7
Método de Deformaciones Angulares Introducción: Método utilizado para la resolución de Estructuras Hiperestáticas continuas y aporticadas, considerando como incógnitas básicas los giros y desplazamientos en los nudos. Este método se enmarca dentro de los métodos clásicos de solución de una estructura hiperestática plana, en la cual la principal deformación de la estructura es por flexión. Se requiere que los elementos que forman la estructura sean: • Rectos. • Inercia constante entre tramos. • Deformaciones pequeñas (giros y desplazamientos). • Módulo de elasticidad constante entre tramos. Metodología: El método de deformaciones angulares se basa en expresar los momentos de extremo de los miembros de estructuras hiperestáticas en función de los giros y deflexiones observadas en los nudos, teniendo como supuesto que si bien los nudos pueden girar o reflectarse, los ángulos entre los elementos que convergen al nudo se mantienen constantes. Se enfatiza que este método sólo considera el efecto de la flexión sobre los elementos y omite el efecto del corte y axial. Las etapas del método son las siguientes: 1. Identificar los grados de libertad de la estructura, que se definen como los giros

Método de Deformaciones Angulares

Embed Size (px)

DESCRIPTION

Concepto y Ejercicios

Citation preview

Page 1: Método de Deformaciones Angulares

Método de Deformaciones AngularesIntroducción:Método utilizado para la resolución de Estructuras Hiperestáticas continuas y aporticadas, considerando como incógnitas básicas los giros y desplazamientos en los nudos.

Este método se enmarca dentro de los métodos clásicos de solución de una estructura hiperestática plana, en la cual la principal deformación de la estructura es por flexión.

Se requiere que los elementos que forman la estructura sean:

• Rectos.

• Inercia constante entre tramos.

• Deformaciones pequeñas (giros y desplazamientos).

• Módulo de elasticidad constante entre tramos.

Metodología:El método de deformaciones angulares se basa en expresar los momentos de extremo de los miembros de estructuras hiperestáticas en función de los giros y deflexiones observadas en los nudos, teniendo como supuesto que si bien los nudos pueden girar o reflectarse, los ángulos entre los elementos que convergen al nudo se mantienen constantes.

Se enfatiza que este método sólo considera el efecto de la flexión sobre los elementos y omite el efecto del corte y axial.

Las etapas del método son las siguientes:

1. Identificar los grados de libertad de la estructura, que se definen como los giros

(θ) o desplazamientos (∆) a nivel de nudos que puedan producirse.

Cuando se carga una estructura, algunos puntos específicos de ella, sufrirán desplazamientos. A esos desplazamientos se les llama Grados de Libertad.

Page 2: Método de Deformaciones Angulares

Armaduras: 2 GDL por cada nudo

Pórticos: 3 GDL por cada nudo en el plano o 6 GDL por cada nudo en el espacio

Ejemplos Vigas:

1 GDL

4 GDL

Ejemplos Pórticos:

9 GDL

Page 3: Método de Deformaciones Angulares

3 GDL

2. Una vez definidos los grados de libertad, que serán las variables incógnitas del problema, se plantean los momentos de extremo para cada elemento de la estructura, usando la siguiente fórmula general:

Vigas:

M AB=2E I ABLAB (2θ A+θB−

3∆LAB )+M A

E

M BA=2 E I ABLAB (2θB+θA− 3∆LAB )+M B

E

Dónde:

θA : Giro incógnita en extremo A, en sentido antihorario θB : Giro incógnita en extremo B, en sentido antihorario ∆ : Desplazamiento relativo entre los nudos A y B. Sera positivo si

la cuerda AB gira en sentido antihorario, de lo contrario será negativo.

M AE : Momento de empotramiento perfecto en extremo A debido a

cargas de tramo (se determina mediante tablas) M B

E : Momento de empotramiento perfecto en extremo B debido a cargas de tramo (se determina mediante tablas).

3. Una vez que se han planteado los momentos de extremo para cada elemento de la estructura, se plantean las ecuaciones de:

• Equilibrio rotacional en cada nudo de la estructura.

• Condiciones de borde, en caso de extremos rotulados.

• Equilibrio horizontal o vertical, en el caso que la estructura tenga desplazamientos laterales.

Esto genera un sistema lineal de ecuaciones. Resolviendo se obtienen los valores de los giros y desplazamientos de los nudos.

4. Finalmente, se evalúan los momentos de extremo, lo cual permite calcular las reacciones de la estructura.

Page 4: Método de Deformaciones Angulares

Pórticos:

MN=2 Ek (2θN+θF−3Ψ )+(FEM )N : Para claro interno o claro extremo con extremo alejado empotrado.

MN=¿ Momento de inercia en el extremo cercano del claro, este momento es positivo en sentido de las manecillas del reloj al actuar sobre el claro.

E y k=¿ Módulo de elasticidad del material y rigidez del claro: k= IL

θN yθF=¿ Pendiente de los extremos cercanos y alejados o desplazamientos angulares del claro en los soportes; los ángulos se miden en radianes y son en sentido de las manecillas del reloj.

ψ=¿ Rotación de la cuerda del claro debido a un desplazamiento lineal, esto es: ψ=∆

L .Este ángulo se mide en radianes y son positivos si son en sentido de las manecillas del reloj.

(FEM )N=¿ Momento de empotramiento en el soporte cercano; el momento es positivo si es en sentido de las manecillas del reloj al actuar sobre el claro; ver en la tabla.

Ejemplo 1Para la viga que se indica, determinar las reacciones mediante método DVI. Considerar EI=.cte.

Solución:

1. La viga continua posee cuatro grados de libertad:θA ,θB ,θC y θD. No hay desplazamientos laterales de nudos.

2. Momentos de extremo

Page 5: Método de Deformaciones Angulares

M AB=2EI5 (2θA+θB )+ 200. 5

2

12

M BA=2 EI5 (2θB+θ A )−200. 5

2

12

MBC=2 EI4 (2θB+θC )

MCB=2 EI4 (2θC+θB )

MCD=2EI4 (2θC+θD )+ 300. 4

2

12+ 400.4

8

MDC=2 EI4 (2θD+θC )+300. 4

2

12+ 400.4

8

3. Equilibrio rotacional en cada nudo de la estructura

NudoB :M BA+MBC=0→2EI5 (2θB+θA )−200.5

2

12+2 EI4 (2θB+θC )=0

4 θA+18θB+5θC=125003 EI

(1)

NudoC :MCB+MCD=0→2 EI4 (2θC+θB )+ 2EI4 (2θC+θD )+ 300. 4

2

12+ 400.4

8=0

θB+4θC+θD=1200EI

(2)

Condicio deborde en A :M AB=0→2 EI5 (2θA+θB )+200. 5

2

12=0

2θA+θB=31253EI

(3)

Condicion deborde en D :M DC=0→2 EI4 (2θD+θC )−300. 4

2

12−400.4

8=0

θC+2θD=1200EI

(4 )

4. Resolviendo simultáneamente (1), (2), (3) y (4) se tiene: θA=−823.54

EI,θB=

605.41EI

,θC=−687.26

EIy θD=

943.63EI

Page 6: Método de Deformaciones Angulares

5. Evaluando los momentos: M AB=0 , M AB=−261.76 kg−m,MBC=261.78 kg−m ,MCB=−384.56 kg−m ,MCD=384.56 kg−m,MDC=0

MCD=384.56KG−m,MDC=0

6. Calculo de reacciones:

EnViga AB :∑ MB=0→−5R A+20052

2−261.8=0→R A=447.6 [kg ](↑)

∑ FV=0→RA+RB−i−200∙5=0→RB−i=552.4 [kg ] (↑ )

EnViga BC :∑MC=0→−4 RB−d+261.8−384.6=0→RB−d=30.7 [kg ] (↓)

∑ FV=0→RB−d+RC−i=0→RC−i=30.7 [kg ] (↑ )

EnVigaCD :∑ MC=0→384.6+4 RD−300 ∙42

2−400 ∙2=0→RD=703.9 [kg ] (↑)

∑ FV=0→RC−d+RD−300 ∙4−400=0→RC−d=896.1 [kg ](↑)

Finalmente :R A=447.1 [kg ] (↑ ); RB=521.7 [kg ] (↑ ) ;RC=926.8 [kg ] (↑ ) ;RD=703.9 [kg ] (↑ )