13
S23 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35 NEUROLOGÍA NEONATAL Introducción El tono muscular se define como la resistencia que el músculo presenta a la extensión o elongación, lo que puede ser más evidente en los miembros, pero puede afectar tanto al tronco como al cuello o la cintura pelviana o escapular. Puede valorarse en dos modos: Tono fásico: evaluable con la toma de los reflejos osteotendinosos, ya que es una respuesta a un movimiento de estiramiento rápido, intenso y brusco integrado por el llamado arco reflejo. Tono postural: valorado como respuesta muscu- lar al efecto gravitatorio, como consecuencia de una contracción prolongada, sostenida y de baja intensidad, lo que permite mantener las posturas corporales en condiciones normales. El mantenimiento del tono muscular depende de la integridad y funcionalidad adecuada de distintas áreas del sistema nervioso tales como la corteza motora, las vías descendentes, las neuronas moto- ras, los nervios periféricos, la placa motora y el músculo. Un fallo en cualquiera de estas zonas pue- de ocasionar cuadros hipotónicos, por lo que es de vital importancia, para el enfoque clínico y diag- nóstico, tratar de establecer el nivel neuroanatómi- co de la posible lesión. Una regla muy utilizada es la de diferenciar a las hipotonías en dos grandes grupos: Paralíticas: el signo cardinal es la falta de movili- dad adecuada y tiene su origen, en general, en el sistema nervioso periférico. No paralíticas: existe una mayor afectación del tono muscular y su origen radica en el sistema nervioso central [1]. La evaluación del tono muscular puede ser difícil de llevar a cabo, ya que depende de muchas varia- bles, ya sean condiciones fisiológicas y patológicas, que interfieren o pueden enmascarar (aumentando o disminuyendo) la semiología. Esto ocurre, sobre todo, en los niños en los que no se puede contar con la colaboración adecuada y en los que la situa- ción de un examen clínico puede desencadenar si- tuaciones no apropiadas o indeseables tales como llanto, agitación o malestar. A esto se añade la va- riabilidad normal, tanto en el tono muscular como en los reflejos osteotendinosos, que existe confor- me la edad y el desarrollo del niño, lo que hace que lo normal a determinada edad no se tenga como tal en otra fase etaria [1,2]. Aproximación diagnóstica El primer paso es tratar de ubicar topográficamente Síndrome hipotónico del lactante Víctor Alejandro Gaona Resumen. Entendemos como hipotonía la disminución acentuada del tono muscular que afecta al desarrollo motor nor- mal y que puede afectar a la musculatura axial y de los miembros y, en ocasiones, a la facial. Es un cuadro que genera un gran desafío ya que, en su universo, comprende una serie bastante amplia de condiciones que afectan a distintas áreas del sistema nervioso, tanto central como periférico, y que pueden ser expresión de patologías de corte benigno o de pronóstico reservado. Abarcan miopatías, alteraciones metabólicas, enfermedades de corte genético, endocrinopatías y enfermedades progresivas o crónicas, entre otras causas. El gran desarrollo de la medicina actual ha logrado poner a dis- posición del examinador múltiples herramientas que permiten afinar o aseverar el diagnóstico, entre las que destacan los desarrollos logrados en las investigaciones genéticas, así como los estudios de imágenes y de microscopía óptica y elec- trónica. Sin embargo, pese a toda esta oferta, sigue siendo la clínica la que permite usar racionalmente estos avances y orientar hacia la posible etiología, localización topográfica y control evolutivo. Es de utilidad, para el enfoque diagnóstico y la utilización de métodos auxiliares, que la localización topográfica de la afectación ya esté ésta ubicada en el cerebro, el cerebelo, el tallo, la médula, los nervios periféricos, la unión mioneural o el músculo. Palabras clave. Debilidad muscular. Hipotonía. Lactante. Neuromuscular. Neuropatía. Centro Médico La Costa. Asunción, Paraguay. Correspondencia: Dr. Víctor Alejandro Gaona. Centro Médico La Costa. Artigas 1500. Asunción, Paraguay. E-mail: [email protected] Declaración de intereses: El autor manifiesta la inexistencia de conflictos de interés en relación con este artículo. Aceptado tras revisión externa: 10.06.13. Cómo citar este artículo: Gaona VA. Síndrome hipotónico del lactante. Rev Neurol 2013; 57 (Supl 1): S23-35. © 2013 Revista de Neurología

nhipotonico

  • Upload
    maario

  • View
    218

  • Download
    5

Embed Size (px)

DESCRIPTION

mi

Citation preview

Page 1: nhipotonico

S23www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

neurología neonatal

Introducción

El tono muscular se define como la resistencia que el músculo presenta a la extensión o elongación, lo que puede ser más evidente en los miembros, pero puede afectar tanto al tronco como al cuello o la cintura pelviana o escapular. Puede valorarse en dos modos:– Tono fásico: evaluable con la toma de los reflejos

osteotendinosos, ya que es una respuesta a un movimiento de estiramiento rápido, intenso y brusco integrado por el llamado arco reflejo.

– Tono postural: valorado como respuesta muscu-lar al efecto gravitatorio, como consecuencia de una contracción prolongada, sostenida y de baja intensidad, lo que permite mantener las posturas corporales en condiciones normales.

El mantenimiento del tono muscular depende de la integridad y funcionalidad adecuada de distintas áreas del sistema nervioso tales como la corteza motora, las vías descendentes, las neuronas moto-ras, los nervios periféricos, la placa motora y el músculo. Un fallo en cualquiera de estas zonas pue-de ocasionar cuadros hipotónicos, por lo que es de vital importancia, para el enfoque clínico y diag-nóstico, tratar de establecer el nivel neuroanatómi-co de la posible lesión.

Una regla muy utilizada es la de diferenciar a las hipotonías en dos grandes grupos:– Paralíticas: el signo cardinal es la falta de movili-

dad adecuada y tiene su origen, en general, en el sistema nervioso periférico.

– No paralíticas: existe una mayor afectación del tono muscular y su origen radica en el sistema nervioso central [1].

La evaluación del tono muscular puede ser difícil de llevar a cabo, ya que depende de muchas varia-bles, ya sean condiciones fisiológicas y patológicas, que interfieren o pueden enmascarar (aumentando o disminuyendo) la semiología. Esto ocurre, sobre todo, en los niños en los que no se puede contar con la colaboración adecuada y en los que la situa-ción de un examen clínico puede desencadenar si-tuaciones no apropiadas o indeseables tales como llanto, agitación o malestar. A esto se añade la va-riabilidad normal, tanto en el tono muscular como en los reflejos osteotendinosos, que existe confor-me la edad y el desarrollo del niño, lo que hace que lo normal a determinada edad no se tenga como tal en otra fase etaria [1,2].

Aproximación diagnóstica

El primer paso es tratar de ubicar topográficamente

Síndrome hipotónico del lactante

Víctor Alejandro Gaona

Resumen. Entendemos como hipotonía la disminución acentuada del tono muscular que afecta al desarrollo motor nor-mal y que puede afectar a la musculatura axial y de los miembros y, en ocasiones, a la facial. Es un cuadro que genera un gran desafío ya que, en su universo, comprende una serie bastante amplia de condiciones que afectan a distintas áreas del sistema nervioso, tanto central como periférico, y que pueden ser expresión de patologías de corte benigno o de pronóstico reservado. Abarcan miopatías, alteraciones metabólicas, enfermedades de corte genético, endocrinopatías y enfermedades progresivas o crónicas, entre otras causas. El gran desarrollo de la medicina actual ha logrado poner a dis-posición del examinador múltiples herramientas que permiten afinar o aseverar el diagnóstico, entre las que destacan los desarrollos logrados en las investigaciones genéticas, así como los estudios de imágenes y de microscopía óptica y elec-trónica. Sin embargo, pese a toda esta oferta, sigue siendo la clínica la que permite usar racionalmente estos avances y orientar hacia la posible etiología, localización topográfica y control evolutivo. Es de utilidad, para el enfoque diagnóstico y la utilización de métodos auxiliares, que la localización topográfica de la afectación ya esté ésta ubicada en el cerebro, el cerebelo, el tallo, la médula, los nervios periféricos, la unión mioneural o el músculo.

Palabras clave. Debilidad muscular. Hipotonía. Lactante. Neuromuscular. Neuropatía.

Centro Médico La Costa. Asunción, Paraguay.

Correspondencia: Dr. Víctor Alejandro Gaona. Centro Médico La Costa. Artigas 1500. Asunción, Paraguay.

e-mail: [email protected]

Declaración de intereses:El autor manifiesta la inexistencia de conflictos de interés en relación con este artículo.

aceptado tras revisión externa: 10.06.13.

Cómo citar este artículo:Gaona VA. Síndrome hipotónico del lactante. Rev Neurol 2013; 57 (Supl 1): S23-35.

© 2013 revista de neurología

Page 2: nhipotonico

S24 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

la posible lesión, en un clásico ejercicio diagnóstico en neurología. Así, los datos obtenidos por medios clínicos son los de mejor rendimiento para el diag-nóstico.

Las clasificaciones son variables conforme avan-za el conocimiento pero, desde el punto de vista clí-nico/práctico del examinador, debemos considerar la existencia de síndromes hipotónicos de origen central y periférico, si bien algunas patologías como la enfermedad de Fukuyama y el síndrome de Pra-der-Willi pueden involucrar ambos niveles [1,3].

Basándonos en una cuidadosa toma de la histo-ria clínica y el examen físico podemos tener pre-sunción y aproximación diagnóstica del problema que vamos a tratar, así tenemos:

Indicadores de afectación central [4]– Convulsiones.– Retraso en el desarrollo motor.– Dismorfias o afectación de otros órganos.– Empuñamiento de pulgares.– Reflejos osteotendinosos normales o exagerados.– Datos de afectación pseudobulbar.– Entrecruzamiento de abductores en posición ver-

tical (respuesta en tijera).– Historia sugestiva de encefalopatía hipoxicoisqué-

mica, traumatismo obstétrico, TORCHS u otras.– Disrafismo espinal.

Indicadores de afectación periférica [4]– Retraso en el desarrollo motor con desarrollo so-

cial y cognitivo normal.– Historia familiar de enfermedad neuromuscular.– Reducción de movimientos antigravitatorios, hi-

porreflexia o arreflexia, aumento de la motilidad articular.

– Postura de rana o brazos en jarra con marcada hipomotilidad.

– Facies miopática (boca abierta con los labios en tienda de campaña, succión débil, afectación de la expresión facial, ptosis y restricción a la moti-lidad ocular).

– Fasciculaciones musculares.– Atrofia muscular o hipertrofia.

Las manifestaciones hipotónicas en los lactantes pueden presentar cambios evolutivos conforme el paciente se desarrolle y muchas de las manifesta-ciones se puedan detectar o sospechar ya por la es-casa a ausente motilidad del feto durante las etapas de embarazo, como las miopatías. El escaso control del tono muscular puede generar procesos de dis-tócicos en el canal del parto y ocasionar complica-ciones en las maniobras de liberación y desprendi-

miento. Esto puede generar confusión acerca de la verdadera patología de base y hacer presumir al examinador que el cuadro resultante se relaciona con esta distocia, lo que atribuye todo el problema a una posible encefalopatía hipoxicoisquémica que puede enmascarar e incluso agravar la patología sub-yacente.

Es de destacar que la velocidad o capacidad de individualizar el problema, además de las dificulta-des naturales o limitaciones propias de los métodos de diagnóstico, radica en la disponibilidad del per-sonal formado en la detección de los indicadores tempranos de estas patologías para la corrección y el tratamiento si tal posibilidad existe.

Una vez expresado lo anterior, vamos a intentar profundizar en algunas patologías particulares cla-sificadas según el nivel topográfico de afectación que permiten un mejor enfoque clínico.

Hipotonías de origen cerebeloso

Las hipotonías de origen cerebeloso se detectan con relativa facilidad con los estudios de imágenes en RM en el curso de la evaluación de un lactante hi-potónico.

Malformación de Chiari

Se clasifica en cuatro subtipos:– Tipo I: ectopia tonsilar cerebelosa con descenso

de las amígdalas por debajo del foramen magno.– Tipo II: descenso del cerebelo y el bulbo en gene-

ral asociado a un mielomeningocele y espina bí-fida.

– Tipo III: herniación cerebelar que conforma el cua-dro de encefalomielomeningocele.

– Tipo IV: hipoplasia cerebelosa sin herniación [5].

La más frecuente es la de tipo I, que clásicamente se define como una herniación de las amígdalas ce-rebelosas 5 mm o más por debajo del foramen mag-no, asociada o no a otras anormalidades del SNC. Su método diagnóstico de elección es la RM si bien en niños, dada la variabilidad de distancias entre el foramen magno y C1-C2, hace que la definición ba-sada en milímetros no cumpla con todas las exigen-cias y se prefiera reemplazar milímetros por seg-mentos medulares [6,7]. En su etiopatogenia se in-volucran varias causas, pero la que sostiene que el origen es una reducción de la capacidad de la fosa posterior, que condiciona la acomodación de las es-tructuras nerviosas como factor embriológico pri-mario, es la más aceptada. Su forma de presenta-

Page 3: nhipotonico

S25www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

ción puede darse por datos de hipertensión endo-craneal, cefalea, debilidad o espasticidad, afectación de los pares craneales (diplopía, nistagmo, disfagia, tinnitus) o cefalea. Otras alteraciones anatómicas relacionadas son la siringomielia, la mielodisplasia y el síndrome de médula anclada [8,9]. Su tratamien-to es quirúrgico.

Síndrome de Dandy-Walker

Está constituido por una hipoplasia o agenesia del vermis cerebeloso y expansión quística del IV ven-trículo con fosa posterior amplia [10]. En la etiopa-togenia se han considerado varias alternativas pero, sin llegar a establecer las causas que la generan, es el resultado de una alteración del embrión en el pri-mer trimestre del embarazo, en la que se mencio-nan factores predisponentes como infecciones (ci-tomegalovirus, toxoplasmosis), abuso de alcohol e isotretinoina. Se han documentado varias altera-ciones cromosómicas (3q+, 5p+, 6q+, 8p+, 8q+, 9p, 17q) [11-13]. Su incidencia se estima en 1 cada 25.000 a 1 cada 35.000, con mayor frecuencia en el sexo femenino. El cuadro clínico que presenta va a depender del tamaño del quiste, el grado de hipo-plasia cerebelosa, las alteraciones asociadas al sín-drome y el momento en el que el diagnóstico se lle-ve a cabo. La mayoría de los casos se detectan por un aumento del perímetro cefálico que suele desa-rrollarse a partir del tercer mes de vida. Los estu-dios de imágenes, como la ecografía transfontane-lar, pueden detectar el problema prenatalmente en un 25% de los casos. En la etapa de lactantes, reve-lan una malformación cerebelosa e hidrocefalia y pueden servir para controlar la evolución de la pa-tología [14]. La RM es el método de elección, ya que permite visualizar las características mencionadas y las alteraciones o malformaciones asociadas refe-ridas al síndrome. Aproximadamente dos tercios de los pacientes presentan una o más malformaciones acompañantes [15]. Las anomalías más frecuentes son los trastornos de migración neuronal, la este-nosis del acueducto de Silvio y la agenesia del cuer-po calloso. El pronóstico depende de las anomalías asociadas y es moderadamente favorable cuando la hidrocefalia de trata en los primeros años de vida.

Síndrome de Joubert

No se ha establecido bien la incidencia, que se esti-ma subdiagnosticada, y se calcula entre 1 cada 80.000 y 1 cada 100.000 [16]. Los signos clínicos orienta-dores son la presencia de hipotonía, retraso en el de-sarrollo psicomotor, ataxia, movimientos oculares

anormales y patrón respiratorio alterado en el pe-ríodo neonatal [17]. Resulta de hipoplasia del ver-mis cerebeloso, con fosa interpeduncular profunda en el istmo, horizontalización y mayor desarrollo de los pedúnculos cerebelosos superiores, lo que genera la típica imagen de diente molar. Se han re-lacionado con este síndrome una gran variedad de alteraciones del SNC como hidrocefalia, anormali-dades del cuerpo calloso, quistes, trastornos de mi-gración neuronal, hamartoma hipotalámico y au-sencia de la pituitaria. Aquellos pacientes con estas alteraciones tienen una alta incidencia de epilepsia [18,19]. Con diferente grado de gravedad se detecta deterioro de las habilidades del lenguaje y desarro-llo motor. Existe un abanico de afectación multior-gánica que abarca a la retina, riñones, hígado y es-queleto, ya que la base del problema tiene un mar-cado pleoformismo genético que codifica proteínas ciliares que desempeñan papeles en el desarrollo de distintas líneas celulares (retinianas, neuronales, hepáticas, renales). La transmisión, salvo en casos excepcionales ligados al cromosoma X, se lleva a cabo en forma autosómica recesiva y se han identi-ficado unos 10 genes involucrados que condicionan diferentes subtipos, entre ellos los JBTS1/1NPP5E, JBTS2/TMEM216, JBTS3/AH11, JBTS4/NPHP1, JBTS5/CEP290, JBTS6/TMEM67, JBTS7/RPGR1P1L, JBTS8/ARL13B, JBTS9/CC2D2A y JBTS10/OFD1, que permiten el estudio antenatal, por medio de ve-llosidades coriónicas cerca de las nueva semanas de gestación en aquellos pacientes en cuyas familias se ha detectado el defecto molecular [20] y, una vez establecido el diagnóstico, deben introducir al pa-ciente en un protocolo de investigación de posible afectación multiorgánica.

Hipotonías de origen medular

Lesiones medulares

Las lesiones traumáticas medulares tienen una in-cidencia menor que en edades más avanzadas y pe-culiaridades especiales debido al distinto compor-tamiento mecánico de la columna vertebral. [21]. El nivel de las lesiones varía conforme a la edad y la posibilidad de sufrir una lesión cervical es mayor a menor edad; el 79% de las lesiones cervicales se producen entre 0 y 9 años. La ubicación topográfica de las lesiones condiciona clínicamente el cuadro que se va a presentar, así las lesiones por encima de C5 afectan a las funciones respiratorias y agravan el cuadro. En general, aparece un cuadro de hipoto-nía, alteración esfinteriana con abolición de los re-

Page 4: nhipotonico

S26 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

flejos osteotendinosos que, en caso de no resolverse de modo favorable, en unas semanas es reemplaza-da por hiperreflexia, lo que ensombrece el pronós-tico de recuperación. Los estudios de elección para el diagnóstico de la lesión medular son la RM y los estudios de potenciales evocados mientras que, para la parte ósea, lo son la TAC y la radiografía. Existe una lesión de médula espinal sin anormali-dades radiológicas (SCIWORA, por sus siglas en inglés), que es única en niños y potencialmente re-versible en un tercio de los casos, con radiografía y TAC normales pero con RM sensible a la lesión. Esta lesión está ocasionada por mecanismos de hi-perextensión o hiperflexión cervical [22,23]. La sig-nología puede observarse de forma posterior y esta demora puede ser de hasta cuatro días, así la isque-mia medular por hipotensión u oclusión de las arte-rias cerebrales puede ser responsable de SCIWORA. El tratamiento de la lesión medular es en principio conservador y los corticoides son capaces de redu-cir el edema y la lesión necrótica [24]. Administra-dos de manera precoz, en una ventana de 6-8 horas, mejoran el pronóstico de recuperación. Se utiliza metilprednisolona en carga de 30 mg/kg, seguido de goteo de mantenimiento de 5,4 mg/kg/h durante 23 horas si el goteo se inicia dentro de las tres horas del traumatismo o durante 47 horas si se inicia en las tres a ocho horas tras el traumatismo [25,26].

Romboencefaloclasis

Es la fusión de los hemisferios cerebelosos, que se puede acompañar de otras alteraciones, por hipo o aplasia del vermis cerebeloso. Se puede valorar ade-cuadamente en una RM.

Hipotonías de la neurona motora inferior

Las lesiones de la unidad motora inferior cursan con hipotonía, debilidad e hiporreflexia. La EMG documenta fibrilaciones y fasciculaciones con velo-cidades de conducción nerviosa normales. Depen-diendo de la patología en cuestión, se incorporan otros elementos al cuadro global señalado.

Enfermedad de Werdnig-Hoffman

Es una patología ocasionada por la degeneración y destrucción de las motoneuronas alfa del asta ante-rior de la médula [27]. Es la causa genética de muer-te más frecuente en lactantes con una incidencia de 1 cada 6.000 a 1 cada 10.000 nacimientos y una tasa de portadores de 1:35 a 1:50 [28,29]. Se conocen la

de tipo I, o infantil, de comienzo precoz; la de tipo II, o intermedia, de inicio antes de los 2 años, y la de tipo III, juvenil y denominada Kugelberg-Welander, de comienzo tardío y mejor pronóstico. Todas re-conocen un patrón autosómico recesivo en el cro-mosoma 5 (5q-q13.311.2) que codifica el gen de la supervivencia de la motoneurona (SMN). La dele-ción cromosómica es la más frecuente y las formas más leves se relacionan con un menor número de deleciones, sobre todo del SMN1. Existe una rela-ción inversa entre el número de copias del SMN2 –a mayor número de copias menor gravedad– y la gravedad del cuadro. El 80% de los pacientes con el tipo I tiene sólo una a dos copias del SMN2 [30]. El cuadro es de hipotonía y arreflexia, dificultad respi-ratoria y de alimentación con atrofia muscular y frecuentes fasciculaciones de los músculos lingua-les. El cuadro es progresivo y el pronóstico, omino-so con fallecimiento dentro del primer a segundo año de vida [30]. El diagnóstico se basa en los ante-cedentes familiares, si los hubiera, el cuadro clínico y la EMG. La confirmación se hace por el estudio cromosómico en la región 5q, que permite el con-sejo genético. La detección de una deleción homo-cigótica menos en el exón 7 y 8 del SMN1 alcanza una sensibilidad del 95% y una especificidad del 99% [31].

Atrofia muscular infantil y dificultad respiratoria de tipo 1

Esta forma es de herencia autosómica recesiva y se caracteriza por la degeneración de la motoneurona que lleva a una atrofia muscular y debilidad con hi-potonía. Los cuadros clínicos pueden estar super-puestos pero ésta tiene una afectación de la muscu-latura diafragmática que conlleva dificultad respira-toria acompañada de hipotonía y llanto débil, ade-más de afectación autonómica. Tiene un origen ge-nético y la afectación se localiza en el cromosoma 11 q13-q21. Se debe pensar en esta patología en todo paciente con datos de afectación clínica de la neurona motora inferior con estudios de cromoso-ma 5q normales o lactantes con hipotonía y afecta-ción diafragmática [32,33].

Enfermedad de Pompe

Es una patología de transmisión autosómica recesi-va, sin preferencia por ambos sexos, ocasionada por una deficiencia de la α-glucosidasa ácida (GAA) que genera acumulación de glucógeno en varios ór-ganos y sistemas. El gen que codifica la GAA se ubi-ca en el brazo largo del cromosoma 17 (17q25) [34,35],

Page 5: nhipotonico

S27www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

si bien se han descrito muchas mutaciones en el gen, particulares de cada zona geográfica. No se co-noce con claridad su incidencia pero se estima en-tre 1 cada 14.000 a 1 cada 30.000 con particularida-des étnicas y geográficas [36]. Como existe una afectación combinada de debilidad e hipotonía se tiende a ubicarla como una enfermedad neuromus-cular o miopatía metabólica. Se presenta en una forma infantil, más grave, y otra juvenil, sin consi-derar a ambas como entidades separadas sino más bien como una evolución de la enfermedad. La for-ma más grave es la infantil, que se presenta con hi-potonía, debilidad muscular y cardiomegalia que desembocan en la muerte antes del año de edad. La edad de inicio es de 1 a 2 meses y el diagnóstico suele demorarse hasta los 5,3 meses de edad. Otros estudios ubican el inicio de los síntomas hacia los 4 meses de edad con muerte a los 8,7 meses [36]. La hipotonía y la debilidad muscular afectan a las fun-ciones respiratorias, cardíacas, de alimentación y desarrollo. La histopatología es característica y re-vela vacuolización con gran cantidad de glucógeno en las células musculares (cardíacas y esqueléticas), las neuronas y el hígado; en tinciones de ácido pe-riódico de Schiff. El defecto enzimático se puede detectar en leucocitos y fibroblastos, aun antenatal-mente, por estudios de fibroblastos en el líquido amniótico. Si bien los tratamientos son desalenta-dores, recientemente se han publicado beneficios con la terapia de reemplazo enzimático en esta en-fermedad [37], que tiene mejor pronóstico cuanto antes se instale.

Poliomielitis

Otra patología con avidez por las motoneuronas es la poliomielitis, una enfermedad infectocontagiosa viral aguda, caracterizada por un cuadro clásico de parálisis flácida de inicio súbito con sensibilidad conservada y arreflexia en el segmento afectado. Antes tenía una alta frecuencia de presentación pero hoy ha disminuido drásticamente su inciden-cia por las vacunaciones masivas en las acciones de erradicación de la enfermedad.

Si bien estos planes, con el uso de la vacuna oral, han hecho aparecer casos de poliomielitis asociada a vacunaciones, la relación coste/beneficio es alta-mente gratificante y apoya su uso. La OPS (Organi-zación Panamericana de la Salud) indica que la re-gión de las Américas está libre de la enfermedad desde 1991. El último caso de poliomielitis salvaje registrado en nuestro país data de 1985, en el muni-cipio de General Aquino, departamento de San Pe-dro, Paraguay.

Hipotonía por lesión de los nervios periféricos

Las neuropatías periféricas se presentan con hipo-tonía, retardo en la adquisición de los ítems moto-res, retraso en la adquisición de patrones de mar-cha, arreflexia osteotendinosa, ataxia o deformida-des del tipo pie cavo. No representan una causa frecuente de afectación en lactantes y pueden ser procesos diseminados multisistémicos o exclusiva-mente nerviosos.

Neuropatía hipomielinizante congénita

Constituye una polineuropatía grave que se mani-fiesta con hipotonía, arreflexia, debilidad muscular y disminución de la conducción nerviosa en la EMG. En la biopsia del nervio safeno, se observa una marcada disminución de la mielina sin la clá-sica formación en bulbo de cebolla, observada en otras neuropatías hereditarias del tipo Dejerine-Sottas. La evolución va de moderada a grave afec-tación con óbito entre las cinco semanas a los 7 años de vida. El cuadro puede aparecer esporádi-camente sin seguir un patrón dominante, sin em-bargo es heterogéneo y en ocasiones se relaciona con mutaciones específicas en los genes MPZ, PMP22 y EGR2, si bien diferentes mutaciones pue-den originar cuadros clínicos y patológicos seme-jantes [38,39].

Neuropatía hereditaria sensitivomotora (Dejerine-Sottas)

Es una afectación de los nervios periféricos de ini-cio temprano que puede manifestarse como retraso en la adquisición de los ítems madurativos motores. La gravedad de la disminución de la velocidad de conducción motora, menos de 10 mm/s, es distinti-va de la enfermedad [40]. Se hereda en forma auto-sómica recesiva y ligada al cromosoma 17p11.2 que codifica el gen PMP22. También se han descrito mutaciones del gen P0, compartidas por la hipo-mielinización congénita [41], así como el gen de respuesta de crecimiento precoz [42]. La biopsia del nervio sural revela hipomielinización e imagen ca-racterística en bulbo de cebolla [42].

Síndrome de Guillain-Barré (SGB)

Afecta a aproximadamente 0,5-1,5 por cada 100.000 niños al año en edades de 0 a 17 años y, desde la erradicación de la poliomielitis, es la causa más frecuente de parálisis flácida en niños con una leve

Page 6: nhipotonico

S28 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

preferencia por el sexo masculino. Se la define como una polirradiculopatía de instalación aguda con parálisis de tipo ascendente, arreflexia y posi-bilidad de alteraciones sensitivas asociadas. Un gran porcentaje de casos (70-75%) viene precedido por cuadros infecciosos de hasta tres semanas an-tes al inicio de la sintomatología [43]. El agente etiológico más frecuente, en especial en la forma axonal, es el Campylobacter jejuni, que representa hasta el 23 al 41% de los casos en varias series [44]. Otros agentes asociados son el citomegalovirus (8-22%), el virus de Epstein-Barr (2-10%) y el her-pes zóster (5% de los casos). Existen varias formas de presentación, como la polineuropatía desmieli-nizante inflamatoria aguda (PIDA), la neuropatía axonal motora aguda (NAMA), la neuropatía axo-nal sensitivomotora aguda (NASMA) y el síndro-me de Miller Fisher (SMF). En su etiopatogenia se encuentra una reacción cruzada contra el ganglió-sido GM1, lo que ocasiona procesos de desmielini-zación y lesión axonal, sobre todo en los casos aso-ciados al C. jejuni [45]. Otros gangliósidos se han visto involucrados y, en la actualidad, se considera al GQ1b marcador para SGB con oftalmoplejía y al anti-GT1 al SGB con afectación de los pares cra-neales bajos [46]; el anticuerpo anti-GD1 es más específico para la forma NAMA [47]. Para su diag-nóstico, tiene una importancia marcada la presen-cia de una afectación motora bastante simétrica, con parálisis progresiva y depresión de los reflejos osteotendinosos. La denominada disociación albu-minocitológica, detectada en el LCR, con un incre-mento de la proteinorraquia y escasa celularidad, se expresa después de la segunda semana en la en-fermedad clásica y desde la tercera en el Miller-Fischer. Los recuentos de células en el LCR supe-riores a 50 U/L hacen que el diagnóstico de SGB sea dudoso. Más precoces son los hallazgos en la EMG, que revelan, desde la primera semana, dis-minución de la velocidad de conducción nerviosa, abolición de la onda F y aumento de la latencia dis-tal [48]. El tratamiento de elección es la inmunog-lobulina en dosis de 0,4 g/kg durante cinco días o de 1 g/kg en dos días (total: 2 g/kg en ambos ca-sos), aunque esta última forma es la más recomen-dada. Los corticoides no son eficaces y la plasmafé-resis es otra alternativa cuando existe rechazo o ineficacia con el uso de la inmunoglobulina [49]. El pronóstico es por lo general bueno con más del 90% de las PIDA con recuperación completa y prác-ticamente la totalidad del SMF [50]. En los casos de NAMA existe un mayor porcentaje de secuelas y las NASMA, excepcionales en niños, tienen pro-nóstico más reservado.

Polineuropatía desmielinizante inflamatoria crónica

Desde el punto de vista clínico, se trata de una enti-dad difícil de diferenciar de la forma aguda, de la que se distingue por su progresión de signos y sínto-mas más allá de los 28 días o recuperación con reci-divas reiterativas del cuadro. El cuadro completo puede establecerse en períodos superiores a los dos meses con predominio de afectación de las extremi-dades inferiores. Puede coexistir una afectación sen-sitiva distal significativa. La biopsia del nervio revela patrones de desmielinización y mielinización seg-mentarias con presencia de células inflamatorias. La respuesta al tratamiento con corticoides es dia-metralmente opuesta y efectiva, si bien debe pro-longarse en el tiempo para evitar recidivas [51].

Porfiria

Si bien son enfermedades poco frecuentes, se de-ben considerar en los pacientes con neuropatía pe-riférica. Son un grupo amplio de alteraciones meta-bólicas del hemo que generan depósitos de porfiri-na y derivados por el fallo de unas siete enzimas in-volucradas en el proceso. Los ataques se caracte-rizan por elevadas concentraciones urinarias de porfobilinógeno y ácido aminolevulínico; su diag-nóstico puede revelarse por reducción de la activi-dad de la porfobilinógeno sintetasa. Los ataques se pueden presentar con debilidad muscular progresi-va, que simula un SGB, y pueden progresar hasta afectar a la función respiratoria. La alteración sen-sitiva, si se presenta, tiende a ser distal [52].

Neuropatía axónica gigante

Es una afección que afecta al sistema nervioso peri-férico y central, por afectación de los neurofilamen-tos, que se transmite de manera autosómica recesiva y cuyo origen genético se ha ligado al cromosoma 16q24.1 [53]. A las manifestaciones neurológicas se asocian alteraciones capilares con hipopigmenta-ción y de tipo ensortijado, si bien se han descrito pa-cientes sin afectación capilar. La neuropatía perifé-rica es la manifestación inicial y se puede asociar la desmielinización secundaria a la afectación axonal. Se ha comunicado afectación del SNC en el cerebe-lo, el tallo y las vías piramidales en estudios post mortem. Los estudios de RM revelan patrones de desmielinización y atrofia en cerebelo, tallo, médula y cuerpo calloso [54] y la EMG puede demostrar disminución de la velocidad de conducción nerviosa relacionada con la afectación de la mielina.

Page 7: nhipotonico

S29www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

Hipotonías secundarias a la afectación de la unión neuromuscular

Son procesos heterogéneos que afectan a la trans-ducción correcta de la información motora en la unión mioneural, ubicada en el presináptico, sináp-tico o postsináptico. La afectación de la presinapsis se relaciona con defectos en el manejo de la acetil-colina, ya sea en su producción, resíntesis, libera-ción o empaquetamiento en las vesículas; las sináp-ticas se dan por deficiencia de la acetilcolinestesa y las postsinápticas, por una disfunción de los canales de AChR o por deficiencias en el número de AChR.

Síndrome del canal lento

Se clasifica en los denominados síndromes miasté-nicos congénitos; la mayoría de ellos se inician en la etapa neonatal, pero algunos pueden presentarse en la lactancia o aún en la edad adulta. Está causado por mutaciones de subunidades del receptor de la acetilcolina, que prolongan el tiempo de apertura de los canales iónicos y hacen que iones de sodio saturen la región presináptica [55]. Tiene una trans-misión autosómica dominante con variabilidad en la expresión y alta penetrancia y su sospecha clínica puede hacerse por la historia clínica familiar, la EMG a la estimulación repetitiva, la escasa respues-ta a los inhibidores de la colinesterasa, el empeora-miento con el uso de corticoides y la determinación molecular de la AChR [55]. La distribución de la debilidad muscular muestra preferencia por la zona cervical y las manos y se puede observar en los miembros de la familia afectados, que orientan el diagnóstico.

Botulismo

Es una parálisis flácida descendente ocasionada por la neurotoxina del bacilo anaeróbico gram positivo denominado Clostridium botulinum. Existen ocho toxinas identificadas, pero las A y las B son las que se relacionan con más frecuencia con el botulismo infantil. La toxina A se encuentra en alimentos con-servados al vacío y es la forma más grave de intoxi-cación [56]. En su fisiopatología, la toxina se une al receptor colinérgico presináptico, sufre un proceso de endocitosis e interfiere sobre las proteínas res-ponsables de la liberación de acetilcolina: la proteí-na asociada al sinaptosoma (SNAP25), la asociada a la vesícula sináptica (VAMP) y la sintaxina [57], lo que impide la unión de la vesícula con la membrana plasmática, acción necesaria para su exocitosis en las terminales sinápticas colinérgicas [58]. La ac-

ción de estas toxinas es autolimitada, las proteínas dañadas se eliminan y se sustituyen por las sinteti-zadas de novo, así se restablece la comunicación si-náptica [57]. La forma infantil se adquiere por vía intestinal en la transición de la lactancia materna a fórmulas lácteas, o a la introducción de alimentos sólidos, ya que la leche materna es una barrera de-fensiva contra la proliferación del microbio en el intestino. La fuente de contaminación es descono-cida hasta en el 85% de los casos, pero la más fre-cuente es la adquisición por el polvo que traslada esporos. La miel es el único alimento identificado como factor de riesgo para el botulismo [59], por ello su uso no es conveniente en lactantes o neona-tos. La presentación habitual es la de constipación (95% de los pacientes) seguida de dificultad para alimentarse, debilidad progresiva e hipotonía con hiporreflexia. La debilidad se inicia afectando a los pares craneales y luego desciende al tronco, las ex-tremidades y el diafragma. Las pupilas presentan una respuesta característica: en un inicio sin res-puesta pupilar a la exposición a la luz pero con dila-tación progresiva a la estimulación repetitiva de frecuencia elevada (> 20/s) o más débil si la fre-cuencia es menor (2-3/s). El diagnóstico de botulis-mo se basa en la determinación del microorganis-mo en las heces y recientemente se ha desarrollado un test de ELISA para la detección de las toxinas A y B [60]. La EMG apoya el diagnóstico, pero su nor-malidad no la excluye en etapas tempranas, al mos-trar un incremento progresivo de los potenciales a la estimulación de frecuencias de 20-50 Hz. Su tra-tamiento se basa en el uso de la antitoxina botulíni-ca, administrada precozmente antes de que se in-ternalice la toxina en la terminal sináptica y en el uso de inmunoglobulina humana de dadores adul-tos inmunizados con la toxina botulínica, lo que atenúa de modo significativo las complicaciones y reduce el tiempo de asistencia respiratoria y ali-mentaria [61]. La evolución de la enfermedad es autolimitada, en general de pronóstico favorable y sin secuelas, diagnosticada a tiempo y controladas sus posibles complicaciones.

Hipotonías con origen muscular

Según la semiología, son patologías que cursan con debilidad disminuida con tono y reflejos miotáticos de normales a disminuidos. Los estudios de apoyo son de gran utilidad, sobre todo las determinacio-nes de la CPK (para los procesos distróficos), la mi-croscopía (en aquellos con patrón histológico ca-racterístico), los resultados de la electromiografía

Page 8: nhipotonico

S30 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

(que documentan potenciales musculares breves y disminuidos) además del invalorable apoyo de los estudios genéticos en la clasificación y determina-ción de las distintas enfermedades.

Distrofia miotónica congénita

Es una patología que se transmite de forma autosó-mica dominante y que puede manifestarse en la etapa neonatal o más tarde. La causa es el incre-mento en los tripletes de CTG (citosina-timina-guanina), transmitida en la línea materna en el bra-zo corto del cromosoma 19 (locus 13.2) que afecta al gen DMPK (myotonic distrophy protein kinase). Los afectados tienen repeticiones de este triplete por encima de 2.000, mientras que lo normal es de 5 a 30 [62] y la expresión de la enfermedad es inver-samente proporcional al número de repeticiones de los tripletes. La presentación clínica es la de hipo-tonía, atrofia muscular, dificultad para alimentarse y respirar que presenta complicaciones que pueden llevar al óbito. Los hallazgos posteriores involucran un retraso en los ítems madurativos motores y, en forma importante, retraso mental. Los hallazgos en la electromiografía revelan descargas miotónicas y potenciales de unidad motora disminuidos y de du-ración breve [63]. Una gran ayuda diagnóstica es la presencia de la dificultad para relajar los músculos tras movimientos tales como cerrar y abrir las ma-nos o abrir los ojos con celeridad después de tener-los un tiempo cerrados, que se puede valorar en las progenitoras. En aquellas madres portadores de la enfermedad es conveniente el consejo genético ante las posibilidades de complicaciones graves en los descendientes [64]. El tratamiento es de apoyo y co-rrección de las deformidades.

Distrofias musculares congénitas

Configuran un grupo amplio y heterogéneo de en-fermedades transmitidas de forma hereditaria au-tosómica recesiva. Su modo de presentación, desde el nacimiento o en los primeros meses de vida, es la debilidad muscular progresiva con distribución y gravedad variables. Su representación histológica característica es regeneración y generación con va-riación de tamaño de las fibras musculares, además de un incremento del tejido conectivo y grasa [65], acompañadas de elevación de la CPK. Se agrupan conforme tengan afectación del sistema nervioso central o no; así las afecciones del SNC se relacio-nan con la distrofia muscular de Fukuyama, la en-fermedad músculo-ojo-cerebro y el síndrome de Walker-Warburg [66].

La enfermedad de Fukuyama es la segunda causa de distrofia en Japón y se inicia en la infancia con debilidad muscular e hipotonía asociada a anorma-lidades cerebrales y cerebelosas, retraso mental y epilepsia [66,67]. Está causada por la afectación del gen que codifica la proteína fukutina (FCMD) [68].

El síndrome de Walker-Warburg se conoce como lisencefalia de tipo II [69] y es el resultado de defec-tos en la migración neuronal con dilatación ventri-cular y corteza cerebral alterada por agiria acompa-ñada de disgenesias en otras estructuras del SNC; el gen involucrado es el POMT1, que controla a la O-manosiltransferasa [70].

El síndrome músculo-ojo-cerebro se caracteriza por trastornos en la migración neuronal, hipotonía y alteraciones oculares, que van desde la miopía progresiva hasta la degeneración retiniana con atrofia óptica. Se ha individualizado el gen POMG-nT1, responsable que controla la 0-manosa-b-1,2-N-acetilglucosaminiltransferasa [71]. El uso de la RM y de la TAC permite establecer con claridad las le-siones asociadas a las enfermedades que involucran el sistema nervioso central.

Es interesante recordar que, si bien con muy rara forma de presentación, la polimiositis puede simu-lar un cuadro de distrofia muscular congénita de-bido a la elevación de la CPK hasta que la biopsia muscular notifica características inflamatorias.

Miopatías congénitas

Este término se aplica a los pacientes con debilidad e hipotonía muscular desde edades tempranas con re-traso en el desarrollo motor, en ocasiones acompa-ñada de dismorfias faciales o articulares que presen-tan un patrón histológico muscular característico. Entre ellas se encuentran la miopatía nemalínica y la miotubular, la enfermedad de central core y la des-proporción congénita de fibras. Su diagnóstico debe sospecharse en lactantes hipotónicos sin elevación significativa de la CPK y que en la electromiografía revelen un patrón muscular con potenciales de uni-dad motora de breve duración y amplitud.

Miopatía nemalínicaEs la más frecuente en todas las series y se adquiere de forma autosómica dominante o recesiva con va-rios genes que codifican la estructura de los fila-mentos actínicos, como el gen de la α-tropomiosina (TPM3) [72], el gen de la nebulina (NEB) [73] o el gen de la α-actina (ACTA1) [74]. Tiene una forma de inicio al nacimiento, grave y relacionada el ACTA1, con fallecimiento antes del año de edad y una for-ma congénita benigna que se expresa por hipoto-

Page 9: nhipotonico

S31www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

nía, rasgos faciales y retraso en el desarrollo motor. La afectación es de predominio proximal y presenta de nula a escasa progresión. En la histopatología se revela atrofia o hipotrofia de las fibras de tipo I y presencia de cuerpos nemalínicos (bastoncitos por acúmulo de actina).

Enfermedad de central coreExiste una afectación menor de la musculatura fa-cial, se presentan alteraciones de tipo escoliosis pero la enfermedad es por lo general no progresiva con escasa afectación respiratoria. Se observan zo-nas centrales claras con predominio de fibras de tipo I [75].

Miopatía miotubularExiste una mayor afectación muscular que puede ser grave desde el nacimiento y complicar la fun-ción respiratoria o la alimentación; existe mayor afectación de la musculatura facial y los pacientes pueden fallecer antes del año. En la microscopía se observa, a la tinción, núcleos centrales inmaduros con halos periféricos debidos a la escasa actividad enzimática en las fibras de tipo I y II, que recuerdan a túbulos [76].

Desproporción congénita de fibrasAquellos pacientes con características clínicas de miopatías congénitas y cuyos estudios histopatoló-gicos presentan una disminución del tamaño de las fibras de tipo I respecto a las de tipo II, en una rela-ción superior al 12%, sin las alteraciones citadas en los otros tipos, entran en esta categoría [77].

Cromosomopatías

Síndrome de Down

El síndrome de Down, o trisomía 21, es una de las causas más frecuentes de deficiencia psíquica y re-presenta casi el 25% de todos los casos de retraso mental, además se acompaña de hipotonía en más del 80% de los pacientes. Se presenta con una fre-cuencia de 0,6-1 por cada 1.000 recién nacidos [78]. En el 90-95% de los casos, la trisomía es libre y sólo en el 5% de los casos el cromosoma extra procede del padre [79]. Cuando el fallo cromosómico tiene origen materno, aumenta el riesgo con la edad; el 75% de los casos es el resultado de un fallo en la pri-mera división meiótica y en el 25% en la segunda, con un riesgo de recurrencia del 1 al 2%. Las traslo-caciones D/G y G/G no son frecuentes pero existe una mayor posibilidad de recurrencia en ellas. Sus

características físicas y fenotípicas convierten a este síndrome en un diagnóstico facial, así ya desde la etapa neonatal ya se refieren más de 300 rasgos in-dicadores del problema [80]. Algunos de sus rasgos peculiares son un perfil facial y occipital plano, bra-quicefalia, hendiduras palpebrales oblicuas, epican-to, cuello corto y ancho, laxitud de la musculatura abdominal, pliegue palmar único, clinodactilia del quinto dedo de la mano y separación del primer y segundo dedo del pie. En casi todos los casos falta el tono muscular adecuado, acompañado de hiper-laxitud de los ligamentos, que afecta al desarrollo y aprendizaje motriz. El diagnóstico de confirmación se lleva a cabo por medio de cariotipo, si bien exis-ten estudios diagnósticos prenatales que permiten, sobre todo cuando existe un descendiente previo con el síndrome, predecir la posibilidad del Down. Tales estudios serían el cariotipo de células de líqui-do amniótico o de vellosidades coriónicas, la deter-minación de AFP, estriol o gonadotrofina coriónica humana, y estudios de traslucencia nucal por ultra-sonografía.

Síndrome de Prader-Willi

Es una patología genética y multisistémica comple-ja que abarca hipotonía, hipogonadismo, hipomen-sia y retraso motor, obesidad e hiperfagia con ras-gos dismórficos mejor detectables en la infancia y la adolescencia. Su incidencia estimada es de 1 cada 10.000 a 1 cada 15.000 nacidos vivos sin preferencia por sexo o raza [81]. En un mayor porcentaje, el 70%, viene ocasionada por una deleción paterna en el cromosoma 15q11-13 y en 25% de ellos por diso-mía uniparental materna con los restantes casos ocasionados [82-84] por alteraciones de imprinting cuando se hereda un cromosoma 15 paterno con impronta paterna e impide que se expresen genes en la región del Prader-Willi. Sus rasgos habituales son la presencia de hipotonía con dificultades para la succión en los primeros meses de vida con fre-cuente mal manejo de las secreciones así como un retraso en el desarrollo psicomotor con ítems de marcha entre los 24-30 meses y desarrollo de len-guaje francamente tardío, que se inicia cerca de los 2 años de vida [82]. Hay un diámetro bifrontal es-trecho con dolicocefalia, ojos en almendra e incli-nación antimongoloide, epicanto, hipopigmenta-ción de piel y pelo, saliva espesa y alteraciones den-tales. La baja talla, al principio normal, se va ha-ciendo evidente con el desarrollo y está relacionada con el fallo de la hormona del crecimiento asocia-da. La hiperfagia y la obesidad empiezan a partir del segundo año de vida y están ocasionadas por el

Page 10: nhipotonico

S32 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

fallo del sistema hipotalámico, que es incapaz de regular la saciedad en estos pacientes. Se han en-contrado diferentes sustancias químicas en una proporción inadecuada tales como leptina, grelina, neuropéptido Y, péptido pancreático (PP), colecis-tocinina y péptido tipo glucagón [85] así como ni-veles elevados de GABA, codificado en el cromoso-ma 15, lo que se asocia a alteraciones límbicas y corticales del control de la saciedad. La obesidad resultante ocasiona otras comorbilidades tales como diabetes, hipertensión arterial, síndrome de apneas obstructivas del sueño y alteraciones vasculares. El hipogonadismo se da en relación con el déficit de FSH y LH, estradiol y testosterona [86] por fallo del eje hipotalámico.

Síndrome del cromosoma X frágil

Se considera la primera causa de déficit intelectual de origen hereditario con incidencia de 1 por cada 4.000 en los varones y 1 por cada 6.000 en las muje-res [87]. Es de interés citarlo, ya que, si bien la hipo-tonía no es un signo cardinal es este problema, mu-chas veces sólo se detecta cuando el paciente acude a la consulta por retraso en el desarrollo. Obedece a un defecto molecular que ocasiona un número de repeticiones elevadas del triplete CGG del brazo largo del cromosoma X en la región del gen FMR1 [88]. La repetición del triplete de 50 a 200 veces ge-nera el estado portador, al superar esta cifra se de-sarrolla el fenotipo cognitivo-conductual y físico del síndrome [89]. Se presenta una discapacidad in-telectual de leve a moderada, retraso madurativo y de las habilidades del lenguaje con afectación de los tiempos de atención e hiperactividad [90]. El feno-tipo físico comprende macrocefalia, orejas grandes y aladas, prognatismo, facies alargada y macrorqui-dia; cabe destacar que hasta el 20% de ellos no desa-rrolla el fenotipo facial.

Síndrome de Lowe

También denominado síndrome oculocerebrorre-nal, es una enfermedad rara ligada al cromosoma X que asocia afectación ocular (cataratas, glaucoma), alteraciones renales, facies características, hipoto-nía con disminución de reflejos y retraso mental. Afecta clínicamente sólo a los varones, mientras que el sexo femenino actúa como portador de la en-fermedad. El gen, localizado en el cromosoma X y en la región q26 (Xq25-26), condiciona el déficit de absorción intestinal de los aminoácidos (lisina, ar-ginina), que genera un fallo metabólico en el apara-to de Golgi e interfiere con el metabolismo del ino-

sitol, lo que ocasiona el cuadro clínico [91]. Se pre-senta hipotonía desde los primeros meses de vida, que se agrava en el primer año, con miopatía y neu-ropatía con trastornos conductuales más que evi-dentes [92]. La afectación renal es del tipo síndro-me de Fanconi con proteinuria e hiperaminoacidu-ria [93] y genera fallo renal progresivo. La afecta-ción ocular, con cataratas, se asocia a un adelgaza-miento de la córnea, escleróticas azules y glaucoma de ángulo cerrado. El tratamiento es paliativo y se recomienda un consejo genético en caso de historia familiar. Puede sospecharse antenatalmente por la presencia de α-fetoproteína en el suero y el líquido amniótico, sobre todo si va acompañada de activi-dad de colinesterasa ausente [94].

Síndrome de Kabuki

Puede cursar con hipotonía y se presenta con una prevalencia de 1 cada 32.000 a 1 cada 86.000 [95] si bien el conocimiento de la patología ha hecho que su diagnóstico se incremente en la actualidad. Su base genética es heterogénea con pruebas molecu-lares que ubican al gen (TRPM) en el cromosoma 9q21.11/9q21.12 [96] y recientemente se conocen mutaciones del gen MLL2 como la causa principal del síndrome [97]. Sus rasgos son las características faciales, anomalías esqueléticas, retraso mental, talla baja y alteración de dermatoglifos, que pueden asociarse a anomalías renales y cardiovasculares, criptorquidia, fallo en la hormona del crecimiento y alteraciones vertebrales.

Por último, no podemos dejar de citar que enfer-medades sistémicas del tipo endocrinopatías, como el hipotiroidismo o el hipertiroidismo, el hipopara-tiroismo o el hiperparatiroismo, pueden cursar con hipotonía y deben tenerse en cuenta en el momento de la investigación diagnóstica.

Bibliografía

1. Fernández-Álvarez E. Examen neurológico. In Fejerman N, Fernández-Álvarez E, eds. Neurología pediátrica. 2 ed. Buenos Aires: Médica Panamericana; 1997. p. 3-24.

2. Casas-Fernández C. La hipotonía a través de las etapas madurativas. An Esp Pediatr 2000; 52 (Supl 5): 117-9.

3. Swaiman KF. Tono muscular. In Swaiman KF, ed. Neurología pediátrica. Principios y prácticas. 2 ed. Madrid: Mosby/Doyma; 1996. p. 233-9.

4. Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol 2001; 25: 32-7.

5. Greenberg MS. Chiari malformation. In Greenberg MS, ed. Handbook of neurosurgery. 4 ed. Miami: Greenberg Graphics; 1997. p.73-9.

6. Wu YW, Chin CT, Chan KM, Barkovich AJ, Ferriero DM. Pediatric Chiari I malformations: do clinical and radiologic features correlate? Neurology 1999; 53: 1271-6.

Page 11: nhipotonico

S33www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

7. Christophe C, Dan B. Magnetic resonance imaging cranial and cerebral dimensions: is there a relationship with Chiari I malformation? A preliminary report in children. Eur J Paediatr Neurol 1999; 3: 15-23.

8. Guyotat J, Bret P, Jouanneau E, Ricci AC, Lapras C. Syringomyelia associated with type I Chiari malformation. A 21-year retrospective study on 75 cases treated by foramen magnum decompression with a special emphasis on the value of tonsils resection. Acta Neurochir (Wien) 1998; 140: 745-54.

9. Mathisen BA, Shepherd K. Oral-motor dysfunction and feeding problems in infants with myelodysplasia. Pediatr Rehabil 1997; 1: 117-22.

10. Grant J, Mclone DG. Dandy Walker malformation. In Tindall G, Cooper PR Barrow DL, eds. The practice of neurosurgery. Baltimore: Williams & Wilkins; 1997. p. 178.

11. Alanay Y, Aktas D, Utine E, Talim B, Onderoglu L, Caglar M, et al. Is Dandy-Walker malformation associated with distal 13q deletion syndrome? Findings in a fetus supporting previous observations. Am J Med Genet Part A 2005; 136A: 265-8.

12. Metzke-Heidemann S, Kuhling-von Kaisenberg H, Caliebe A, Janssen D, Jonat W. Phenotypical variations in cousins with the identical partial trisomy 9 (pter-q22.2) and 7 (q35-qter) at 16 and 23 weeks gestation. Am J Med Genet A 2004; 126A: 197-203.

13. Mirza G, Williams RR, Mohammed S, Clark R, Newbury-Ecob R, Baldinger S, et al. Refined genotype-phenotype correlation syndromes. Eur J Hum Genet 2004; 19: 206-9.

14. Chang MC, Russell SA, Callen RW, Filly RA, Goldstein RB. Sonograph detection of inferior vermian agenesis in Dandy- Walker malformations: prognostic implications. Radiology 2003; 193: 765-70.

15. Hart MN, Malamud N, Ellis WG. The Dandy-Walker syndrome. A clinic pathological study based on 28 cases. Neurology 1972; 22: 771-80.

16. Parisi MA, Doherty D, Chance PF, Glass IA. Joubert syndrome (and related disorders) (OMIM 213300). Eur J Hum Genet 2007; 15: 511-21.

17. Maria BL, Boltshauser E, Palmer SC, Tran TX. Clinical features and revised diagnostic criteria in Joubert syndrome. J Child Neurol 1999; 14: 583-90.

18. Al-Gazali LI, Sztriha L, Punnose J, Shather W, Nork M. Absent pituitary gland and hypoplasia of the cerebellar vermis associated with partial ophthalmoplegia and postaxial polydactyly: a variant of orofaciodigital syndrome VI or a new syndrome? J Med Genet 1999; 36: 161-6.

19. Giordano L, Vignoli A, Pinelli L, Brancati F, Accorsi P, Faravelli F, et al. Joubert syndrome with bilateral polymicrogyria: clinical and neuropathological findings in two brothers. Am J Med Genet A 2009; 149A: 1511-5.

20. Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis 2010; 5: 20.

21. Viccellio P, Simon H, Pressman BD, Shah MN, Mower WR, Hoffman JR. A prospective multicenter study of cervical spine injury in children. Pediatrics 2001; 108: 1-6.

22. Buldini B, Amigoni A, Faggin R, Laverda AM. Spinal cord injury without radiographic abnormalities. Eur J Pediatr 2006; 165: 108-11.

23. Koestner AJ, Hoak SJ. Spinal cord injury without radiographic abnormality (SCIWORA) in children. J Trauma Nurs 2001; 8: 101-8.

24. Reynolds R. Pediatric spinal injury. Curr Opin Pediatr 2000; 12: 67-71.

25. Wenger M, Adam PJ, Alarcón F, Markwalder TM. Traumatic cervical instability associated with cord oedema and temporary quadriparesis. Spinal Cord 2003; 41: 521-6.

26. Ergun A, Oder W. Pediatric care report of spinal cord injury without radiographic abnormality (SCIWORA): case report and literature review. Spinal Cord 2003; 41: 249-53.

27. Iannaccone ST, Smith SA, Simard LR. Spinal muscular atrophy. Curr Neurol Neurosci Rep 2004; 4: 74-80.

28. Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371: 2120-33.

29. Burlet P, Bürglen L, Clermont O, Lefebvre S, Viollet L,

Munnich A, et al. Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. J Med Genet 1996; 33: 281-3.

30. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time light Cycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358-68.

31. Ogino S, Wilson R. Spinal muscular atrophy: molecular genetics and diagnostics. Expert Res Mol Diagn 2004; 4: 15-29.

32. Bertini E, Gadisseux JL, Palmieri G, Ricci E, Di Capua M, Ferriere G, et al. Distal infantile spinal muscular atrophy associated with paralysis of the diaphragm: a variant of infantile spinal muscular atrophy. Am J Med Genet 1989; 33: 328-35.

33. Mohan U, Misra VP, Britto J, Muntoni F, King RH, Thomas PK. Inherited early onset severe axonal polyneuropathy with respiratory failure and autonomic involvement. Neuromuscul Disord 2001; 11: 395-9.

34. Martiniuk F, Mehler M, Pellicer A, Tzall S, LaBadie G, Hobart C, et al. Isolation of a cDNA for human acid alpha glucosidase and detection of genetic heterogeneity for mRNA in three alpha glucosidase deficient patients. Proc Natl Acad Sci U S A 1986; 83: 9641.

35. Hoefsloot LH, Hoogeveen-Westerveld M, Reuser AJJ, Oostra BA. Characterization of the human lysosomal alpha glucosidase gene. Biochem J 1990; 272: 493.

36. Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D; Infantile-Onset Pompe Disease Natural History Study Group. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006; 148: 671-6.

37. Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid alpha-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 2007; 68: 99-109.

38. Phillips JP, Warner LE, Lupski JR, Garg BP. Congenital hypomyelinating neuropathy: two patients with long-term follow-up. Pediatr Neurol 1999; 20: 226-32.

39. Warner LE, Svaren J, Milbrandt J, Lupski JR. Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Hum Mol Genet 1999; 8: 1245-51.

40. Warner LE, Garcia CA, Lupski JR. Hereditary peripheral neuropathies: clinical forms, genetics, and molecular mechanisms. Annu Rev Med 1999; 50: 263-75.

41. Warner LE, Hilz MJ, Appel SH, Killian JM, Kolodry EH, Karpati G, et al. Clinical phenotypes of different MPZ (Po) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hipomielination. Neuron 1996; 17: 451-60.

42. Timmerman V, De Jonghe P, Ceuterick C, De Vriendt E, Lofgren A, Nelis E, et al. Novel missense mutation in the early growth response 2 gene associated with Dejerine-Sottas syndrome phenotype. Neurology 1999; 52: 1827-32.

43. Asbury AK, Arnason BG, Karp HR, McFarlin DE. Criteria for diagnosis of Guillain-Barré syndrome. Ann Neurol 1978; 3: 56-9.

44. Yuki N, Tsuujino Y. Familial Guillain-Barré syndrome subsequent to Campylobacter jejuni enteritis. J Pediatr 1995; 126: 162.

45. Yuki N, Susuki M, Koga M, Nishimoto Y, Odaka M, Hirata K, et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharid causes Guillain-Barré syndrome. Proc Natl Acad Sci U S A 2004; 101: 11404-9.

46. Yoshino H, Harukara H, Asano A. IgG antiganglioside antibodies in Guillain-Barré syndrome with bulbar palsy. J Neuroinmunol 2000; 105: 195-201.

47. Kaida K, Kusunoki S, Kamakura K, Motoyoshi K, Kanazawa I. GalNAc-GD1a in human peripheral nerve: target sites of antiganglioside antibody. Neurology 2003; 61: 465-70.

48. Pascual-Pascual SI. Aspectos actuales de las neuropatías

Page 12: nhipotonico

S34 www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

V.A. Gaona

inflamatorias agudas y crónicas. Síndrome de Guillain-Barré y polineuritis crónica inflamatoria desmielinizante. Rev Neurol 2002; 35: 269-76.

49. Shahar E, Leiderman M. Outcome of severe Guillain-Barré in children: comparison between untreated cases versus gamma- globulin therapy. Clin Neuropharmacol 2003; 24: 84-7.

50. Asbury AK. New concepts of Guillain-Barré syndrome. J Child Neurol 2000; 15: 183-91.

51. Legido A, Tenembaum SN, Katsekos CD, Menkes J. Autoimmune and postinfectious diseases. In Menkes J, Sarnat HB, María BL, eds. Child neurology. 7 ed. Philadelphia: Lippincott Williams & Wilkins 2006. p. 557-657.

52. González-Arriaza HL, Bostwick JM. Acute porphyrias: a case report and review. Am J Psychiatry 2003; 160: 450-8.

53. Ben Hamida C, Cavalier L, Belal S, Sanhaji H, Nadal N, Barhoumi C, et al. Homozygosity mapping of giant axonal neuropathy gene to chromosome 16q24.1. Neurogenetics 1997; 1: 129-33.

54. Lampl Y, Eshel Y, Ben-David E, Gilad R, Sarova-Pinhas I, Sandbank U. Giant axonal neuropathy with predominant central nervous system manifestations. Dev Med Child Neurol 1992; 34: 164-9.

55. Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes: progress over the past decade. Muscle Nerve 2003; 27: 4-25.

56. Brett M , McLauchlin J, Harris A, O’Brien S, Black N, Forsyth R, et al. A case of infant botulism with a possible link to infant formula milk powder: evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. J Med Microbiol 2005; 54: 769-76.

57. Montecucco C, Molgó J. Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 2005; 5: 274-9.

58. Jahn R, Lang T, Sudhof TC. Membrane fusion. Cell 2003; 112: 519-33.

59. Spika JS, Schaffer N, Hargrett-Bean N, Collin S, Mac Donald KL, Black PA. Risk factors for infant botulism in the United States. Am J Dis Child 1989; 143: 828-32.

60. Lindström M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev 2006; 19: 298-314.

61. Arnon S, Schechter R, Maslanka S, Jewell N, Hatheway C. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med 2006; 354: 462-71.

62. Benítez J. Implicaciones clínicas y genéticas de las mutaciones dinámicas en clínica neuropediátrica. Rev Neurol 1999; 28: 60-3.

63. Swift TR, Ignacio OJ, Dyken PR. Neonatal dystrophia myotonica. Electrophysiologic studies. Am J Dis Child 1975; 129: 734-7.

64. Lesca G, Hays S, Bourgeois J, Bost M, Ollagnon-Roman E, Putet G. Diagnosis of congenital myotonic dystrophy in a neonate: its familial consequences. Arch Pediatr 2003; 10: 466-7.

65. Nakanishi T, Sakauchi M, Kaneda Y, Tomimatsu H, Saito K, Nakazawa M, Osawa M. Cardiac involvement in Fukuyama-type congenital muscular dystrophy. Pediatrics 2006; 117: 1187-92.

66. Tsao CY, Mendell JR. The childhood muscular dystrophies: making order out of chaos. Semin Neurol 1999; 19: 9-23.

67. Emery A. The muscular dystrophies. Lancet 2002; 359: 687-95.68. Cormand B, Avela K, Pihko H, Santavouri P, Talim B,

Topaloglu H, et al. Assignment of the muscle-eye-brain disease gene to 1p32-34 by linkage analysis and homocygosity mapping. Am J Hum Genet 1999; 69: 126-35.

69. Barth P. Disorders of neuronal migration. Can J Neurol Sci 1987; 14: 1-16.

70. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, Van Beusekom E, Van der Zwaag B, et al. Mutations in the O-mannosyl-transferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Walburg syndrome. Am J Hum Genet 2002; 71: 1033-43.

71. Yoshida A, Kobayashi H, Manya H, Taniguchi K, Kano H, Mizuno M, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 2001; 1: 717-24.

72. Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K,

Kneebone C, et al. A mutation in the alpha-tropomyosin gene TPM3 associated with an autosomal dominant nemaline myopathy NEM1. Nat Genet 1995; 9: 75-9.

73. Pelin K, Hilpelä P, Donner K, Sewry C, Akkari PA, Wilton SD, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A 1999; 96: 2305-10.

74. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 1999; 23: 208-12.

75. Tojo M, Ozawa M, Nonaka I. Central core disease and congenital neuromuscular disease with uniform type 1 fibers in one family. Brain Dev 2000; 23: 262-4.

76. Nishino I, Minami N, Kobayashi O, Ikezawa M, Goto Y, Arahata K, et al. MTM1 gene mutations in Japanese patients with the severe infantile form of myotubular myopathy. Neuromuscul Disord 1998; 8: 453-8.

77. Brooke MH. Congenital fiber type disproportion. In Kakulas BA, ed. Clinical studies in myology. Amsterdam: Excerpta Medica; 1973. p. 145-59.

78. Hamerton JL, Cannings N, Ray M, Smith S. A citogenic survey of 14.069 newborn infants. Incidence of chromosome abnormalities. Clin Gen 1975; 8: 223-43.

79. Penrose LS. The relative effects of paternal and maternal age in mongolism. J Genet 1933; 27: 219-24.

80. Coleman M. Doens’s syndrome. Pediatric Ann 1978; 7: 90-103.81. Cortés MF, Alliende RMA, Barrios RA, Curotto LB, Santa

María VL, Barraza OX, et al. Caracterización clínico-genético-molecular de 45 pacientes chilenos con síndrome de Prader-Willi. Rev Med Chil 2005; 133: 33-41.

82. Torrado M, Araoz V, Baialardo E, Abraldes K, Mazza C, Krochik G, et al. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an interdisciplinary study. Am J Med Genet A 2007; 143: 460-8.

83. Bittel DC, Kibiryeva N, Butler MG. Expression of 4 genes between chromosome 15 breakpoint 1 and 2 and behavioural outcomes in Prader-Willi syndrome. Pediatrics 2006; 118: 276-83.

84. Butler MG, Douglas C, Bittel C, Kiberyeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy, clinical differences. Pediatrics 2004; 113: 565-73.

85. Caixàs A. Mecanismos de regulación del apetito y síndrome de Prader-Willi. Endocrinol Nutr 2006; 53: 174-80.

86. Brandau DT, Theodoro M, Garg U, Butler MG. Follicle stimulating and leutinizing hormones, estradiol and testosterone in Prader-Willi syndrome. Am J Med Genet A 2008; 146A: 665-9.

87. Crawford DC, Meadows KL, Newman JL, Talf LF, Scott E, Leslie M, et al. Prevalence of the fragile X syndrome in African-Americans. Am J Med Genet 2002; 110: 226-33.

88. Hagerman R J. Medical follow-up and pharmacotherapy. In Hagerman RJ, Hagerman PJ, eds. Fragile X syndrome: diagnosis, treatment and research. Baltimore: Johns Hopkins University Press; 2002.

89. Hagerman P J, Hagerman R J. The fragile X premutation: a maturiting perspective. Am J Hum Genet 2004; 74: 805-16.

90. Artigas-Pallarés J, Brun-Gasca C. ¿Se puede atribuir el fenotipo conductual del síndrome X frágil a la discapacidad intelectual y al trastorno por déficit de atención/hiperactividad? Rev Neurol 2004; 38: 7-11.

91. Loi M. Lowe syndrome. Orphanet J Rare Dis 2006; 1: 16.92. Kenworthy L, Park T, Chamas LR. Cognitive and behavioral

profile of the oculocerebrorenal syndrome of Lowe. Am J Med Genet 1993; 46: 297-303.

93. Faucherre A, Desbois P, Nagano F, Satre V, Lunardi J, Gacon G, et al. Lowe syndrome protein OCRL1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Hum Mol Genet 2005; 14: 1441-8.

94. Tsuru T, Yamagata T, Momio MY, Okabe I. Prenatal diagnosis

Page 13: nhipotonico

S35www.neurologia.com Rev Neurol 2013; 57 (Supl 1): S23-S35

Neurología neonatal

of Lowe syndrome by OCRL 1 messenger RNA analysis. Prenat Diagn 1999; 19: 269-70.

95. Adam MP, Hudgins L. Kabuki syndrome: a review. Clin Genet 2005; 67: 209-19.

96. Schoumans J, Nordgren A, Ruivenkamp C, Brondum-Nielsen K, Teh BT, Annéren G, et al. Genome-wide screening using array-

CGH does not reveal microdeletions/microduplications in children with Kabuki syndrome. Eur J Hum Genet 2005; 13: 260-3.

97. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2011; 42: 790-3.

Hypotonic syndrome in the newborn infant

Summary. Hypotonia is understood to refer to a pronounced decrease in muscle tone that affects normal motor development and that may affect the axial muscles as well as those of the limbs and, sometimes, the face. It is a very challenging clinical picture because it consists in a fairly wide range of conditions that affect different areas of the central and peripheral nervous system and may be the expression of pathologies that can be either benign or of an uncertain prognosis. These cover myopathies, metabolic disorders, diseases based on genetic causes, pathologies affecting the endocrine glands and progressive or chronic diseases, among other aetiologies. The important development of medicine today has made a number of tools available to the examiner with which to refine or pronounce a diagnosis. Such instruments include the developments achieved in genetic research, together with studies conducted in imaging and optical and electronic microscopy. However, in spite of having all this material available for use, it is still the clinical features that allow a rational use to be made of these advances to be able to point towards the possible causation, topographic location and developmental control. It is useful, for the diagnostic approach and the use of auxiliary methods, to know the topographic location of the disorder, whether it is situated in the brain, the cerebellum, the stem, the spinal cord, the peripheral nerves, the myoneural junction or the muscle.

Key words. Hypotonia. Muscle weakness. Neuromuscular. Neuropathy. Newborn infant.