.092482 -4.368389 0.0000

R-squared 0.795794 Mean dependent var 0.003280

Adjusted R-squared 0.772149 S.D. dependent var 0.058976

S.E. of regression 0.028152 Akaike info criterion -4.197074

Sum squared resid 0.075289 Schwarz criterion -3.897317

Log likelihood 236.5435 Hannan-Quinn criter. -4.075557

F-statistic 33.65597 Durbin-Watson stat 2.237402

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.19: Ecuación de largo plazo, modelo región 5 total

Dependent Variable: LOG(Q5)

Method: Least Squares

Sample (adjusted): 2009M08 2015M08

Included observations: 73 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 1.312026 0.210991 6.218408 0.0000

LOG(IMA) 0.973178 0.044361 21.93760 0.0000

@SEAS(1) 0.127085 0.012915 9.839911 0.0000

@SEAS(2) 0.115037 0.013416 8.574900 0.0000

@SEAS(3) 0.045329 0.012918 3.508852 0.0008

@SEAS(7) 0.043522 0.012873 3.380735 0.0012

R-squared 0.894887 Mean dependent var 5.959653

Adjusted R-squared 0.887043 S.D. dependent var 0.088538

S.E. of regression 0.029757 Akaike info criterion -4.112911

Sum squared resid 0.059326 Schwarz criterion -3.924654

Log likelihood 156.1212 Hannan-Quinn criter. -4.037887

F-statistic 114.0824 Durbin-Watson stat 0.812351

Prob(F-statistic) 0.000000

Tabla A5.20: Ecuación de corto plazo, modelo región 5 total

Dependent Variable: DLOG(Q5)

Method: Least Squares

Sample (adjusted): 2009M09 2015M08

Page 125: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

107

Included observations: 72 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.008087 0.003721 2.173203 0.0333

DLOG(Q5(-1)) -0.304570 0.074709 -4.076723 0.0001

DLOG(IMA(-6)) -0.373006 0.076439 -4.879765 0.0000

DLOG(IMA(-11)) -0.455868 0.075359 -6.049262 0.0000

R5(-1) -0.238463 0.136058 -1.752660 0.0842

R-squared 0.645670 Mean dependent var 0.004217

Adjusted R-squared 0.624516 S.D. dependent var 0.051141

S.E. of regression 0.031338 Akaike info criterion -4.021084

Sum squared resid 0.065797 Schwarz criterion -3.862982

Log likelihood 149.7590 Hannan-Quinn criter. -3.958143

F-statistic 30.52234 Durbin-Watson stat 1.575521

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.21: Ecuación de largo plazo, modelo región 6 total

Dependent Variable: LOG(Q6)

Method: Least Squares

Sample: 2005M01 2015M08

Included observations: 128

Variable Coefficient Std. Error t-Statistic Prob.

C -2.579692 0.145930 -17.67762 0.0000

LOG(IMA) 1.663384 0.031038 53.59265 0.0000

@SEAS(1) 0.203104 0.015077 13.47110 0.0000

@SEAS(2) 0.268621 0.015388 17.45623 0.0000

@SEAS(3) 0.165317 0.014937 11.06769 0.0000

@SEAS(4) 0.054441 0.014967 3.637466 0.0004

@SEAS(5) 0.043856 0.014962 2.931217 0.0041

@SEAS(6) 0.032828 0.014992 2.189641 0.0305

@SEAS(7) 0.056775 0.014996 3.786099 0.0002

@SEAS(9) -0.065070 0.015577 -4.177196 0.0001

@SEAS(10) -0.034751 0.015484 -2.244337 0.0267

R-squared 0.965407 Mean dependent var 5.235541

Adjusted R-squared 0.962450 S.D. dependent var 0.219612

S.E. of regression 0.042556 Akaike info criterion -3.393980

Sum squared resid 0.211887 Schwarz criterion -3.148884

Log likelihood 228.2147 Hannan-Quinn criter. -3.294396

F-statistic 326.5176 Durbin-Watson stat 0.730669

Prob(F-statistic) 0.000000

Page 126: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

108

Tabla A5.22: Ecuación de corto plazo, modelo región 6 total

Dependent Variable: DLOG(Q6)

Method: Least Squares

Sample (adjusted): 2005M08 2014M12

Included observations: 113 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.003176 0.005256 0.604174 0.5470

DLOG(Q6(-6)) -0.417337 0.071799 -5.812597 0.0000

DLOG(IMA) 0.511001 0.123819 4.127014 0.0001

DLOG(IMA(-2)) 0.544023 0.114881 4.735543 0.0000

DLOG(IMA(-3)) 0.583571 0.109763 5.316645 0.0000

R6(-1) -0.355804 0.123473 -2.881641 0.0048

R-squared 0.581710 Mean dependent var 0.006352

Adjusted R-squared 0.562164 S.D. dependent var 0.082713

S.E. of regression 0.054731 Akaike info criterion -2.921153

Sum squared resid 0.320512 Schwarz criterion -2.776336

Log likelihood 171.0452 Hannan-Quinn criter. -2.862388

F-statistic 29.76069 Durbin-Watson stat 2.214944

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.23: Ecuación de largo plazo, modelo región 7 total

Dependent Variable: LOG(Q7)

Method: Least Squares

Sample: 2005M01 2014M12

Included observations: 120

Variable Coefficient Std. Error t-Statistic Prob.

C -0.036464 0.167465 -0.217744 0.8280

LOG(IMA) 1.105420 0.035863 30.82381 0.0000

@SEAS(1) 0.127024 0.016214 7.834041 0.0000

@SEAS(2) 0.169499 0.016551 10.24107 0.0000

@SEAS(3) 0.125106 0.016087 7.776764 0.0000

@SEAS(4) 0.041500 0.016101 2.577422 0.0113

@SEAS(8) -0.048141 0.016787 -2.867834 0.0050

@SEAS(9) -0.131059 0.016116 -8.132292 0.0000

@SEAS(10) -0.097291 0.016095 -6.044822 0.0000

@SEAS(11) -0.077951 0.016109 -4.839006 0.0000

DU0508 -0.284649 0.048421 -5.878565 0.0000

R-squared 0.926873 Mean dependent var 5.109729

Adjusted R-squared 0.920164 S.D. dependent var 0.161031

S.E. of regression 0.045500 Akaike info criterion -3.255037

Sum squared resid 0.225653 Schwarz criterion -2.999517

Log likelihood 206.3022 Hannan-Quinn criter. -3.151269

F-statistic 138.1558 Durbin-Watson stat 0.999462

Page 127: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

109

Prob(F-statistic) 0.000000

Tabla A5.24: Ecuación de corto plazo, modelo región 7 total

Dependent Variable: DLOG(Q7)

Method: Least Squares

Sample (adjusted): 2005M08 2014M12

Included observations: 113 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.008868 0.005939 -1.493346 0.1383

DLOG(Q7(-6)) -0.289084 0.072301 -3.998326 0.0001

DLOG(IMA) 1.088574 0.146777 7.416519 0.0000

DLOG(IMA(-1)) 0.681210 0.159339 4.275225 0.0000

DLOG(IMA(-2)) 1.099926 0.178169 6.173483 0.0000

DLOG(IMA(-3)) 1.074459 0.158608 6.774318 0.0000

DLOG(IMA(-4)) 0.575016 0.144777 3.971736 0.0001

R7(-1) -0.419813 0.127196 -3.300523 0.0013

R-squared 0.554026 Mean dependent var 0.005321

Adjusted R-squared 0.524294 S.D. dependent var 0.085550

S.E. of regression 0.059005 Akaike info criterion -2.754224

Sum squared resid 0.365567 Schwarz criterion -2.561135

Log likelihood 163.6137 Hannan-Quinn criter. -2.675870

F-statistic 18.63423 Durbin-Watson stat 1.902486

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.25: Ecuación de largo plazo, modelo región 8 libre

Dependent Variable: LOG(QL8)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -4.022158 1.135639 -3.541757 0.0006

LOG(IMA) 2.139844 0.253331 8.446828 0.0000

@SEAS(1) 0.185853 0.028196 6.591552 0.0000

@SEAS(2) 0.187339 0.036898 5.077168 0.0000

@SEAS(7) 0.157306 0.027659 5.687380 0.0000

@SEAS(8) 0.170275 0.027233 6.252537 0.0000

@SEAS(9) 0.142476 0.028691 4.965832 0.0000

@SEAS(10) 0.135440 0.026152 5.178972 0.0000

@SEAS(11) 0.104293 0.026074 3.999929 0.0001

DU3 -1.563656 0.077260 -20.23896 0.0000

@TREND -0.009168 0.001218 -7.526644 0.0000

@TREND^2 9.24E-06 7.94E-06 1.164322 0.2467

Page 128: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

110

DU1314 -0.197917 0.033833 -5.849768 0.0000

@SEAS(6) 0.081814 0.027215 3.006193 0.0033

R-squared 0.894922 Mean dependent var 5.453676

Adjusted R-squared 0.882939 S.D. dependent var 0.216120

S.E. of regression 0.073944 Akaike info criterion -2.268105

Sum squared resid 0.623316 Schwarz criterion -1.956164

Log likelihood 159.1587 Hannan-Quinn criter. -2.141362

F-statistic 74.68511 Durbin-Watson stat 1.018928

Prob(F-statistic) 0.000000

Tabla A5.26: Ecuación de corto plazo, modelo región 8 libre

Dependent Variable: DLOG(QL8)

Method: Least Squares

Sample (adjusted): 2005M04 2015M08

Included observations: 125 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.008477 0.016231 -0.522270 0.6024

DLOG(QL8(-1)) -0.392470 0.083806 -4.683072 0.0000

DLOG(IMA(-1)) 0.813317 0.337361 2.410820 0.0174

DLOG(IMA(-2)) 0.687430 0.339139 2.026987 0.0449

R8L(-1) -0.595118 0.233329 -2.550556 0.0120

R-squared 0.204516 Mean dependent var -0.002261

Adjusted R-squared 0.178000 S.D. dependent var 0.198698

S.E. of regression 0.180148 Akaike info criterion -0.550893

Sum squared resid 3.894414 Schwarz criterion -0.437761

Log likelihood 39.43084 Hannan-Quinn criter. -0.504934

F-statistic 7.712893 Durbin-Watson stat 2.083233

Prob(F-statistic) 0.000014

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.27: Ecuación de largo plazo, modelo región 9 total

Dependent Variable: LOG(Q9)

Method: Least Squares

Sample: 2005M01 2013M11

Included observations: 107

Variable Coefficient Std. Error t-Statistic Prob.

C -0.359916 0.142429 -2.526977 0.0132

LOG(IMA) 1.048006 0.038395 27.29568 0.0000

LOG(PER9) -0.039593 0.013584 -2.914776 0.0044

@SEAS(1) 0.113239 0.011884 9.528870 0.0000

@SEAS(2) 0.110189 0.012485 8.825880 0.0000

@SEAS(3) 0.062533 0.011594 5.393593 0.0000

@SEAS(4) 0.060104 0.011650 5.158988 0.0000

Page 129: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

111

@SEAS(5) 0.117757 0.011640 10.11669 0.0000

@SEAS(6) 0.136652 0.011744 11.63602 0.0000

@SEAS(7) 0.175666 0.011760 14.93698 0.0000

@SEAS(8) 0.154891 0.011699 13.23981 0.0000

@SEAS(9) 0.067830 0.011728 5.783520 0.0000

@SEAS(10) 0.063451 0.011585 5.476968 0.0000

R-squared 0.944967 Mean dependent var 4.409053

Adjusted R-squared 0.937942 S.D. dependent var 0.112413

S.E. of regression 0.028004 Akaike info criterion -4.199492

Sum squared resid 0.073716 Schwarz criterion -3.874756

Log likelihood 237.6728 Hannan-Quinn criter. -4.067849

F-statistic 134.5060 Durbin-Watson stat 0.608276

Prob(F-statistic) 0.000000

Tabla A5.28: Ecuación de corto plazo, modelo región 9 total

Dependent Variable: DLOG(Q9)

Method: Least Squares

Sample (adjusted): 2006M02 2013M12

Included observations: 95 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.005565 0.002459 -2.262802 0.0262

DLOG(Q9(-5)) -0.207434 0.079455 -2.610704 0.0107

DLOG(Q9(-12)) 0.349699 0.082585 4.234427 0.0001

DLOG(IMA) 0.454200 0.075778 5.993819 0.0000

DLOG(IMA(-4)) -0.193186 0.063560 -3.039438 0.0032

DLOG(IMA(-5)) 0.143569 0.057916 2.478937 0.0152

DLOG(IMA(-7)) 0.567608 0.088120 6.441338 0.0000

DLOG(IMA(-8)) 0.507981 0.079899 6.357825 0.0000

DLOG(IMA(-9)) 0.451985 0.074138 6.096533 0.0000

DLOG(IMA(-10)) 0.554448 0.081253 6.823727 0.0000

R9(-1) -0.321414 0.085331 -3.766667 0.0003

R-squared 0.851610 Mean dependent var 0.003379

Adjusted R-squared 0.833945 S.D. dependent var 0.054620

S.E. of regression 0.022258 Akaike info criterion -4.663745

Sum squared resid 0.041614 Schwarz criterion -4.368033

Log likelihood 232.5279 Hannan-Quinn criter. -4.544255

F-statistic 48.20766 Durbin-Watson stat 1.976026

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.29: Ecuación de largo plazo, modelo región 10 libre

Dependent Variable: LOG(QL10)

Method: Least Squares

Date: 10/27/15 Time: 12:15

Page 130: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

112

Sample (adjusted): 2008M01 2015M08

Included observations: 92 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 1.684600 0.010319 163.2446 0.0000

@SEAS(2) -0.114341 0.034995 -3.267335 0.0015

R-squared 0.106039 Mean dependent var 1.674658

Adjusted R-squared 0.096106 S.D. dependent var 0.099481

S.E. of regression 0.094580 Akaike info criterion -1.857249

Sum squared resid 0.805078 Schwarz criterion -1.802428

Log likelihood 87.43347 Hannan-Quinn criter. -1.835123

F-statistic 10.67548 Durbin-Watson stat 1.917226

Prob(F-statistic) 0.001538

No se presenta ecuación de corto plazo, por indicar el Durbin-Watson cointegración.

Tabla A5.30: Ecuación de largo plazo, modelo región 13 total

Dependent Variable: LOG(Q13)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 3.142301 0.137947 22.77906 0.0000

LOG(IMA) 0.906436 0.031754 28.54581 0.0000

LOG(CMG13) -0.038906 0.005597 -6.951246 0.0000

@SEAS(1) 0.093104 0.012814 7.266096 0.0000

@SEAS(2) 0.041399 0.013423 3.084209 0.0025

@SEAS(3) 0.060905 0.012958 4.700116 0.0000

@SEAS(5) 0.054348 0.013035 4.169319 0.0001

@SEAS(6) 0.078088 0.012836 6.083441 0.0000

@SEAS(7) 0.110624 0.012755 8.673158 0.0000

@SEAS(8) 0.092734 0.012715 7.293208 0.0000

R-squared 0.895748 Mean dependent var 7.227069

Adjusted R-squared 0.887796 S.D. dependent var 0.114035

S.E. of regression 0.038198 Akaike info criterion -3.617154

Sum squared resid 0.172174 Schwarz criterion -3.394339

Log likelihood 241.4978 Hannan-Quinn criter. -3.526623

F-statistic 112.6521 Durbin-Watson stat 0.632652

Prob(F-statistic) 0.000000

Tabla A5.31: Ecuación de corto plazo, modelo región 13 total

Dependent Variable: DLOG(Q13)

Method: Least Squares

Sample (adjusted): 2006M02 2015M08

Included observations: 115 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

Page 131: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

113

C 0.005711 0.002638 2.164966 0.0327

DLOG(Q13(-1)) -0.167768 0.059687 -2.810822 0.0059

DLOG(Q13(-12)) 0.501455 0.077754 6.449274 0.0000

DLOG(IMA) 0.917697 0.157579 5.823745 0.0000

DLOG(IMA(-2)) -0.214441 0.067036 -3.198872 0.0018

DLOG(IMA(-4)) -0.269456 0.072231 -3.730452 0.0003

DLOG(IMA(-5)) -0.199772 0.061135 -3.267720 0.0015

DLOG(IMA(-6)) -0.395618 0.081348 -4.863276 0.0000

DLOG(IMA(-11)) -0.195066 0.067732 -2.879981 0.0048

DLOG(IMA(-12)) -0.845425 0.151194 -5.591647 0.0000

R13(-1) -0.236708 0.070988 -3.334465 0.0012

R-squared 0.871940 Mean dependent var 0.002438

Adjusted R-squared 0.859627 S.D. dependent var 0.069231

S.E. of regression 0.025938 Akaike info criterion -4.375419

Sum squared resid 0.069971 Schwarz criterion -4.112860

Log likelihood 262.5866 Hannan-Quinn criter. -4.268847

F-statistic 70.81201 Durbin-Watson stat 1.960989

Prob(F-statistic) 0.000000

Tabla A5.32: Ecuación de largo plazo, modelo región 13 libre

Dependent Variable: LOG(QL13)

Method: Least Squares

Sample (adjusted): 2005M01 2014M12

Included observations: 120 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 5.008579 0.019581 255.7853 0.0000

DU1014 1.007834 0.028664 35.16038 0.0000

R-squared 0.912867 Mean dependent var 5.478901

Adjusted R-squared 0.912129 S.D. dependent var 0.528452

S.E. of regression 0.156649 Akaike info criterion -0.853086

Sum squared resid 2.895607 Schwarz criterion -0.806628

Log likelihood 53.18519 Hannan-Quinn criter. -0.834220

F-statistic 1236.252 Durbin-Watson stat 0.792448

Prob(F-statistic) 0.000000

Tabla A5.33: Ecuación de corto plazo, modelo región 13 libre

Dependent Variable: DLOG(QL13)

Method: Least Squares

Sample (adjusted): 2005M06 2015M08

Included observations: 123 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.006220 0.012126 0.512974 0.6089

DLOG(QL13(-4)) 0.265113 0.086710 3.057483 0.0028

R13L(-1) -0.283812 0.080541 -3.523803 0.0006

Page 132: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

114

R-squared 0.133037 Mean dependent var 0.008627

Adjusted R-squared 0.118587 S.D. dependent var 0.142947

S.E. of regression 0.134204 Akaike info criterion -1.154829

Sum squared resid 2.161273 Schwarz criterion -1.086240

Log likelihood 74.02201 Hannan-Quinn criter. -1.126968

F-statistic 9.207095 Durbin-Watson stat 2.233551

Prob(F-statistic) 0.000191

9) Modelos regionales de consumo regulado

Tabla A5.34: Ecuación de largo plazo, modelo región 2-3 regulados

Dependent Variable: LOG(Q23R)

Method: Least Squares

Sample (adjusted): 2010M05 2015M08

Included observations: 64 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.619464 0.407080 -1.521726 0.1338

LOG(IMA) 0.990446 0.085265 11.61612 0.0000

@SEAS(3) -0.085628 0.022077 -3.878598 0.0003

@SEAS(4) -0.224502 0.021833 -10.28252 0.0000

@SEAS(5) -0.197582 0.020264 -9.750242 0.0000

@SEAS(6) -0.190441 0.020360 -9.353736 0.0000

@SEAS(7) -0.144847 0.020349 -7.118246 0.0000

@SEAS(8) -0.149349 0.020295 -7.358895 0.0000

@SEAS(9) -0.127804 0.022093 -5.784749 0.0000

R-squared 0.883192 Mean dependent var 4.003434

Adjusted R-squared 0.866202 S.D. dependent var 0.121736

S.E. of regression 0.044529 Akaike info criterion -3.255645

Sum squared resid 0.109057 Schwarz criterion -2.952052

Log likelihood 113.1806 Hannan-Quinn criter. -3.136044

F-statistic 51.98219 Durbin-Watson stat 0.883264

Prob(F-statistic) 0.000000

Tabla A5.35: Ecuación de corto plazo, modelo región 2-3 regulados

Dependent Variable: DLOG(Q23R)

Method: Least Squares

Sample (adjusted): 2010M06 2014M12

Included observations: 55 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.008517 0.003828 2.225126 0.0314

DLOG(Q23R(-6)) -0.251159 0.059911 -4.192220 0.0001

DLOG(Q23R(-8)) -0.349648 0.066757 -5.237668 0.0000

DLOG(Q23R(-13)) 0.196040 0.070248 2.790684 0.0078

DLOG(IMA) 1.030877 0.104280 9.885677 0.0000

Page 133: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

115

DLOG(IMA(-1)) -0.518805 0.143132 -3.624651 0.0008

DLOG(IMA(-3)) -0.586574 0.130014 -4.511636 0.0000

DLOG(IMA(-4)) -0.513306 0.082195 -6.244952 0.0000

DLOG(IMA(-5)) -0.841713 0.103270 -8.150625 0.0000

DLOG(IMA(-8)) 0.483359 0.136461 3.542104 0.0010

DLOG(IMA(-10)) 0.853230 0.131058 6.510343 0.0000

R23R(-1) -0.410146 0.149221 -2.748584 0.0087

R-squared 0.906472 Mean dependent var 0.009642

Adjusted R-squared 0.882546 S.D. dependent var 0.074236

S.E. of regression 0.025442 Akaike info criterion -4.314616

Sum squared resid 0.027833 Schwarz criterion -3.876652

Log likelihood 130.6519 Hannan-Quinn criter. -4.145251

F-statistic 37.88676 Durbin-Watson stat 1.898493

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al

residuo rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.36: Ecuación de largo plazo, modelo región 4 regulados

Dependent Variable: LOG(QR4)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -1.011317 0.117163 -8.631702 0.0000

LOG(IMA) 1.171124 0.024866 47.09729 0.0000

@SEAS(1) 0.143054 0.012063 11.85884 0.0000

@SEAS(2) 0.131949 0.012340 10.69318 0.0000

@SEAS(4) -0.039027 0.011956 -3.264214 0.0014

@SEAS(5) -0.054753 0.011951 -4.581576 0.0000

@SEAS(6) -0.083464 0.011983 -6.965511 0.0000

@SEAS(7) -0.051800 0.011986 -4.321786 0.0000

@SEAS(8) -0.065146 0.011967 -5.443863 0.0000

@SEAS(9) -0.070624 0.012456 -5.669898 0.0000

@SEAS(10) -0.021033 0.012360 -1.701739 0.0915

R-squared 0.958108 Mean dependent var 4.437856

Adjusted R-squared 0.954528 S.D. dependent var 0.159166

S.E. of regression 0.033941 Akaike info criterion -3.846370

Sum squared resid 0.134783 Schwarz criterion -3.601274

Log likelihood 257.1677 Hannan-Quinn criter. -3.746786

F-statistic 267.5901 Durbin-Watson stat 0.658434

Prob(F-statistic) 0.000000

Page 134: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

116

Tabla A5.37: Ecuación de corto plazo, modelo región 4 regulados

Dependent Variable: DLOG(QR4)

Method: Least Squares

Sample (adjusted): 2005M08 2014M12

Included observations: 113 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.004867 0.003743 1.300495 0.1963

DLOG(QR4(-2)) 0.321066 0.083767 3.832855 0.0002

DLOG(QR4(-4)) -0.247902 0.077110 -3.214900 0.0017

DLOG(QR4(-6)) -0.502844 0.086026 -5.845279 0.0000

DLOG(IMA) 0.265344 0.081729 3.246621 0.0016

DLOG(IMA(-1)) 0.278453 0.087113 3.196459 0.0018

DLOG(IMA(-5)) -0.317996 0.083522 -3.807316 0.0002

R4R(-1) -0.309306 0.123303 -2.508506 0.0137

R-squared 0.610093 Mean dependent var 0.005416

Adjusted R-squared 0.584099 S.D. dependent var 0.060154

S.E. of regression 0.038794 Akaike info criterion -3.592961

Sum squared resid 0.158019 Schwarz criterion -3.399872

Log likelihood 211.0023 Hannan-Quinn criter. -3.514607

F-statistic 23.47070 Durbin-Watson stat 2.784970

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al

residuo rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.38: Ecuación de largo plazo, modelo región 5 regulados

Dependent Variable: LOG(QR5)

Method: Least Squares

Sample (adjusted): 2009M09 2015M08

Included observations: 72 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 1.083195 0.245804 4.406748 0.0000

LOG(IMA) 0.962289 0.048845 19.70092 0.0000

LOG(CMG5) -0.014795 0.011024 -1.342098 0.1844

@SEAS(1) 0.147828 0.013758 10.74468 0.0000

@SEAS(2) 0.126008 0.014431 8.731998 0.0000

@SEAS(4) -0.025756 0.013645 -1.887545 0.0637

@SEAS(8) -0.015274 0.013606 -1.122517 0.2659

@SEAS(9) -0.057022 0.014439 -3.949085 0.0002

@SEAS(10) -0.021333 0.014027 -1.520873 0.1333

R-squared 0.902510 Mean dependent var 5.593729

Adjusted R-squared 0.890130 S.D. dependent var 0.092880

S.E. of regression 0.030787 Akaike info criterion -4.007005

Sum squared resid 0.059712 Schwarz criterion -3.722422

Log likelihood 153.2522 Hannan-Quinn criter. -3.893712

F-statistic 72.90243 Durbin-Watson stat 1.314022

Prob(F-statistic) 0.000000

Page 135: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

117

Tabla A5.39: Ecuación de corto plazo, modelo región 5 regulados

Dependent Variable: DLOG(QR5)

Method: Least Squares Sample (adjusted): 2009M10 2015M08

Included observations: 71 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.006871 0.002443 2.812774 0.0067

DLOG(QR5(-5)) -0.179713 0.032945 -5.454868 0.0000

DLOG(QR5(-7)) -0.122098 0.035668 -3.423175 0.0011

DLOG(QR5(-12)) 0.149529 0.032114 4.656256 0.0000

DLOG(IMA) 0.743297 0.138564 5.364269 0.0000

DLOG(IMA(-2)) 0.342214 0.065303 5.240386 0.0000

DLOG(IMA(-3)) 0.250377 0.061180 4.092453 0.0001

DLOG(IMA(-6)) -0.442479 0.062668 -7.060730 0.0000

DLOG(IMA(-8)) -0.267282 0.055394 -4.825105 0.0000

DLOG(IMA(-9)) -0.419580 0.064286 -6.526746 0.0000

DLOG(IMA(-11)) -0.637159 0.063347 -10.05817 0.0000

DLOG(IMA(-12)) -0.443755 0.140102 -3.167361 0.0025

R5R(-1) -0.396653 0.120051 -3.304031 0.0016

R-squared 0.910025 Mean dependent var 0.003646

Adjusted R-squared 0.891410 S.D. dependent var 0.060162

S.E. of regression 0.019825 Akaike info criterion -4.839756

Sum squared resid 0.022796 Schwarz criterion -4.425463

Log likelihood 184.8114 Hannan-Quinn criter. -4.675005

F-statistic 48.88542 Durbin-Watson stat 2.319677

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al

residuo rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.40: Ecuación de largo plazo, modelo región 6 regulados

Dependent Variable: LOG(QR6)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.579477 0.161232 -3.594046 0.0005

LOG(IMA) 1.195712 0.034467 34.69155 0.0000

@SEAS(1) 0.157811 0.015799 9.988869 0.0000

@SEAS(2) 0.199103 0.016082 12.38047 0.0000

@SEAS(3) 0.160717 0.015728 10.21847 0.0000

@SEAS(8) -0.042252 0.015730 -2.686153 0.0083

@SEAS(9) -0.142344 0.016408 -8.675305 0.0000

@SEAS(10) -0.103690 0.016362 -6.337132 0.0000

@SEAS(11) -0.065695 0.016369 -4.013359 0.0001

Page 136: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

118

R-squared 0.933182 Mean dependent var 5.009594

Adjusted R-squared 0.928691 S.D. dependent var 0.177970

S.E. of regression 0.047525 Akaike info criterion -3.187408

Sum squared resid 0.268775 Schwarz criterion -2.986875

Log likelihood 212.9941 Hannan-Quinn criter. -3.105930

F-statistic 207.7461 Durbin-Watson stat 0.626027

Prob(F-statistic) 0.000000

Tabla A5.41: Ecuación de corto plazo, modelo región 6 regulados

Dependent Variable: DLOG(QR6)

Method: Least Squares

Date: 11/09/15 Time: 16:36

Sample (adjusted): 2005M08 2014M12

Included observations: 113 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.000208 0.004756 -0.043631 0.9653

DLOG(QR6(-6)) -0.413022 0.066313 -6.228343 0.0000

DLOG(IMA) 0.703080 0.114722 6.128543 0.0000

DLOG(IMA(-1)) 0.457858 0.121296 3.774710 0.0003

DLOG(IMA(-2)) 0.774508 0.118128 6.556534 0.0000

DLOG(IMA(-3)) 0.867715 0.116094 7.474249 0.0000

DLOG(IMA(-5)) -0.311072 0.105188 -2.957289 0.0038

DLOG(IMA(-6)) -0.548899 0.100789 -5.446007 0.0000

R6R(-1) -0.280708 0.099212 -2.829379 0.0056

R-squared 0.729514 Mean dependent var 0.005386

Adjusted R-squared 0.708707 S.D. dependent var 0.089315

S.E. of regression 0.048205 Akaike info criterion -3.150434

Sum squared resid 0.241662 Schwarz criterion -2.933208

Log likelihood 186.9995 Hannan-Quinn criter. -3.062286

F-statistic 35.06157 Durbin-Watson stat 2.019957

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.42: Ecuación de largo plazo, modelo región 7 regulados

Dependent Variable: LOG(QR7)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.799782 0.213709 -3.742391 0.0003

LOG(IMA) 1.205336 0.045650 26.40368 0.0000

@SEAS(1) 0.148124 0.021336 6.942390 0.0000

@SEAS(2) 0.220325 0.021950 10.03779 0.0000

@SEAS(3) 0.177041 0.021515 8.228766 0.0000

@SEAS(4) 0.072966 0.021507 3.392722 0.0009

Page 137: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

119

@SEAS(8) -0.066689 0.021239 -3.140002 0.0021

@SEAS(9) -0.168531 0.022122 -7.618123 0.0000

@SEAS(10) -0.134971 0.022053 -6.120341 0.0000

@SEAS(11) -0.089315 0.022059 -4.048852 0.0001

DU2 -0.348301 0.038101 -9.141565 0.0000

R-squared 0.904759 Mean dependent var 4.826205

Adjusted R-squared 0.896619 S.D. dependent var 0.195358

S.E. of regression 0.062813 Akaike info criterion -2.615283

Sum squared resid 0.461624 Schwarz criterion -2.370187

Log likelihood 178.3781 Hannan-Quinn criter. -2.515700

F-statistic 111.1464 Durbin-Watson stat 0.921556

Prob(F-statistic) 0.000000

Tabla A5.43: Ecuación de corto plazo, modelo región 7 regulados

Dependent Variable: DLOG(QR7)

Method: Least Squares

Sample (adjusted): 2005M04 2014M12

Included observations: 117 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.006982 0.008031 -0.869362 0.3865

DLOG(QR7(-1)) 0.438955 0.092035 4.769455 0.0000

DLOG(IMA) 1.461675 0.189499 7.713350 0.0000

DLOG(IMA(-2)) 0.673965 0.176033 3.828635 0.0002

R7R(-1) -0.455651 0.139886 -3.257307 0.0015

R-squared 0.365158 Mean dependent var 0.003393

Adjusted R-squared 0.342485 S.D. dependent var 0.105445

S.E. of regression 0.085503 Akaike info criterion -2.038743

Sum squared resid 0.818799 Schwarz criterion -1.920702

Log likelihood 124.2665 Hannan-Quinn criter. -1.990820

F-statistic 16.10546 Durbin-Watson stat 1.871093

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.44: Ecuación de largo plazo, modelo región 8 regulados

Dependent Variable: LOG(QR8)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 3.617150 0.300040 12.05555 0.0000

LOG(IMA) 0.395637 0.066539 5.945980 0.0000

@SEAS(3) 0.066452 0.011539 5.758948 0.0000

@SEAS(4) 0.022212 0.010993 2.020673 0.0456

Page 138: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

120

@SEAS(5) 0.076090 0.010821 7.031896 0.0000

@SEAS(6) 0.085159 0.010876 7.830153 0.0000

@SEAS(7) 0.110145 0.010906 10.09997 0.0000

@SEAS(8) 0.077989 0.010875 7.171313 0.0000

DU1014 -0.565998 0.047643 -11.87995 0.0000

DU2 -0.256212 0.026534 -9.656176 0.0000

DU3 -0.281003 0.042155 -6.665906 0.0000

DU1014*@TREND 0.005616 0.000794 7.070251 0.0000

@TREND^2 -8.18E-06 4.47E-06 -1.829234 0.0700

R-squared 0.909579 Mean dependent var 5.431454

Adjusted R-squared 0.900144 S.D. dependent var 0.104538

S.E. of regression 0.033034 Akaike info criterion -3.886535

Sum squared resid 0.125493 Schwarz criterion -3.596876

Log likelihood 261.7383 Hannan-Quinn criter. -3.768845

F-statistic 96.40237 Durbin-Watson stat 1.523057

Prob(F-statistic) 0.000000

Tabla A5.45: Ecuación de corto plazo, modelo región 8 regulados

Dependent Variable: DLOG(QR8)

Method: Least Squares

Sample (adjusted): 2005M08 2015M08

Included observations: 121 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.004525 0.005616 0.805582 0.4221

DLOG(IMA(-4)) -0.411457 0.117600 -3.498795 0.0007

DLOG(IMA(-6)) -0.629289 0.116765 -5.389368 0.0000

R8R(-1) -0.478565 0.176930 -2.704826 0.0079

R-squared 0.274515 Mean dependent var 0.001234

Adjusted R-squared 0.255913 S.D. dependent var 0.071266

S.E. of regression 0.061474 Akaike info criterion -2.707892

Sum squared resid 0.442155 Schwarz criterion -2.615469

Log likelihood 167.8275 Hannan-Quinn criter. -2.670356

F-statistic 14.75716 Durbin-Watson stat 2.065053

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.46: Ecuación de largo plazo, modelo región 9 regulados

Dependent Variable: LOG(QR9)

Method: Least Squares

Sample (adjusted): 2005M01 2015M08

Included observations: 128 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.440528 0.113167 -3.892717 0.0002

Page 139: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

121

LOG(IMA) 1.087155 0.030192 36.00815 0.0000

LOG(PER9) -0.065624 0.013280 -4.941667 0.0000

@SEAS(1) 0.114702 0.011817 9.706775 0.0000

@SEAS(2) 0.115338 0.012167 9.479682 0.0000

@SEAS(3) 0.062462 0.011680 5.347740 0.0000

@SEAS(4) 0.061019 0.011701 5.214936 0.0000

@SEAS(5) 0.122342 0.011695 10.46138 0.0000

@SEAS(6) 0.146128 0.011733 12.45427 0.0000

@SEAS(7) 0.182602 0.011742 15.55181 0.0000

@SEAS(8) 0.159243 0.011713 13.59543 0.0000

@SEAS(9) 0.073348 0.012171 6.026567 0.0000

@SEAS(10) 0.066697 0.012060 5.530323 0.0000

R-squared 0.950068 Mean dependent var 4.435933

Adjusted R-squared 0.944858 S.D. dependent var 0.132067

S.E. of regression 0.031012 Akaike info criterion -4.012834

Sum squared resid 0.110603 Schwarz criterion -3.723175

Log likelihood 269.8214 Hannan-Quinn criter. -3.895144

F-statistic 182.3458 Durbin-Watson stat 0.556353

Prob(F-statistic) 0.000000

Tabla A5.47: Ecuación de corto plazo, modelo región 9 regulados

Dependent Variable: DLOG(QR9)

Method: Least Squares

Sample (adjusted): 2005M08 2014M12

Included observations: 113 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.004493 0.003878 1.158645 0.2492

DLOG(QR9(-3)) -0.245421 0.079199 -3.098786 0.0025

DLOG(QR9(-4)) -0.411186 0.082579 -4.979287 0.0000

DLOG(QR9(-6)) -0.301321 0.084055 -3.584812 0.0005

DLOG(IMA) 0.312673 0.087639 3.567729 0.0005

R9R(-1) -0.249260 0.129644 -1.922652 0.0572

R-squared 0.466128 Mean dependent var 0.002472

Adjusted R-squared 0.441180 S.D. dependent var 0.054058

S.E. of regression 0.040410 Akaike info criterion -3.527826

Sum squared resid 0.174731 Schwarz criterion -3.383009

Log likelihood 205.3222 Hannan-Quinn criter. -3.469061

F-statistic 18.68448 Durbin-Watson stat 2.292129

Prob(F-statistic) 0.000000

La ecuación de corto plazo indica cointegración, pues el coeficiente asociado al residuo

rezagado es significativo, negativo y se encuentra entre 0 y 1 en valor absoluto.

Tabla A5.48: Ecuación de largo plazo, modelo región 10 regulados

Dependent Variable: LOG(QR10)

Method: Least Squares

Date: 10/27/15 Time: 12:18

Page 140: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

122

Sample (adjusted): 2009M02 2015M08

Included observations: 79 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C -0.425353 0.211929 -2.007050 0.0486

LOG(IMA) 1.227888 0.043450 28.25973 0.0000

LOG(CMG10) -0.042879 0.010218 -4.196178 0.0001

@SEAS(1) 0.092802 0.014767 6.284545 0.0000

@SEAS(2) 0.091625 0.014661 6.249797 0.0000

@SEAS(5) 0.046273 0.014072 3.288408 0.0016

@SEAS(6) 0.043835 0.013839 3.167437 0.0023

@SEAS(7) 0.057015 0.013800 4.131554 0.0001

R-squared 0.923130 Mean dependent var 5.204831

Adjusted R-squared 0.915551 S.D. dependent var 0.116276

S.E. of regression 0.033790 Akaike info criterion -3.841548

Sum squared resid 0.081065 Schwarz criterion -3.601603

Log likelihood 159.7411 Hannan-Quinn criter. -3.745419

F-statistic 121.8051 Durbin-Watson stat 1.666990

Prob(F-statistic) 0.000000

Tabla A5.49: Ecuación de corto plazo, modelo región 10 regulados

Dependent Variable: DLOG(QR10)

Method: Least Squares

Sample (adjusted): 2009M03 2015M08

Included observations: 78 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

C 0.007878 0.002000 3.937909 0.0002

DLOG(QR10(-1)) -0.190432 0.051903 -3.669021 0.0005

DLOG(QR10(-6)) 0.188513 0.050311 3.746933 0.0004

DLOG(QR10(-13)) -0.293835 0.050934 -5.768983 0.0000

DLOG(IMA) 0.661636 0.122996 5.379340 0.0000

DLOG(IMA(-4)) -0.260213 0.052447 -4.961432 0.0000

DLOG(IMA(-5)) -0.151077 0.046974 -3.216185 0.0020

DLOG(IMA(-6)) -0.437768 0.060366 -7.251936 0.0000

DLOG(IMA(-9)) -0.371679 0.046396 -8.011045 0.0000

DLOG(IMA(-11)) -0.393792 0.050584 -7.784857 0.0000

DLOG(IMA(-12)) -0.386010 0.120714 -3.197716 0.0021

R10R(-1) -0.374803 0.077968 -4.807117 0.0000

R-squared 0.931426 Mean dependent var 0.004539

Adjusted R-squared 0.919997 S.D. dependent var 0.060463

S.E. of regression 0.017102 Akaike info criterion -5.158625

Sum squared resid 0.019303 Schwarz criterion -4.796055

Log likelihood 213.1864 Hannan-Quinn criter. -5.013482

F-statistic 81.49672 Durbin-Watson stat 1.787601

Prob(F-statistic) 0.000000

Page 141: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

123

10) Modelo de autos eléctricos

Tabla A5.40: Ecuación de venta de automóviles

Dependent Variable: LOG(A)

Method: Least Squares

Sample: 1994 2014

Included observations: 21

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 3.0000)

Variable Coefficient Std. Error t-Statistic Prob.

C 4.932734 1.600447 3.082097 0.0061

LOG(PIB) 1.407856 0.306277 4.596674 0.0002

R-squared 0.696875 Mean dependent var 12.07987

Adjusted R-squared 0.680921 S.D. dependent var 0.433512

S.E. of regression 0.244878 Akaike info criterion 0.114280

Sum squared resid 1.139340 Schwarz criterion 0.213759

Log likelihood 0.800057 Hannan-Quinn criter. 0.135870

F-statistic 43.68035 Durbin-Watson stat 0.561511

Prob(F-statistic) 0.000003 Wald F-statistic 21.12941

Prob(Wald F-statistic) 0.000197

Page 142: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

124

ANEXO 6: MARKOV SWITCHING

El modelo Markov Switching intenta capturar patrones no lineales en el comportamiento de

algunas variables, los que no pueden ser recogidos por la gran mayoría de las regresiones

comúnmente empleadas en estudios econométricos. Algunas de estas no-linealidades tienen

que ver con asimetría en la distribución de la variable o la heterocedasticidad de la misma (series

que, por ejemplo, al encontrarse en niveles altos, también tienen mayor volatilidad), así con la

mayor o menor persistencia de este tipo de características en el tiempo, entre otras cosas. El

modelo M-S busca capturar, en particular, el comportamiento de variables que cambian de

estado, caracterizándose por procesos distintos a lo largo de la muestra (eventualmente lineales

cada uno de ellos). En éste, el cambio de un estado a otro es determinado por una variable no

observable que sigue un proceso cadena de Markov de primer orden, esto es, cuyo estado

actual depende de su estado en el período inmediatamente anterior. Es, por tanto, un modelo

eminentemente utilizado para describir datos correlacionados en el tiempo que presentan

múltiples patrones de comportamiento.

A modo de ejemplo, supongamos que una variable aleatoria 𝑦𝑡 puede comportarse de

acuerdo a 3 “estados posibles” (no observables), descritos de la siguiente forma:

Estado 1: 𝑦𝑡 = 𝛼1 + 𝜖𝑡1 donde 𝐸(𝜖𝑡

1) = 0 y 𝑉(𝜖1) = 𝜎12

Estado 2: 𝑦𝑡 = 𝛼2 + 𝜖𝑡2 donde 𝐸(𝜖𝑡

2) = 0 y 𝑉(𝜖2) = 𝜎22

Estado 3: 𝑦𝑡 = 𝛼3 + 𝜖𝑡3 donde 𝐸(𝜖𝑡

3) = 0 y 𝑉(𝜖3) = 𝜎32

El modelo estima una “Matriz de Transición”, en la que se representan las probabilidades

condicionales de pasar de un estado a otro. Dicha matriz es como sigue:

𝑇 = [

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

]

donde 𝑝11 es la probabilidad de permanecer en el estado 1, 𝑝12 es la probabilidad de pasar del

estado 1 al 2 y así sucesivamente. La sumatoria de cada una de las filas es igual a uno y la

probabilidad condicional del estado 𝑠𝑡+𝑖|𝑠𝑡 , con 𝑖 ∈ {1,2,3 … } se puede obtener de la i-esima

pitatoria de la matriz de transición. Este último punto nos permite, comenzando de un estado

observado, asociar probabilidades a cadenas de estados futuros. Por ejemplo, la probabilidad

de que, dado un 2015 en estado 1, el 2016 y 2017 tengan estado 2, será 𝑝1,2 ∗ 𝑝2,2.

El vector de parámetros, entonces, será 𝜃 = { 𝛼1, 𝛼2, 𝜎12, 𝜎2

2, 𝜎32, 𝑝11, 𝑝12, … , 𝑝33).

Page 143: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

125

Si los residuos se comportan bajo una distribución normal, la probabilidad de observar 𝑦𝑡 en el

estado 𝑗 será:

𝑓(𝑦𝑡|𝑠𝑡 = 𝑗; 𝜃) =1

√2𝜋𝜎𝑗2

exp (−(𝑦𝑡 − 𝜇𝑗)

2

2𝜎𝑗2 ) (𝐴. 1)

Donde 𝜇𝑗 = 𝐸(𝑦𝑡|𝑠𝑡 = 𝑗) = 𝛼𝑗 y 𝜎𝑗2 es la varianza de los residuos en el estado 𝑗. Tomando esta

distribución, los estimadores de máxima verosimilitud son (para más detalles respecto de la

estimación: Rabiner (1989) y Hamilton (1994)):

�̂�𝑗 =∑ 𝑦𝑡 ∗ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇

𝑡=1

∑ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇𝑡=1

(𝐴. 2)

�̂�𝑗2 =

∑ (𝑦𝑡 − �̂�𝑗)2

∗ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇𝑡=1

∑ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇𝑡=1

(𝐴. 3)

�̂�𝑖𝑗 =∑ 𝑃(𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗 |𝑦𝑡; 𝜃)𝑇

𝑡=1

∑ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇−1𝑡=1

(𝐴. 4)

Donde 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃) es la probabilidad de que el estado de 𝑦𝑡 sea 𝑗 , mientras

𝑃(𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗 |𝑦𝑡; 𝜃) es la probabilidad de que el estado en 𝑡 sea 𝑖 y en 𝑡 + 1 sea 𝑗. Además,

∑ 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃)𝑇−1𝑡=1 es la cantidad esperada de transiciones desde el estado 𝑖 a cualquier otro y

∑ (𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗 |𝑦𝑡; 𝜃)𝑇𝑡=1 la cantidad esperada de transiciones del estado 𝑖 al 𝑗.

La estimación del vector de parámetros 𝜃 puede realizarse (algoritmo de Baum-Welch) fijando

un valor inicial 𝜃0, el que utilizamos para calcular (𝐴. 1) − (𝐴. 4) , y con estas ecuaciones construir

nuevas estimación de 𝜃, llámense 𝜃1. El proceso se itera entonces hasta lograr convergencia,

esto es, hasta que 𝜃𝑛+1 y 𝜃𝑛 difieran por un mínimo nivel de tolerancia.

Una vez estimada la matriz de transición, la probabilidad incondicional de cada estado podrá

calcularse como:

�̂�𝑗 = lim𝑡 ⟶∞

𝑃(𝑠𝑡 = 𝑗 |𝑠1 = 𝑖) (𝐴. 5)

Esta expresión captura el hecho de que a medida que la condicionalidad se refiere a un período

más lejano, el sentido de la misma se va diluyendo, por lo que llegamos a la probabilidad

incondicional. Es más, la enésima pitatoria de la matriz converge a las probabilidades

incondicionales, 𝜋𝑗, por lo que la estimación podrá realizarse de esta forma, escogiendo un “n”

suficientemente alto.

Page 144: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

126

Ahora bien, si los estados en cada período son observables (p.ej.: soleado, nublado, lluvioso),

entonces 𝑃(𝑠𝑡 = 𝑗 |𝑦𝑡; 𝜃) tomará el valor de 1 en el estado correcto y 0 en los demás, al igual

que 𝑃(𝑠𝑡 = 𝑖, 𝑠𝑡+1 = 𝑗 |𝑦𝑡; 𝜃) tomará el valor de 1 sólo en la transición efectivamente ocurrida. Con

esto, los estimadores arriba mencionados se simplifican tremendamente, a lo siguiente:

�̂�𝑗 =∑ 𝑦𝑡

𝑇𝑡=1 ∗ 𝐼(𝑠𝑡 = 𝑗)

𝑇𝑗

(𝐴. 6)

�̂�𝑗2 =

∑ (𝑦𝑡 − �̂�𝑗)2

∗ 𝐼(𝑠𝑡 = 𝑗)𝑇𝑡=1

𝑇𝑗

(𝐴. 7)

�̂�𝑗 =𝑇𝑗

𝑇 (𝐴. 8)

�̂�𝑖𝑗 =𝑛𝑖𝑗

∑ 𝑛𝑖𝑗3𝑗=1

(𝐴. 9)

Donde 𝐼(𝑠𝑡 = 𝑗) es una función indicador, que toma el valor de 1 si el estado en 𝑡 es 𝑗 y 0 en caso

contrario, 𝑇𝑗 es la cantidad de períodos que muestran un estado 𝑗, 𝑇 es el total de períodos y 𝑛𝑖𝑗

es la cantidad observada de transiciones del estado 𝑖 al 𝑗. Puesto que en este caso podemos

distinguir período a período el estado de la variable 𝑦𝑡 , los estimadores anteriores son fácilmente

calculables en un programa sencillo en, por ejemplo, Excel.

Page 145: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

127

ANEXO 7: DESPLIEGUE ESPERADO DE LA

AUTOGENERACIÓN EN CHILE

El presente anexo tiene como objetivo proyectar la dinámica que seguirá la autogeneración en

Chile. Las conclusiones de nuestro análisis muestran que dado el acelerado despliegue de la

energía ERNC en grandes formatos, existirán pocos incentivos para que la autoridad política

implemente subsidios específicos para la autogeneración, ello por cuanto las metas de

generación en base a fuentes de ERNC (y las futuras respecto a la disminución de emisiones de

carbono) se encuentran prácticamente aseguradas en las condiciones actuales que permitirán

que en el corto plazo un 33% de la capacidad instalada provenga de fuentes ERNC. En este

contexto, la viabilidad de la autogeneración dependerá de si los ahorros de costos en

transmisión que ella permite son capaces de compensar sus menores rendimientos a escala.

Nuestras estimaciones muestran que ello no resulta probable, y, en dicho contexto estimamos

que la autogeneración no representará en el futuro previsible una parte significativa del

aprovisionamiento energético del sector residencial. En lo que sigue desarrollamos nuestros

argumentos:

1. En Chile, el despliegue de las tecnologías ERNC se desarrolla bajo condiciones de

mercado, sin subsidios y va a representar una porción significativa de la generación.

2. Los países con autogeneración significativa desarrollaron políticas que implican

subsidios.

En Estados Unidos, en 1978, el congreso aprobó el Public Utility Regulatory Policy o PURPA. Esta

acta permitió que productores independientes de energía pudieran interconectarse al sistema

de distribución eléctrica. La ley buscaba disminuir le demanda vía la autogeneración y

aumentar la oferta de energías renovables en el sistema. Sin embargo, debido a los altos precios

de los módulos fotovoltaicos, esta ley no generó incentivos para la autogeneración residencial

debido a que solo permitía la conexión al sistema de distribución, condición análoga a la que

hoy se observa en Chile. Sin embargo esta realidad cambió sólo cuando se desarrollaron

políticas de incentivos explícitas. Así las cosas, surgió el Energy Tax Act (ETA) durante el mismo

año, en respuesta a la crisis energética debido a la crisis del petróleo. Esta acta motivaba a los

dueños de residencia a invertir en generación solar y eólica de menor escala. Subsidios fueron

entregados para acelerar las inversiones como también beneficios tributarios de hasta un 30%

de descuento. Adicionalmente existen 7 estados que han desarrollado políticas de fomento

adicional a la autogeneración en base a ERNC, tal es el caso de Hawaii, Maine, Oregon, Rhode

Page 146: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

128

Island, Vermont y Washington. Estas políticas han permitido que a la fecha exista una capacidad

instalada de 18 GW de generación fotovoltaica. Particularmente, si bien federalmente existen

beneficios tributarios, existen otros tipos de fomentos locales mandatarios como es el caso de los

estados mencionados. A modo de ejemplo, los utilities no pueden tener más del 50% de los

proyectos para permitir la entrada de nuevos participantes. Lo anterior sumado a rebate rates

que deben pagar por generar con tecnologías con emisiones de carbono ha permitido el

constate desarrollo de los standard offer contract o los feed-in tariff desplegando un alta

generación solar residencial. Aquí es donde entran empresas como Solarcity o Sunrun las cuales

ofrecen la instalación de paneles residenciales a cero costo a cambio de un Power Purchase

Agreement (PPA) lo que permite un ahorro en la cuenta eléctrica. De esta forma, los residentes

no tienen que incurrir en la inversión inicial y mantenimiento del proyecto.

También existen estados, en los cuales el despliegue ha sido más lento, y ofrecen la opción para

optar a un feed-in tariff, pero esta no es obligatoria como en los estados mencionados

inicialmente.

En Europa, existe un sistema similar que consiste en los Feed-In-Tariff que se aplica a nivel

residencial para los sistemas de autogeneración y permite que los residentes vendan la energía

que autogeneran a precios que exceden el retail price. La definición de este pago, denominado

avoided costs, ha ido variando con el tiempo a medida que la tecnología ha madurado y sus

costos de inversión disminuyen. El primer país europeo en adoptar esta política fue Alemania en

1990 seguido por Suiza e Italia en 1991 y 1992 respectivamente en busca de reducir las emisiones

carbono. La política implementada por Alemania e Italia permitió que a finales del año 2014

fueran el primer y cuarto país con mayor capacidad fotovoltaica instalada en el mundo con 38

GW y 18 GW respectivamente. Un 4% y 6% de la energía generada es solar en Alemania e Italia

respectivamente.

Ambos casos corresponden a los únicos en donde la autogeneración ha alcanzado magnitudes

relevantes. Finalmente, donde el despliegue de generación solar ha sido mayor (Alemania,

China, Japón, Italia y Estados Unidos), todos cuentan con algún tipo de subsidio u otra distorsión.

3. La autogeneración no es rentable.

La autogeneración en base a ERNC, como cualquier otra, sólo se justifica cuando los menores

costos que implica la autogeneración son inferiores a los que se esperan de un sistema integrado

en que la energía es producida por una utility, y luego es transportada y distribuida hasta el

punto de consumo. En este caso en particular, la autogeneración será rentable únicamente si

Page 147: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

129

su costo resulta inferior al que representa la generación en una unidad de mayor tamaño

añadido al transporte y la distribución. En otras palabras, la autogeneración resultará rentable

únicamente si los menores rendimientos a escala que ella implica son inferiores al mayor costo

de transmisión y distribución que representa la generación en grandes unidades.

Dicho lo anterior, lo primero que cabe cuantificar es la deferencia de rendimientos a escala que

representa la generación residencial versus la que se observa en una utility. La Figura A7.1da

cuenta de esta brecha que resulta estable en el tiempo y que al segundo trimestre del año 2015

alcanza los 2,01 US$ por watt instalado. El Cuadro A7.1 estima la diferencia de costo de

generación por kWh que se representan ambas tecnologías suponiendo tasas de descuento y

rendimientos acordes a los observados en este tipo de instalaciones, los resultados indican que

el costo por kWh generado de la generación residencial y a gran escala ascienden a 0,07 US$ y

0,18 US$ por kW respectivamente, estos presentan una diferencia de 0,11 US$ por kWh generado.

Ahora bien, esa diferencia debe ser comparada con el costo de transmisión y distribución de la

energía en el sistema eléctrico que asciende a 0,04 US$ por kWh21. Lo anterior implica que no

resulta rentable la autogeneración respecto a la alternativa de generar en una utility. Nótese

que esta es la comparación relevante ya que, en ambos casos el costo de oportunidad de la

energía generada en exceso o en déficit es esencialmente el mismo y corresponde al precio de

mercado de la energía en los horarios de déficit o excedencia de generación en relación al

consumo.

Figura A7.1: Precio del módulo instalado en USA, 2010-2015

Fuente: elaboración propia a partir del SEIA22

21 Una cuenta típica puede ser desglosada en 60% la generación de energía, un 24% la transmisión y un 16% el IVA. Con una regla de tres entre los 110 US$/MWh de la generación y los porcentajes se puede obtener los 44 US$/MWh de costes de transmisión. Chilectra, Derechos y Deberes del Cliente de Chilectra.

22 Solar Energy Industries Association, U.S. Solar Market Insight.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

US$

/W

Residencial No Residencial Utility

Page 148: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

130

Cuadro A7.1: Estimación del Costo por kilowatt generado

Item Unidad Utility Residencial

Costo del Panel US$/kW 1,490 3,500

Factor de Planta % 25% 23%

Tasa de Descuento % 10% 10%

Costo de Generación23 US$/kW 0.07 0.18

Fuente: elaboración propia a partir de precios reportados en el SEIA

Dicho lo anterior, estimamos de baja probabilidad el despliegue de autogeneración en Chile. La

brecha de inversión que representa la inversión en solar residencial respecto a las plantas de

gran escala no puede ser compensada por al ahorro de costos en transmisión que implica.

Además, estimamos poco probable que se introduzcan mecanismos que incentiven la

autogeneración cuando las metas de ERNC se cumplirán a partir de la generación a gran escala

que se estima alcanzarán los 6 GW de potencia instalada en el SIC al año 2020.

23 C. de Generación =C. del Panel×T. de Descuento

F. de planta×24×365.

Page 149: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

ANEXO 8: DETALLE DE PROYECCIONES

Las proyecciones anuales y mensuales por tipo de cliente para los agregados (Total, SIC, SING)

así como para las regiones, se encuentran en el archivo Excel adjunto ‘Anexo 8.1’.

En ‘Anexo 8.2’, en tanto, puede encontrarse el detalle de las proyecciones para grandes

mineras.

Page 150: Estudio de Previsión de Demanda 2015-2035 (2050) … · En el marco de las previsiones de demanda de corto, mediano y largo plazo que la Dirección de Planificación y Desarrollo

132

ANEXO 9: NORMALIZACIÓN DE PROYECCIONES

Las proyecciones que resultan de los modelos econométricos y de la Gran Minería son ajustados

para que los agregados coincidan con la suma de sus partes. Así, por ejemplo, un rimer ajuste

se realiza al total proyectado para el SIC y SING, de modo de que su suma coincida con la

demanda global. Luego se procede de igual forma al interior de cada sistema (regulado + libre

= total del sistema) y por región (suma de regiones = total SIC, suma de demanda libre regional

= libre SIC, suma de demanda regulada regional = regulada SIC).

Para esto, se utiliza como criterio el R2 de las regresiones. En efecto, la proyección original es

tomada como la final con una probabilidad igual al R2, mientras que con probabilidad 1- R2 la

proyección será más bien la original ponderada por un factor común a las zonas desagregadas

que se desea ajustar. Dicho factor será mayor a 1 si la suma de las proyecciones desagregadas

resulta menor a la proyección agregada (así se ajustarán al alza), y será menor a 1 en caso

contrario. En consecuencia, la proyección final será:

𝑄𝑡𝑓𝑖𝑛𝑎𝑙

= 𝑅2 ∗ 𝑄𝑡𝑚𝑜𝑑𝑒𝑙𝑜 + (1 − 𝑅2) ∗ 𝜆𝑡 ∗ 𝑄𝑡

𝑚𝑜𝑑𝑒𝑙𝑜

Donde 𝜆𝑡 es el ponderador que toma el valor tal que la suma de las desagregaciones calza con

el agregado. A modo de ejemplo, este ponderador para el caso del ajuste SIC+SING=Total,

adopta la siguiente expresión, que puede ser generalizada a todos los casos:

𝜆𝑡 =𝑄𝑇𝑜𝑡𝑎𝑙 − 𝑅2(𝑄𝑡

𝑚𝑜𝑑𝑒𝑙𝑜𝑆𝐼𝐶 + 𝑄𝑡𝑚𝑜𝑑𝑒𝑙𝑜𝑆𝐼𝑁𝐺)

(1 − 𝑅2)(𝑄𝑡𝑚𝑜𝑑𝑒𝑙𝑜𝑆𝐼𝐶 + 𝑄𝑡

𝑚𝑜𝑑𝑒𝑙𝑜𝑆𝐼𝑁𝐺)

Adicionalmente, se utilizan las siguientes penalizaciones al 𝑅2 en casos particulares:

- Penalización de 0,1 si el modelo no es estimado con la totalidad de los datos disponibles,

desde enero 2005

- En consumo libre, las regiones III-VI son penalizadas ya que las proyecciones no sólo

consideran el modelo econométrico, sino además las previsiones de las grandes mineras.

En estos 4 casos la penalización es igual a la participación del consumo de las grandes

mineras sobre el total regional.