of 12 /12
"MONORRIEL-W.xls" Programa Versión 2.0 1 of 12 08/14/2022 ANÁLISIS DE VIGA MONORRIEL Monorriel Colgante Analizado como Luz Simple con / sin Voladizo Para perfiles- Por AISC 9na Edición Manual ASD y Especificaciones CMAA No. 74 (2004) Proyecto: MONORRIEL REACTORES JABONERA Tema: REVISIÓN DE VM-6 (Viga Mon Numero: Creado: J.I.G.M Revisado: Datos: RL(min)=0.49 RR(max)=6.06 Perfil del Monorriel: L=20.21 Lo=0 Seleccionar: W8x48 x=10.105 Parámetros de Diseño: S=0 Viga Fy = 36 ksi Luz de Viga, L = 20.2100 ft. W8x48 Luz Sin Soporte, Lb = 20.2100 ft. Coef. Flexión, Cb = 1.00 Pv=5.572 bf/ Luz en Voladizo, Lo = 0.0000 ft. Nomenclatura uz Sin Soporte, Lbo = 0.0000 ft. Coef. Flexión, Cbo = 1.00 W8x48 Propiedades del Elemento: Carga Izada, P = 4.410 kips A = 14.10 in.^2 d/Af = 1.53 Peso Carrete, Wt = 0.400 kips d = 8.500 in. Ix = 184.00 eso Cabrestante, Wh = 0.100 kips tw = 0.400 in. Sx = 43.20 r Impact. Vert., Vi = 15 % bf = 8.110 in. Iy = 60.90 t. Carga Horz., HLF = 10 % tf = 0.685 in. Sy = 15.00 o. Total Ruedas, Nw = 2 k= 1.080 in. J = 1.960 Esp. Ruedas, S = 0.0000 ft. rt = 2.230 in. Cw = 930.0 stancia en Patín, a = 0.3750 in. Reacciones en los Apoyos: (sin voladizo) Resultados: 6.06 = Pv+w/1000*L/2 0.49 = 0+w/1000*L/2 Parámetros y Coeficientes: Pv = 5.572 kips Pv = P*(1+Vi/100)+Wt+Wh (carga vertical) Pw = 2.786 kips/rueda Pw = Pv/Nw (carga por rueda de carrete) Ph = 0.441 kips Ph = HLF*P (carga horizontal) ta = 0.685 in. ta = tf (para perfiles-W) 0.097 Cxo = -1.903 Cx1 = 0.535 Czo = 0.192 Cz1 = 2.319 Es Es d/tw<=per Momentos Flexionantes para Luz Simple: Es b/t<=65/S x = 10.105 ft. x = L/2 (localización del momento máximo del extremo iz Es b/t>95/S Mx = 30.60 ft-kips Mx = Pv/*L/4+w/1000*L^2/8 My = 2.23 ft-kips My = Ph*L/4 (por Manual de Diseño en Acero US Momento Lateral Flexionante por Torsión en el Patín para Luz Simple: e = 4.250 in. e = d/2 (asumir carga horizontal tomada en el patín inf at = 35.051 at = SQRT(E*Cw/(J*G)) , E=29000 ksi and G=11200 ksi Mt = 0.35 ft-kips Mt = Ph*e*at/(2*(d-tf))*TANH(L*12/(2*at))/12 Usa Esfuerzos Eje-X para Luz Simple: fbx = 8.50 ksi fbx = Mx/Sx Lb/rt = 108.75 Lb/rt = Lb*12/rt RR(max) = RL(min) = l = l = 2*a/(bf-tw) Cxo = -2.110+1.977*l+0.0076*e^(6.53*l) Cx1 = 10.108-7.408*l-10.108*e^(-1.364*l) Czo = 0.050-0.580*l+0.148*e^(3.015*l) Cz1 = 2.230-1.490*l+1.390*e^(-18.33*l)

MONORRIEL-W

Embed Size (px)

Citation preview

Page 1: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

1 of 6 04/07/2023

ANÁLISIS DE VIGA MONORRIELMonorriel Colgante Analizado como Luz Simple con / sin Voladizo Para perfiles-W

Por AISC 9na Edición Manual ASD y Especificaciones CMAA No. 74 (2004)Proyecto: MONORRIEL REACTORES JABONERA Tema: REVISIÓN DE VM-6 (Viga Monorriel)Numero: Creado: J.I.G.M Revisado: L.R

###Datos: ###

RL(min)=0.49 RR(max)=6.06 ta =Perfil del Monorriel: L=20.21 Lo=0

Seleccionar: W8x48 x=10.105 Cxo =Parámetros de Diseño: S=0 Cx1 =

Viga Fy = 36 ksi Czo =Luz de Viga, L = 20.2100 ft. W8x48 Cz1 =

Luz Sin Soporte, Lb = 20.2100 ft. Radios de Sección y Parámetros:Coef. Flexión, Cb = 1.00 Pv=5.572 bf/(2*tf) =

Luz en Voladizo, Lo = 0.0000 ft. Nomenclatura d/tw =Luz Sin Soporte, Lbo = 0.0000 ft. Qs =

Coef. Flexión, Cbo = 1.00 W8x48 Propiedades del Elemento:Carga Izada, P = 4.410 kips A = 14.10 in.^2 d/Af = 1.53 For Lo = 0 (sin voladizo):

Peso Carrete, Wt = 0.400 kips d = 8.500 in. Ix = 184.00 in.^4Peso Cabrestante, Wh = 0.100 kips tw = 0.400 in. Sx = 43.20 in.^3Factor Impact. Vert., Vi = 15 % bf = 8.110 in. Iy = 60.90 in.^4Fact. Carga Horz., HLF = 10 % tf = 0.685 in. Sy = 15.00 in.^3No. Total Ruedas, Nw = 2 k= 1.080 in. J = 1.960 in.^4

Esp. Ruedas, S = 0.0000 ft. rt = 2.230 in. Cw = 930.0 in.^6Distancia en Patín, a = 0.3750 in. x =

Reacciones en los Apoyos: (sin voladizo) Mx =Resultados: 6.06 = Pv+w/1000*L/2 My =

0.49 = 0+w/1000*L/2 Momento Lateral Flexionante por Torsión en el Patín para Luz Simple:Parámetros y Coeficientes: e =

Pv = 5.571 kips Pv = P*(1+Vi/100)+Wt+Wh (carga vertical) at =Pw = 2.786 kips/rueda Pw = Pv/Nw (carga por rueda de carrete) Mt =Ph = 0.441 kips Ph = HLF*P (carga horizontal) Esfuerzos Eje-X para Luz Simple:ta = 0.685 in. ta = tf (para perfiles-W) fbx =

0.097 Lc =Cxo = -1.903 Lu =Cx1 = 0.535 Lb/rt =Czo = 0.192 fa/Fy =Cz1 = 2.319 Es Lb<=Lc?

Es d/tw<=permisible?Momentos Flexionantes para Luz Simple: Es b/t<=65/SQRT(Fy)?

x = 10.105 ft. x = L/2 (localización del momento máximo del extremo izq. De la luz simple)Es b/t>95/SQRT(Fy)?Mx = 30.60 ft-kips Mx = Pv/*L/4+w/1000*L^2/8 Fbx =My = 2.23 ft-kips My = Ph*L/4 Fbx =

(por Manual de Diseño en Acero USS, 1981)Momento Lateral Flexionante por Torsión en el Patín para Luz Simple: Fbx =

e = 4.250 in. e = d/2 (asumir carga horizontal tomada en el patín inferior) Fbx =at = 35.051 at = SQRT(E*Cw/(J*G)) , E=29000 ksi and G=11200 ksi Fbx =

Mt = 0.35 ft-kips Mt = Ph*e*at/(2*(d-tf))*TANH(L*12/(2*at))/12 Fbx =Usar: Fbx =

Esfuerzos Eje-X para Luz Simple: Esfuerzos Eje-Y para Luz Simple:fbx = 8.50 ksi fbx = Mx/Sx fby =

Lb/rt = 108.75 Lb/rt = Lb*12/rt fwns =

l =

RR(max) =RL(min) =

l = l = 2*a/(bf-tw)Cxo = -2.110+1.977*l+0.0076*e^(6.53*l)Cx1 = 10.108-7.408*l-10.108*e^(-1.364*l)Czo = 0.050-0.580*l+0.148*e^(3.015*l)Cz1 = 2.230-1.490*l+1.390*e^(-18.33*l)

C15
From AISC 9th Edition ASD Manual, page 5-47: Cb = 1.75+1.05*(M1/M2)+0.3*(M1/M2) <= 2.3 where: M1/M2 = ratio of smaller to larger bending moment at ends of the unbraced length, 'Lb'.
C17
The unbraced length for the overhang (cantilever) portion, 'Lbo', is often debated. Here are some recommendations from different sources: 1. Per Fluor Enterprises Guideline 000.215.1257 - "Hoisting Facilities" Lbo = Lo+L/2 2. Per Dupont Standard DB1X - "Design and Installation of Monorail Beams" Lbo = 3*Lo 3. Per ANSI MH27.1 - "Underhung Cranes and Monorail Systems" Lbo = 2*Lo 4. Per British Steel Code B.S. 449, pages 42-44 (1959) Lbo = 2*Lo (for top flange of monorail beam restrained at support) Lbo = 3*Lo (for top flange of monorail beam unrestrained at support) 5. Per AISC Journal article by N. Stephen Tanner - "Allowable Bending Stresses for Overhanging Monorails" (3rd Quarter, 1985) Lbo = Lo+L (used with a computed value of 'Cbo' from article)
F28
For a monorail consisting of a simple-span with no overhang, 'RR(max)' and 'RL(min)' are determined by positioning the trolley at the right support. For a monorail consisting of a simple-span with an overhang, 'RR(max)' and 'RL(min)' are determined by positioning the trolley at the end of the overhang. The self-weight of the monorail beam is also included.
F29
For a monorail consisting of a simple-span with no overhang, 'RR(max)' and 'RL(min)' are determined by positioning the trolley at the right support. For a monorail consisting of a simple-span with an overhang, 'RR(max)' and 'RL(min)' are determined by positioning the trolley at the end of the overhang. The self-weight of the monorail beam is also included.
Page 2: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

2 of 6 04/07/2023

Fbx = 21.60 ksi Fbx = 12000*Cb/(Lb*12/(d/Af)) <= 0.60*Fy fbx <= Fbx, O.K. (continúa)

Page 3: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

3 of 6 04/07/2023

Radio de Esfuerzos Combinados para Luz Simple:Esfuerzos Eje-Y para Luz Simple: S.R. =

fby = 1.78 ksi fby = My/Sy Deflexión Vertical para Luz Simple:fwns = 0.56 ksi fwns = Mt*12/(Sy/2) (esfuerzo normal de pandeo) Pv =

fby(total) = 2.34 ksi fby(total) = fby+fwnsFby = 27.00 ksi Fby = 0.75*Fy fby <= Fby, O.K.

Radio de Esfuerzos Combinados para Luz Simple: Momento Flexionante para Voladizo:S.R. = 0.480 S.R. = fbx/Fbx+fby(total)/Fby S.R. <= 1.0, O.K.

My =Deflexión Vertical para Luz Simple: Momento Flexionante Lateral por Torsion en Patín para Voladizo:

Pv = 4.910 kips Pv = P+Wh+Wt (sin impacto vertical) e =0.3072 in. Pv*L^3/(48*E*I)+5*w/12000*L^4/(384*E*I) at =L/789 Mt =0.5389 in. Defl.(max) <= Defl.(allow), O.K.

fbx =Momento Flexionante para Voladizo: Lc =

Mx = N.A. ft-kips Mx = Pv*Lo+w/1000*Lo^2/2 Lu =My = N.A. ft-kips My = Ph*Lo Lbo/rt =

fa/Fy =Momento Flexionante Lateral por Torsion en Patín para Voladizo: (por Manual de Diseño en Acero USS, 1981)

e = N.A. in. e = d/2 (asumir carga horizontal tomada en el patín inferior)Es d/tw<=permisible?at = N.A. at = SQRT(E*Cw/(J*G)) , E=29000 ksi and G=11200 ksiEs b/t<=65/SQRT(Fy)?

Mt = N.A. ft-kips Mt = Ph*e*at/(d-tf)*TANH(Lo*12/at)/12 Es b/t>95/SQRT(Fy)?Fbx =

Esfuerzos Eje-X para Voladizo: Fbx =fbx = N.A. ksi fbx = Mx/Sx Fbx =

Lbo/rt = N.A. Lbo/rt = Lbo*12/rt Fbx =Fbx = N.A. ksi Fbx = 0.66*Fy Fbx =

Fbx =Esfuerzos Eje-Y para Voladizo: Fbx =

fby = N.A ksi fby = My/Sy Use: Fbx =fwns = N.A. ksi fwns = Mt*12/(Sy/2) (esfuerzo normal de pandeo) Esfuerzos Eje-Y para Voladizo:

fby(total) = N.A. ksi fby(total) = fby+fwns fby =Fby = N.A. ksi Fby = 0.75*Fy fwns =

fby(total) =Radio de Esfuerzos Combinados para Voladizo: Fby =

S.R. = N.A. S.R. = fbx/Fbx+fby(total)/Fby Radio de Esfuerzos Combinados para Voladizo:S.R. =

Deflexion Vertical para Voladizo: (asumiendo carga llena de diseño, Pv sin impacto, al final del voladizo) Deflexion Vertical para Voladizo:Pv = N.A. kips Pv = P+Wh+Wt (sin impacto vertical) Pv =

N.A. in. Pv*Lo^2*(L+Lo)/(3*E*I)+w/12000*Lo*(4*Lo^2*L-L^3+3*Lo^3)/(24*E*I)N.A.N.A. in.

Flexión Local Patín Inferior (simplificado): Flexión Local Patín Inferior (simplificado):be = 8.220 in. be = 12*tf (longitud efectiva flexión en patín) be =am = 3.460 in. am = (bf/2-tw/2)-(k-tf) (donde: k-tf = radio del filete) tf2 =Mf = 9.639 in.-kips Mf = Pw*am am =Sf = 0.643 in.^3 Sf = be*tf^2/6 Mf =fb = 14.99 ksi fb = Mf/Sf Sf =

Fb = 27.00 ksi Fb = 0.75*Fy fb <= Fb, O.K. Fb =

Flexión en Patín Inferior por Especificaciones CMAA No. 74 (2004):

D(max) =

D(permisible) =

D(max) = D(max) =D(ratio) = D(ratio) = L*12/D(max)D(allow) = D(allow) = L*12/450

D(max) = D(max) = D(max) =D(ratio) = D(ratio) = Lo*12/D(max) D(ratio) =D(allow) = D(allow) = Lo*12/450

Page 4: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

4 of 6 04/07/2023

(continúa)

Page 5: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

5 of 6 04/07/2023

Flexión en Patín Inferior por Especificaciones CMAA No. 74 (2004): (Nota: torsión esta despreciada)Esfuerzo Local Flexionante del Patín @ Punto 1:

Esfuerzo Local Flexionante del Patín @ Punto 0: (Convención de Signos: + = tensión, - = compresión)-11.30 ksi1.14 ksi Esfuerzo Local Flexionante del Patín @ Punto 2:

Esfuerzo Local Flexionante del Patín @ Punto 1:3.18 ksi Esfuerzo Biaxial Resultante @ Punto 0:

13.77 ksi

Esfuerzo Local Flexionante del Patín @ Punto 2:11.30 ksi-1.14 ksi Esfuerzo Biaxial Resultante @ Punto 1:

Esfuerzo Biaxial Resultante @ Punto 0:11.14 ksi-8.47 ksi0.00 ksi Esfuerzo Biaxial Resultante @ Punto 2:

17.04 ksi <= Fb = 0.66*Fy = 23.76 ksi, O.K.

Esfuerzo Biaxial Resultante @ Punto 1:20.61 ksi2.38 ksi W24x3700.00 ksi W24x335

19.52 ksi <= Fb = 0.66*Fy = 23.76 ksi, O.K.W24x279

Esfuerzo Biaxial Resultante @ Punto 2: W24x2509.43 ksi W24x2298.47 ksi W24x2070.00 ksi W24x1928.99 ksi <= Fb = 0.66*Fy = 23.76 ksi, O.K.

W24x162

W24x146W24x131

W24x117W24x104

W24x103W24x94W24x84W24x76W24x68W24x62W24x55

W21x402W21x364

W21x333W21x300

W21x275W21x248W21x223W21x201W21x182W21x166

sxo =szo =

sxo = sxo = Cxo*Pw/ta^2 sz1 =szo = szo = Czo*Pw/ta^2

sx2 =sz2 =

sx1 = sx1 = Cx1*Pw/ta^2sz1 = sz1 = Cz1*Pw/ta^2 sz =

sx =txz =

sx2 = sx2 = -sxo sto =sz2 = sz2 = -szo

sz =sx =

sz = sz = fbx+fby+0.75*szo txz =sx = sx = 0.75*sxo st1 =txz = txz = 0 (asumido despreciable)sto = sto = SQRT(sx^2+sz^2-sx*sz+3*txz^2)

sx =txz =

sz = sy = fbx+fby+0.75*sz1 st2 =sx = sx = 0.75*sx1txz = txz = 0 (asumido despreciable)st1 = st1 = SQRT(sx^2+sz^2-sx*sz+3*txz^2)

sz = sz = fbx+fby+0.75*sz2sx = sx = 0.75*sx2txz = txz = 0 (asumido despreciable)st2 = st2 = SQRT(sx^2+sz^2-sx*sz+3*txz^2)

tw

Pw Pw

Punto 2

Punto 1

Punto 0

bf

tf

Y

Z

X

Page 6: MONORRIEL-W

"MONORRIEL-W.xls" ProgramaVersión 2.0

6 of 6 04/07/2023

W21x147