19
que es elemento de presión Los instrumentos para medición de presión pueden ser indicadores , registradores, transmisores y controladores, y pueden clasificarse de acuerdo a lo siguiente: Para ver el gráfico seleccione la opción "Descargar" del menú superior Tipo de Manómetro Rango de Operación M. de Ionización 0.0001 a 1 x 10-3 mmHg ABS M. de Termopar 1 x 10-3 a 0.05 mmHg M. de Resistencia 1 x 10-3 a 1 mmHg M. Mc. Clau 1 x 10-4 a 10 mmHg M. de Campana Invertida 0 a 7.6 mmH2O M. de Fuelle Abierto 13 a 230 cmH2O M. de Cápsula 2.5 a 250 mmH2O M. de Campana de Mercurio (LEDOUX) 0 a 5 mts H2O M. "U" 0 a 2 Kg/cm2 M. de Fuelle Cerrado 0 a 3 Kg/cm2 M. de Espiral 0 a 300 Kg/cm2 M. de Bourdon tipo "C" 0 a 1,500 Kg/cm2 M. Medidor de esfuerzos (stren geigs) 7 a 3,500 Kg/cm2 M. Helicoidal 0 a 10,000 Kg/cm2

Que Es Elemento de Presión

Embed Size (px)

DESCRIPTION

mantenimeinto

Citation preview

Page 1: Que Es Elemento de Presión

que es elemento de presión

Los instrumentos para medición de presión pueden ser indicadores, registradores, transmisores y controladores, y pueden clasificarse de acuerdo a lo siguiente:

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Tipo de Manómetro Rango de Operación

M. de Ionización 0.0001 a 1 x 10-3 mmHg ABS

M. de Termopar 1 x 10-3 a 0.05 mmHg

M. de Resistencia 1 x 10-3 a 1 mmHg

M. Mc. Clau 1 x 10-4 a 10 mmHg

M. de Campana Invertida 0 a 7.6 mmH2O

M. de Fuelle Abierto 13 a 230 cmH2O

M. de Cápsula 2.5 a 250 mmH2O

M. de Campana de Mercurio (LEDOUX) 0 a 5 mts H2O

M. "U" 0 a 2 Kg/cm2

M. de Fuelle Cerrado 0 a 3 Kg/cm2

M. de Espiral 0 a 300 Kg/cm2

M. de Bourdon tipo "C" 0 a 1,500 Kg/cm2

M. Medidor de esfuerzos (stren geigs) 7 a 3,500 Kg/cm2

M. Helicoidal 0 a 10,000 Kg/cm2

Page 2: Que Es Elemento de Presión

que es presión y su formula

es una magnitud física que mide la proyección de la fuerza en direcciónperpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de unnewton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.

 Cuando sobre una superficie plana deárea A se aplica una fuerza normal F de manera uniforme, la presión P viene dada de la siguiente forma:

tipos de presión

Presión Absoluta

Es la presión de un fluido medido con referencia al vacío perfecto o cero absoluto. La presión absoluta es cero únicamente cuando no existe choque entre las moléculas lo que indica que la proporción de moléculas en estado gaseoso o la velocidad molecular es muy pequeña. Ester termino se creo debido a que la presión atmosférica varia con la altitud y muchas veces los diseños se hacen en otros países a diferentes altitudes sobre el nivel del mar por lo que un termino absoluto unifica criterios.

Presión Atmosférica

El hecho de estar rodeados por una masa gaseosa (aire), y al tener este aire un peso actuando sobre la tierra, quiere decir que estamos sometidos a una presión (atmosférica), la presión ejercida por la atmósfera de la tierra, tal como se mide normalmente por medio del barómetro (presión barométrica). Al nivel del mar o a las alturas próximas a este, el valor de la presión es cercano a 14.7 lb/plg2 (101,35Kpa), ,disminuyendo estos valores con la altitud.

Presión Manométrica

Son normalmente las presiones superiores a la atmosférica, que se mide por medio de un elemento que se define la diferencia entre la presión que es desconocida y la presión atmosférica que existe, si el valor absoluto de la presión es constante y la presión atmosférica aumenta, la presión manométrica disminuye; esta diferencia generalmente es pequeña mientras que en las mediciones de presiones superiores, dicha diferencia es

Page 3: Que Es Elemento de Presión

insignificante, es evidente que el valor absoluto de la presión puede abstenerse adicionando el valor real de la presión atmosférica a la lectura del manómetro.

La presión puede obtenerse adicionando el valor real de la presión atmosférica a la lectura del manómetro.

Presión Absoluta = Presión Manométrica + Presión Atmosférica.

Vacío

Se refiere a presiones manométricas menores que la atmosférica, que normalmente se miden, mediante los mismos tipos de elementos con que se miden las presiones superiores a la atmosférica, es decir, por diferencia entre el valor desconocido y la presión atmosférica existente. Los valores que corresponden al vacío aumentan al acercarse al cero absoluto y por lo general se expresa a modo de centímetros de mercurio (cmHg), metros de agua, etc.

De la misma manera que para las presiones manométricas, las variaciones de la presión atmosférica tienen solo un efecto pequeño en las lecturas del indicador de vacío.

Sin embargo, las variaciones pueden llegar a ser de importancia, que todo el intervalo hasta llegar al cero absoluto solo comprende 760 mmHg.

que es manometros

Los manómetros son los instrumentos utilizados para medir la presión de fluidos (líquidos y gases). Lo común es que ellos determinen el valor de la presión relativa, aunque pueden construirse también para medir presiones absolutas.

Todos los manómetros tienen un elemento que cambia alguna propiedad cuando son sometidos a la presión, este cambio se manifiesta en una escala o pantalla calibrada directamente en las unidades de presión correspondientes. Cuando el aparato de medición sirve para medir presiones que cambian muy rápidamente con el tiempo como por ejemplo, dentro del cilindro del motor de combustión interna, recibe el nombre de transductor (que no será tratado aquí), reservándose el nombre de manómetro para aquellos que miden presiones estáticas o de cambio lento.

Page 4: Que Es Elemento de Presión

medidas de presión

Las unidades de presión expresan una unidad de fuerza sobre unidad de área. Las más usadas son Kg/cm2 , psi (lbf/pulg2 ), Pascal (N/m2 ), bar, atmósfera, Torr (mm de columna de Hg). La siguiente tabla resume los factores de conversión de las unidades de presión más comunes.

El Pa es una unidad de presión bastante pequeña por lo cual  para los valores que utilizamos en Biología se emplea un múltiplo el kilopascal (kPa) que es mil veces mayor.

    Debido a que la presión se mide muchas veces en relación con la de un líquido no es de extrañar que las unidades de presión que todavía se emplean con frecuencia, a pesar de la recomendación en favor del SI, sean medidas de longitud de líquidos ya que siendo constante la gravedad y la densidad del liquido utilizado, la presión depende solo de la altura de la columna de liquido.

    Dentro de estas tenemos dos, una de utilización frecuente en el lado arterial del sistema cardiovascular, el milímetro de mercurio, la otra se utiliza para presiones en la parte venosa de la circulación general y en las presiones dentro del sistema respiratorio, el centímetro de agua.

    mm de Hg es la presión que ejerce una columna de mercurio (densidad a 0º 13,595 g/cm3) de 1 mm de altura para una aceleración de la gravedad de 9,80665 ms-2  En honor de Torricelli se denomina torr.

   cm de H2O es la presión que ejerce una columna de agua (densidad a 0º 1 g/cm3) de 1cm de altura. Equivale en mm de Hg a algo menos de un torr::

g*h*13,595=g*10*1

h=10/13,595= 0,736 mm 

    Si consideramos que la presión de un gas con la que convivimos desde que nacemos es la presión que ejerce el aire (es una mezcla de gases) sobre nosotros no es de extrañar que una buena parte de las medidas de presión se relacionen con la atmósfera.

atmósfera estándar. La presión atmosférica varia con las condiciones meteorológicas y con la  altitud .  La atmósfera estándar es la presión que ejerce una columna de mercurio con una altura de 760 mm (densidad 13,5951 g/cm3 a 0ºC, g=9,80665 ms-2  es decir a 45º de latitud y al nivel del mar). La relación entre una atmósfera de presión y la unidad del SI, el pascal es:

1 atm = 760 mmHg = 0,76 m *13.595 kg m-3 * 9,80665 ms-2 = 101325 Pa =101,325 kPa

1 mm Hg = 101325/760 = 133,3 Pa

Page 5: Que Es Elemento de Presión

    bar El bar es un múltiplo del Pa, equivale a 100 kPa. Se utiliza un submúltiplo del bar el mbar, que equivale a 100 Pa (es decir, un hectopascal hPa). Se emplea en meteorología. La presión de una atmósfera corresponde por lo tanto a 101325/100 = 1013,25 mb. El bar equivale a 750 mmHg, 10,197 mH2O y 0,987 at

manomertro de tubo tipo u,

Manómetro de tubo en U: Si cada rama del manómetro se conecta a distintas fuentes de presión, el nivel del líquido aumentara en la rama a menor presión y disminuirá en la otra. La diferencia entre los niveles es función de las presiones aplicadas y del peso específico del líquido del instrumento. El área de la sección de los tubos no influyen el la diferencia de niveles. Normalmente se fija entre las dos ramas una escala graduada para facilitar las medidas.Los tubos en U del micro manómetros se hacen con tubos en U de vidrio calibrado de precisión, un flotador metálico en una de las ramas y un carrete de inducción para señalar la posición del flotador. Un indicador electrónico potenciometrico puede señalar cambios de presión hasta de 0.01 mm de columna de agua. Estos aparatos se usan solo como patrones de laboratorio.Un manoscopio o manómetro es un instrumento de medición que sirve para medir la presión de fluidos contenidos en recipientes cerrados. Existen, básicamente, dos tipos: los de líquidos y los metálicos.Los manómetros de líquidos emplean, por lo general, como líquido manométrico el mercurio, que llena parcialmente un tubo en forma de U. El tubo puede estar abierto por ambas ramas o abierto por una sola. En ambos casos la presión se mide conectando el tubo al recipiente que contiene el fluido por su rama inferior abierta y determinando el desnivel h de la columna de mercurio entre ambas ramas. Si el manómetro es de tubo abierto es necesario tomar en cuenta la presión atmosférica p0 en la ecuación:p = p0 ± ρ.g.hSi es de tubo cerrado, la presión vendrá dada directamente por p = ρ.g.h. Los manómetros de este segundo tipo permiten, por sus características, la medida de presiones elevadas.En los manómetros metálicos la presión da lugar a deformaciones en una cavidad o tubo metálico, denominado tubo de Bourdon en honor a su inventor. Estas deformaciones se transmiten a través de un sistema mecánico a una aguja que marca directamente la presión sobre una escala graduada.

manometro de bourdon,

Page 6: Que Es Elemento de Presión

Los tubos de Bourdon son tubos curvados en forma circular de sección oval. La presión a medir actúa sobre la cara interior del tubo, con lo que la sección oval se aproxima a la forma circular. Mediante el acodamiento del tubo de Bourdon se producen tensiones en el borde que flexionan el tubo. El extremo del tubo sin tensar ejecuta un movimiento que representa una medida de la presión el cual se traslada a una aguja indicadora.

Para presiones hasta 40 bar se utilizan en general tubos curvados de forma circular con un ángulo de torsión de 270°, para presiones superiores, tubos con varias vueltas en forma de tornillo.

Los tubos de Bourdon tienen una fuerza de retorno relativamente baja. Por ello, debe tenerse en cuenta su influencia en la indicación, en los equipos adicionales como por ejemplo indicadores de seguimiento, transmisores de señal límite o potenciómetros de control remoto. Los órganos de medición de tubo de Bourdon solamente pueden protegerse contra sobrecarga de manera limitada mediante el apoyo del órgano medidor con un valor límite de presión.

Para cualquier tipo de carga, la relación entre la carga y la deformación es una constante del material, conocida como el módulo de Young:E=Carga/e. Por ende, si la constante de deformación es conocida, se puede obtener la carga según:

Carga = E*e

De modo que frente a deformaciones pequeñas de materiales elásticos, será posible obtener una cuantificación reproducible de las cargas (fuerzas) solicitantes.

El manómetro de Bourdon depende, precisamente, de la elasticidad de los materiales utilizados en su construcción. Este manómetro, tal vez el más común en plantas de procesos que requieran medición de presiones.

Page 7: Que Es Elemento de Presión

que es fluido

Se llaman fluidos al conjunto de sustancias donde existe entre sus moléculas poca fuerza de atracción, cambiando su forma, lo que ocasiona que la posición que toman sus moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen. Los líquidos toman la forma del recipiente que los aloja, manteniendo su propio volumen, mientras que los gases carecen tanto de volumen como de forma propios. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven con libertad en los gases.

tipos de fluido de tubería

Para valores de   (para flujo interno en tuberías circulares) el flujo se mantiene estacionario y se comporta como si estuviera formado por láminas delgadas, que interactúan sólo en función de los esfuerzos tangenciales existentes. Por eso a este flujo se le llama flujo laminar. El colorante introducido en el flujo se mueve siguiendo una delgada línea paralela a las paredes del tubo.

Para valores de   (para flujo interno en tuberías circulares) la línea del colorante pierde estabilidad formando pequeñas ondulaciones variables en el tiempo, manteniéndose sin embargo delgada. Este régimen se denomina de transición.

Para valores de  , (para flujo interno en tuberías circulares) después de un pequeño tramo inicial con oscilaciones variables, el colorante tiende a difundirse en todo el flujo. Este régimen es llamado turbulento, es decir caracterizado por un movimiento desordenado, no estacionario y tridimensional.

factor que afecta el fluido

viscosidad de los fluidos

La viscosidad es una de las propiedades mas importantes de los fluidos y tiene un importante efecto en bombeo, mezcla, transferencia de materia aireación de fluidos, transmisión de calor etc. como su nombre lo indica un fluido es aquel que tiene la capacidad de fluir, y la propiedad que establece que tan fácil fluye una sustancia al aplicarle una fuerza es la viscosidad. Esta es una de las características que resalta la diferencia entre un sólido y un líquido., tanto los sólidos como los líquidos soportan esfuerzos cortantes o también llamados esfuerzos tangenciales. El esfuerzo cortante o tangencial no es más que cualquier fuerza que se le aplique a un fluido y el efecto que causa en este es una deformación.

Page 8: Que Es Elemento de Presión

Por lo tanto el esfuerzo cortante en un fluido es proporcional a la velocidad de deformación. Ahora para tener un concepto mas claro de lo que es la viscosidad piense en ejemplos claros de sustancias viscosas como la salsa de tomate, la gel que se utiliza para el cabello, la crema dental y sustancias que no son tan viscosas como el agua o el aire; es decir estos últimos pueden fluir con un menor esfuerzo que los primeros

numero de reynold,

es un número adimensional utilizado en mecánica de fluidos, diseño de reactores y fenómenos de transporte para caracterizar el movimiento de un fluido. El concepto fue introducido por George Gabriel Stokes en 1851,2 pero el número de Reynolds fue nombrado por Osborne Reynolds (1842-1912), quien popularizó su uso en 1883.3 4 En biología y en particular en biofísica, el número de Reynolds determina las relaciones entre masa y velocidad delmovimiento de microorganismos en el seno de un líquido caracterizado por cierto valor de dicho número (líquido que por lo común es agua, pero puede ser algún otro flúido corporal, por ejemplosangre o linfa en el caso de diversos parásitos mótiles y la orina en el caso de los mesozoos) y afecta especialmente a los que alcanzan velocidades relativamente elevadas para su tamaño, como los ciliados predadores 5  . Para los desplazamientos en el agua de entidades de tamaño y masa aun mayor, como los grandes peces, aves como los pingüinos, mamíferos como focas y orcas, y por cierto los navíos submarinos, la incidencia del número de Reynolds es mucho menor que para los microbios veloces.6 Cuando el medio es el aire, el número de Reynolds del flúido resulta también importante para insectos voladores, aves, murciélagos y microvehículos aéreos, siempre según su respectiva masa y velocidad.

placa de orificio y tipos,

La placa de orificio es el elemento primario para la medición de flujo más sencillo, es una lamina plana circular con un orificio concéntrico, excéntrico ó segmentado y se fabrica de acero inoxidable, la placa de orificio tiene una dimensión exterior igual al espacio interno que existe entre los tornillos de las bridas del montaje, el espesor del disco depende del tamaño de la tubería y la temperatura de operación, en la cara de la placa de orificio que se conecta por la toma de alta presión, se coloca perpendicular a la tubería y el borde del orificio, se tornea a escuadra con un ángulo de 900 grados, al espesor de la placa se la hace un biselado con un chaflán de un ángulo de 45 grados por el lado de baja presión, el biselado afilado del orificio es muy importante, es prácticamente la única línea de contacto efectivo entre la placa y el flujo, cualquier rebaba, ó distorsión del orificio ocasiona un error del 2 al 10% en la medición, además, se le suelda a la placa de orificio una oreja, para marcar en ella su identificación, el lado de entrada, el número de serie, la capacidad, y la distancia a las tomas de presión alta y baja. En ocasiones a la placa de orificio se le perfora un orificio adicional en la parte

Page 9: Que Es Elemento de Presión

baja de la placa para permitir el paso de condensados al medir gases, y en la parte alta de la placa para permitir el paso de gases cuando se miden líquidos. 

Con las placas de orificio se producen las mayores perdidas de presión en comparación a los otros elementos primarios para medición de flujo más comunes, con las tomas de presión a distancias de 2 ½ y de 8 diámetros antes y/o después de la placa se mide la perdida total de presión sin recuperación posterior. Se mide la máxima diferencial posible con recuperación de presión posterior y, con tomas en las bridas se mide una diferencial muy cerca de la máxima, también con recuperación de presión posterior.

La exacta localización de tomas de presión antes de la placa de orificio carece relativamente de importancia, ya que la presión en esa sección es bastante constante. En todas las relaciones de diámetros D/d comerciales. Desde ½ D antes de la placa en adelante hasta la placa, la presión aumenta gradualmente en una apreciable magnitud en relaciones d/D arriba de 0.5; debajo de ese valor la diferencia de presiones es despreciable. Pero sí en la toma de alta presión, la localización no es de mayor importancia, si lo es en la toma de baja presión, ya que existe una región muy inestable después de la vena contracta que debe evitarse; es ésta la razón por la que se recomienda colocarlas para tuberías a distancias menores de 2 pulgadas de las tomas de placa. La estabilidad se restaura a 8 diámetros después de la placa pero en este punto las presiones se afectan por una rugosidad anormal en la tubería.

 

Desventajas en el uso de la placa de orificio

1. Es inadecuada en la medición de fluidos con sólidos en suspensión.

2. No conviene su uso en medición de vapores, se necesita perforar la parte inferior.

3. El comportamiento en su uso con fluidos viscosos es errático ya que la placa se calcula para una temperatura y una viscosidad dada.

4. Produce las mayores pérdidas de presión en comparación con otros elementos primarios de medición de flujos.

 

Cuando el flujo pasa a través de la placa de orificio, disminuye su valor hasta que alcanza una área mínima que se conoce con el nombre de “vena contracta”, en las columnas sombreadas de la figura siguiente, el flujo llega con una presión estática que al pasar por el orificio, las pérdidas de energía de presión se traducen en aumentos de velocidad, en el punto de la vena contracta se obtiene el menor valor de presión que se traduce en un aumento de velocidad, en ese punto se obtiene la mayor velocidad

Existen dos tipos de placas de orificio segmentadas; fijas y ajustables.

Page 10: Que Es Elemento de Presión

 

Orificio segmentado fijo:

Se usa para medir flujos pequeños y es una combinación de orificio excéntrico y una parte segmentada, la parte concéntrica se diseña para obtener un diámetro del 98% del diámetro interior de la tubería, se usa para en la medición de flujos como son las pulpas y pastas, no es recomendable para líquidos de alta viscosidad.

 

Orificio segmentado ajustable:

En este caso la relación entre el diámetro interior y exterior (0.25-0.85), se modifica por medio de un segmento móvil, el cuerpo de la placa de orificio se fabrica con bridas de conexión similares a la de una válvula, las guías son de acero al carbón, el material del segmento es de acero inoxidable, se utiliza en tuberías con variaciones de flujo del 10:1 bajo variaciones de presión y temperatura considerables

tubo ventury

El Tubo de Venturi es un dispositivo que origina una pérdida de presión al pasar por él un fluido. En esencia, éste es una tubería corta recta, o garganta, entre dos tramos cónicos. La presión varía en la proximidad de la sección estrecha; así, al colocar un manómetro o instrumento registrador en la garganta se puede medir la caída de presión y calcular el caudal instantáneo, o bien, uniéndola a un depósito carburante, se puede introducir este combustible en la corriente principal.

Las dimensiones del Tubo de Venturi para medición de caudales, tal como las estableció Clemens Herschel, son por lo general las que indica la figura 1. La entrada es una tubería corta recta del mismo diámetro que la tubería a la cual va unida. El cono de entrada, que forma el ángulo a1, conduce por una curva suave a la garganta de diámetro d1. Un largo cono divergente, que tiene un ángulo a2, restaura la presión y hace expansionar el fluido al pleno diámetro de la tubería. El diámetro de la garganta varía desde un tercio a tres cuartos del diámetro de la tubería.

Page 11: Que Es Elemento de Presión

La presión que precede al cono de entrada se transmite a través de múltiples aberturas a una abertura anular llamada anillo piezométrico. De modo análogo, la presión en la garganta se transmite a otro anillo piezométrico. Una sola línea de presión sale de cada anillo y se conecta con un manómetro o registrador. En algunos diseños los anillos piezométricos se sustituyen por sencillas uniones de presión que conducen a la tubería de entrada y a la garganta.

La principal ventaja del Vénturi estriba en que sólo pierde un 10 - 20% de la diferencia de presión entre la entrada y la garganta. Esto se consigue por el cono divergente que desacelera la corriente.

Es importante conocer la relación que existe entre los distintos diámetros que tiene el tubo, ya que dependiendo de los mismos es que se va a obtener la presión deseada a la entrada y a la salida del mismo para que pueda cumplir la función para la cual está construido.

Esta relación de diámetros y distancias es la base para realizar los cálculos para la construcción de un Tubo de Venturi y con los conocimientos del caudal que se desee pasar por él.

Deduciendo se puede decir que un Tubo de Venturi típico consta, como ya se dijo anteriormente, de una admisión cilíndrica, un cono convergente, una garganta y un cono divergente. La entrada convergente tiene un ángulo incluido de alrededor de 21º, y el cono divergente de 7 a 8º. La finalidad del cono divergente es reducir la pérdida global de presión en el medidor; su eliminación no tendrá efecto sobre el coeficiente de descarga. La presión se detecta a través de una serie de agujeros en la admisión y la garganta; estos agujeros conducen a una cámara angular, y las dos cámaras están conectadas a un sensor de diferencial de presión.

La tabla muestra los coeficientes de descarga para los Tubos Vénturi, según lo establece la American Society of Mechanical Engineers. Los coeficientes de descarga que se

Page 12: Que Es Elemento de Presión

salgan de los límites tabulados deben determinarse por medio de calibraciones por separado.

Coeficientes ASME para tubos Venturi

3. Funcionamiento de un tubo de venturi

En el Tubo de Venturi el flujo desde la tubería principal en la sección 1 se hace acelerar a través de la sección angosta llamada garganta, donde disminuye la presión del fluido. Después se expande el flujo a través de la porción divergente al mismo diámetro que la tubería principal. En la pared de la tubería en la sección 1 y en la pared de la garganta, a la cual llamaremos sección 2, se encuentran ubicados ramificadores de presión. Estos ramificadores de presión se encuentran unidos a los dos lados de un manómetro diferencial de tal forma que la deflexión h es una indicación de la diferencia de presión p1 – p2. Por supuesto, pueden utilizarse otros tipos de medidores de presión diferencial.

Aplicaciones tecnológicas de un tubo de venturi

El Tubo Vénturi puede tener muchas aplicaciones entre las cuales se pueden mencionar:

En la Industria Automotriz: en el carburador del carro, el uso de éste se pude observar en lo que es la Alimentación de Combustible.

Los motores requieren aire y combustible para funcionar. Un litro de gasolina necesita aproximadamente 10.000 litros de aire para quemarse, y debe existir algún mecanismo dosificador que permita el ingreso de la mezcla al motor en la proporción correcta. A ese dosificador se le denomina carburador, y se basa en el principio de Vénturi: al variar el diámetro interior de una tubería, se aumenta la velocidad del paso de aire.

tubo de pilot

El tubo pitot es un medidor de flujo. Son instrumentos sencillos, económicos y disponibles en un amplio margen de tamaños.

Es uno de los medidores más exactos para medir la velocidad de un fluido dentro de una tubería.

Su instalación simplemente consiste en un simple proceso de ponerlo en un pequeño agujero taladrado en la tubería.

El tubo Pitot tiene sección circular y generalmente doblado en L. Consiste en un tubo de pequeño diámetro con una abertura delantera, que se dispone contra una corriente o flujo de forma que su eje central se encuentre en paralelo con respecto a la dirección de la corriente para que la corriente choque de forma frontal en el orificio del tubo.

Aplicación en Manómetros de tubo de Pitot

Los manómetros de tubo de Pitot es un instrumento elemental para la medición de velocidades de flujo de gases o de aire en canales. Los manómetros de tubo de Pitot son

Page 13: Que Es Elemento de Presión

una derivación de los clásicos tubos Prandtl, una combinación de tubo de Pitot para medir la presión total y una sonda de medición de la presión estática. Estrechamente relacionados con los manómetros surgen los anemómetro para medir velocidades de flujo. La ventaja de los manómetros de tubo de Pitot frente a otros métodos de medición consiste en el hecho de que un orificio relativamente pequeño sobre la pared del canal en las zonas más importantes del recorrido es suficiente para realizar en cualquier momento una medición rápida de la velocidad de flujo. Además, podrá utilizarlos a altas temperaturas y a velocidades de flujo muy elevadas (hasta 120 m/s dependiendo del modelo).

Un tubo de Pitot o tubo de remanso opera según las bases de la dinámica de fluidos y es un ejemplo clásico para la aplicación práctica de las ecuaciones de Bernoulli. Un tubo de remanso es un tubo abierto en la parte delantera que se dispone contra una corriente de forma que su eje central se encuentre en paralelo con respecto a la dirección de la corriente para que la corriente choque de forma frontal en el orificio del tubo. La parte trasera se fija a un manómetro. Estos aparatos pueden ser recalibrados para garantizar una precisión continua, además pueden ir acompañados de certificados de calibración ISO Los datos recogidos por estos manómetros pueden ser transmitidos al PC, mediante un cable de RS-232, de manera rápida y sencilla. Estos manómetros llevan certificado de calibración de fábrica, pero también se puede solicitar la cali-bración DIN ISO (calibración de laboratorio, incluido certificado de revisión).