76
APELLIDOS: NOMBRE: DNI: _______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Fulanito de los Palotes Página 1 de 1 Calificación: CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje Tema 1: Cálculo diferencial en varias variables FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Sea la función f(x,y) definida de la siguiente forma en todo (x,y) de IR 2 : ( ) { ( ) ( ) ( ) ( ) a) Calcule para cualquier (x,y) de IR 2 las expresiones de ( ) y ( ) b) Calcule para qué direcciones v = (v 1 ,v 2 ) t existen las derivadas direccionales ( ). RESULTADOS a) Si (x,y)(0,0) entonces, ( ) ( ) ; ( ) ( ) Si (x,y)=(0,0) entonces, () ()() ; () ()() b) Sea v = (v 1 ,v 2 ) t , tal que ||v||=1, entonces, si (x,y)=(0,0) como punto en el que puede haber problemas para su cálculo: ( ) (( ) ) ( ) () ( ) ( ) ( ) ( ) Si (x,y)=(0,0) entonces, siempre que v 2 0, se podrá calcular la derivada direccional. Cuando (x,y)(0,0) entonces, ( ) ( ) ( ) ¡¡ BUEN TRABAJO !! Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Embed Size (px)

Citation preview

Page 1: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Fulanito de los Palotes Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 1: Cálculo diferencial en varias variables

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Sea la función f(x,y) definida de la siguiente forma en todo (x,y) de IR2:

( ) {

( ) ( )

( ) ( )

a) Calcule para cualquier (x,y) de IR2 las expresiones de

( ) y

( )

b) Calcule para qué direcciones v = (v1,v2)t existen las derivadas direccionales

( ).

RESULTADOS

a) Si (x,y)(0,0) entonces,

( )

( ) ;

( )

( )

Si (x,y)=(0,0) entonces,

( )

( ) ( )

;

( )

( ) ( )

b) Sea v = (v1,v2)

t, tal que ||v||=1, entonces, si (x,y)=(0,0) como punto en el que puede haber problemas para su cálculo:

( )

(( ) ) ( )

( )

( )

( )

( ) ( )

Si (x,y)=(0,0) entonces, siempre que v20, se podrá calcular la derivada direccional.

Cuando (x,y)(0,0) entonces,

( )

( )

( )

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 2: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Carlos Paredes Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 1A: Cálculo diferencial en varias variables

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Sea la función f(x,y) definida de la siguiente forma en todo (x,y) de IR2:

( ) {

( ) ( )

( ) ( )

a) Dibuje el conjunto de puntos (x,y) del plano donde f no esta definida. (0.5 ptos)

b) Calcule para el punto (0,0) de IR2 las expresiones de

( ) y

( ). (1.0 ptos)

c) Analice la continuidad de f(x,y) en el origen (utilice la trayectoria y = x + x2). (1.0 ptos)

ESCRIBA AQUÍ LOS RESULTADOS

a) La función no esta definida en aquellos puntos que anulan el denominador:

{

b) Si (x,y)=(0,0) entonces,

( )

( ) ( )

;

( )

( ) ( )

c) El límite sobre la trayectoria sugerida:

( ) ( )

( )

( ) ( )

Para comprobar la continuidad bastará comparar este límite con otra trayectoria, por ejemplo, radial y=mx, exceptuando las trayectorias con m=1 y m=-2, sobre las que la función no esta definida (apartado a):

( ) ( )

( )

( ) ( )

Por lo que la función no es continua en el origen.

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 3: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

ESA 1 30 de marzo de 2012

1. a) Desarrollar según la fórmula de Taylor de 2º grado en el entorno del punto (1,0) la

función y=f(x,z) definida implícitamente por 3 2 2 0y x y z con f(1,0)=1 (2 puntos)

b) Cuál sería la aproximación lineal en el punto (x,z)=(.95, .1) (0,25 puntos)

c) Aproximación cuadrática en el punto (x,z)=(.95, .1) (0.25 puntos)

Solución:

a)

),(2 zxT

332)1(0)1(2!2

10)1)(1(

!1

11),( 2222

2 zxxzzxxzxzxT

b) 05.1)1.0,95.0( lAproxlinea

c) 0425.1)1.0,95.0( caóncuadrátiAproximaci

2. Sea la siguiente superficie definida en forma implícita:

1)(),,( zxyzLnxyzzyxF

a) Obtener el plano tangente en el punto P tal que x=1 e y=1 (1.25 puntos)

b) Considerando z como función de x e y, encontrar la derivada direccional de z en P

según la dirección del vector v(2, 1) (1.25 puntos)

Solución:

a)

),1,1(1)ln(1)(),1,1(

1;11)(),,( eP

ezzzzLnzzF

yxzxyzLnxyzzyxF

eeFeeFeeF

zxyF

yxzF

xyz

yzyzF zyxxxx

1),1,1(;1),1,1(;1),1,1(1

1;

1; ''''''

Plano tangente en P(1,1,e):

0)(1

)1)(1()1)(1( eze

yexe

b)

)1(

)1(

),(

'

'

'

'

'

'

eeF

Fz

eeF

Fz

yxfz

z

y

y

z

x

x

; vector unitario

5

1,

5

2

v

vu

Derivada direccional en P según la dirección u:

)1(5

3

5

1)1)((

5

2)1()(),(()(),( ''

eeeeeeuPzPzuPzyxfD yxu

Page 4: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 2: Introducción a la Optimización

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Calcula y clasifica los puntos críticos de 3 2 4 2( , ) 2 2 3f x y x y y x y

RESULTADOS

Puntos críticos: 0f

2

3 2

3 6 0

4 8 3 0

x

y

f x xy

f y y x 3 ( 2 ) 0 0 ; 2x x y x x y

Para

2

2

0 ; 4 (1 2 ) 0 0

0 ; 0

12 ; 4 (2 3 1) 0 ; 1

2

1; 2

x y y y

y x

x y y y y y x

y x

Puntos:

1 2 3

1(0,0) ; 1, ; ( 2,1)

2P P P

Test de las derivadas segundas:

2

6 6

6

4 24

xx

xy

yy

f x y

f x

f y

2

3

3 61 11, : 1, 6 0 Punto Silla

6 102 2

6 12-2,1 : -2,1 24 0 ; ( 2,1) 6 Máximo

12 28xx

P H

P H f

En el caso 1(0,0)P :

0 0(0,0) 0 DUDA

0 4H .

Page 5: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 2 de 2

Forma de resolver la duda

Se estudia la función en puntos próximos al (0,0). 3( ,0)f h h En el plano 0y en un sentido la función es

positiva y en el otro sentido la función es negativa y se comporta como una inflexión en el origen, pero en el

plano 0x , 2 4(0, ) 2 2f k k k siempre es negativa, por tanto se trata de un punto SILLA.

Page 6: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 20: Introducción a la Optimización

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Dada la función ( , , )f x y z x y z sujeta a la restricción 3 3 3 81x y z .

Analiza la existencia de extremos absolutos. Estudia, mediante Multiplicadores de Lagrange, en qué punto se alcanza el valor MÁXIMO y cuál es dicho valor máximo.

RESULTADOS

Extremos absolutos: Se aplica el Teorema del valor extremo

El conjunto 3 3 3 3( , , ) / 81D x y z x y z de los puntos que satisfacen la ecuación de ligadura es un conjunto

cerrado y acotado (compacto) y dado que ( , , )f x y z xyz es continua en él se puede asegurar que existe un máximo

y un mínimo absoluto en algún punto de D . Multiplicadores de Lagrange

Sean3 3 3

( , , )

( , , ) 81

f x y z x y z

g x y z x y z

Evaluar , , y x y z tal que

( , , ) ( , , )

( , , )

f x y z g x y z

g x y z k

2

2

2

3 3 3

3

3

3

81

x

y

z

f yz x

f xz y

f xy z

x y z

2 2 2

3yz xz xy

x y z

3 3

3 3(1) Siendo 0, 0, 0

y xx y z

z x

Obtención del punto que da valor máximo

Sustituyendo (1) en la ecuación de ligadura 3 3 3 81x y z , resulta:

3 33 81 27 3x x x . Por tanto 3x y z (3,3,3)P Máximo

93 1

9

1

3 (3,3,3) 27f

Observaciones

1. Las funciones y f g son de clase 1C además el punto P(3,3,3) es un punto regular ya que

2

2

2

3 27

(número de ecuaciones de ligadura) 3 27 1

3 27

i

j P

P

xg

rg r rg y rgx

z

Lo que garantiza, según el teorema de Lagrange, La existencia de .

Page 7: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 2 de 2

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 8: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 3: Funciones Vectoriales

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Considere la curva dada por la intersección de las dos superficies:

y

1. Escriba la curva en paramétricas. Use la cabeza y utilice unas ecuaciones paramétricas “razonables”. (0.5 puntos) 2. Calcule la longitud de la curva. (0.5 puntos) 3. Calcule el vector normal principal y el plano osculador en el punto (0, 1, 0). (0.5 puntos) 4. Calcule curvatura y torsión de la curva en el punto (0, 1, 0). (0.5 puntos) 5. Calcule el círculo osculador a la curva en el punto (0, 1, 0). (0.5 puntos)

RESULTADOS

1. ( ) , ( ) , ( )

2.

3. ,

4. ,

5. ( )

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen de los cálculos correspondientes

Page 9: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

Ver EJERCICIO RESUELTO 6 del Capítulo 13 del LIBRO DE TEXTO

1) La curva intersección de un cilindro con un plano es una elipse. Se pueden elegir para ella infinitas formas de

ecuaciones paramétricas. Sin embargo, las ecuaciones más lógicas resultan de tener en cuenta que, en la ecuación del

cilindro, tenemos una suma de cuadrados igual a la unidad. Con esta observación lo más lógico es poner:

( ) ( )

2) Calculamos la velocidad, y con ella, la longitud:

( ) ( ) | ( )| √

∫ √

√ ∫ √ ⁄

donde aparece una integral elíptica sin primitiva, cuyo valor puede aproximarse excelentemente mediante un método

numérico construido mediante una suma de Riemann con un solo intervalo (definición de integral en Cálculo I), por

ejemplo:

( ) √ ⁄ ∫ ( )

(

)

Con lo que:

√ √ ( )

3) De forma trivial, la Normal Principal en (0,1,0) es:

( ) √

( )

y el Plano Osculador, en todos sus puntos, es el plano de la curva:

4) Dado que la elipse intersección del cilindro y del plano tiene “centro” el origen y semiejes √ (en el plano ) y 1

(en el plano ), la curvatura en el punto propuesto es:

( )

( )

Por su parte, la torsión es nula en todos los puntos al tratarse de una curva plana (su plano osculador es el mismo para

todos los puntos):

5) Como la circunferencia osculatriz (frontera del circulo osculador) tiene su centro en la recta definida por la normal

principal a partir del punto (0, 1, 0) y radio el radio de curvatura en ese punto, el centro de la circunferencia es:

( ) ( ) ( ) ( )

Y, por tanto, la ecuación de la circunferencia buscada se escribe:

( )

NOTA: El estudiante que sepa qué son las cosas no necesita hacer apenas cálculos. Obviamente, el estudiante que solo conozca

cómo se calculan, puede perfectamente aplicar las fórmulas de clase y del Libro de Texto para obtener, mediante el cálculo

ciego, los mismos resultados.

-2-1

01

2-2

-10

12

-2

-1

0

1

2

3

y

y + z - 1 = 0

x

z

Page 10: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 3: Funciones Vectoriales

FECHA: 30/03/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Considere la curva dada por la intersección de las dos superficies:

y

1. Escriba la curva en paramétricas. Use la cabeza y utilice unas ecuaciones paramétricas “razonables”. (0.5 puntos)

2. Calcule la longitud de la curva. (0.5 puntos)

3. Calcule el vector normal principal y el plano osculador en el punto √

. (0.5 puntos)

4. Calcule curvatura y torsión de la curva en el punto √

. (0.5 puntos)

5. Calcule el círculo osculador a la curva en el punto √

. (0.5 puntos)

RESULTADOS

1. , ,

2.

3. ,

4. ,

5.

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 11: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

Figuras para

1) La curva es la intersección de un cilindro de sección astroide con un plano perpendicular a él. Por tanto, es una astroide en el plano

. Se pueden elegir para ella infinitas formas de ecuaciones paramétricas. Sin embargo, las ecuaciones más lógicas resultan de

tener en cuenta que tenemos una suma de cuadrados igual a la unidad. En efecto, la ecuación del cilindro puede ponerse:

(

)

(

)

Con esta observación lo más lógico es utilizar las ecuaciones paramétricas:

2) Calculamos la velocidad, y con ella, la longitud:

| |

[ ]

3) De forma trivial, la Normal Principal en √

es:

y el Plano Osculador, en todos sus puntos, es el plano de la curva:

4) Para calcular la curvatura utilizamos:

|

|

| |

| |

Como:

| | | |

resulta que:

Como para el punto √

se tiene

, la curvatura en el punto propuesto es:

(

)

( )

Por su parte, la torsión es nula en todos los puntos al tratarse de una curva plana (su plano osculador es el mismo para todos los

puntos):

5) Como la circunferencia osculatriz (frontera del circulo osculador) tiene su centro en la recta definida por la normal principal a partir

del punto y radio el radio de curvatura en ese punto, el centro de la circunferencia es:

( √ √ )

y, por tanto, la ecuación de la circunferencia buscada se escribe:

( √ ) ( √ )

-1

0

1

2

3

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

x

x - 1 = 0

y

z

00.5

11.5

2

-1-0.5

00.5

1-1

-0.5

0

0.5

1

x

x = 1, y = cos(t)3, z = sin(t)3

y

z

Page 12: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la
Page 13: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

 Ejercicio de Seguimiento de Aprendizaje 1          Cálculo II. Graduado en Ingeniería. Grupo GTM2 y GTM4. 

6 ECTS, 2º Semestre, 1er Curso _______________________________________________________________________________29 de marzo de 2011  

1. Dada la siguiente función: 

2 2

3 si ( , ) (0,0)

( , )

0 si ( , ) (0,0)

xy x yx y

f x y

x y

⎧ ≠⎪ +⎪= ⎨⎪⎪ =⎩

 

Se pide: A) Calcular la continuidad de dicha función f(x,y) en el punto (0,0)  (0,5 puntos) 

Coordenadas polares: cos ;x y senρ θ ρ θ= =

( )2 2

20 0 02 2 2

cos coslim lim lim cos 0cos

sen sen sensenρ ρ ρ

ρ θ θ ρ θ θ ρ θ θρρ θ θ→ → →

= = =+

Por lo tanto, existe el límite doble en (0,0), luego la función es continua en (0,0).

B) Obtener las derivadas parciales en (0,0) utilizando la definición de la derivada (0,5 puntos) 

2

20 0 0

0 0(0 ,0) (0,0) 0(0,0) lim lim lim 0

h h h

f f h f hx h h h h→ → →

−∂ + −

= = = =∂

(0,0) 0fy∂

=∂

(por simetría)

Por lo tanto, existen las derivadas parciales en (0,0).

C) Estimar si la función es o no diferenciable en  (0,0) (1 punto)  

Dado que las derivadas parciales existen y son iguales a 0, si existe el diferencial, df(h1,h2), debe ser:

( ) ( ) ( ) ( )1 11 2

2 2

, 0,0 0,0 0 0 0h hf fdf h hh hx y⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

Para calcular el límite pasamos a coordenadas polares: cos ;x y senρ θ ρ θ= = :

2 21 2

2 22 2( , ) (0,0) ( , ) (0,0) ( , ) (0,0)

0 0( , ) (0,0) ( , )

lim lim lim( , ) (0,0)x y x y x y

xy

x yf x y f df h h xyx y x yx y→ → →

− −+− −

= =− ++

2

2 2 2( , ) (0,0) 0 0

coslim lim lim cosx y

xy sen senx y ρ ρ

ρ θ θ θ θρ→ → →

= =+

que no existe al depender del valor de θ .Luego la función NO es diferenciable en (0,0).

2 2( , ) (0,0)lim

x y

xy

x y→ +

Page 14: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

  

2. Sea la función  xayaxyxyxf4

12),(4

23 ++−+−= , donde  , 0a R a∈ ≠  

Se pide: A) Puntos críticos y extremos relativos de la función según valores de a (1,5 puntos) 

44 3 322

1 2

2 3 2 22 2 4

1 2

( , ) 33 0 ;44 12 16 ( , ) 4 0 4 3 12 0 ;

4 3 4

af x y a a aay xx ay y yx

f x y x a a aax y ax x a x a x xy a

⎧ ⎫⎫∂ −= −= − + + = = =⎪ ⎪⎪⎪ ⎪ ⎪∂⎬ ⎨ ⎬⎛ ⎞∂ −⎪ ⎪ ⎪= − = = − → − − = = =⎜ ⎟⎪ ⎪ ⎪∂ ⎭ ⎝ ⎠⎩ ⎭

    

 ⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛ −−⎟⎟⎠

⎞⎜⎜⎝

⎛16

,4

)2 ; 12

,3

)13232 aaaa

 

Matriz Hessiana,  ⎟⎟⎠

⎞⎜⎜⎝

⎛−

−=

46

),(a

axyxH  

  Particularizamos en los puntos críticos 

  1)  0 74

23

16,

42

232

<−=−

=⎟⎟⎠

⎞⎜⎜⎝

⎛ −− aa

aaaaH  f alcanza en (16

,4

32 aa −−) un punto silla 

  2)  0 74

212

,3

2232

→>=−

−=⎟⎟

⎞⎜⎜⎝

⎛a

aaaaaH y   0

12,

32

322

→<∂

⎟⎟⎠

⎞⎜⎜⎝

⎛∂

x

aaff alcanza en  

    (12

,3

32 aa) un máximo relativo estricto de valor 

121

723627)

12,

3(

666632 aaaaaaf ++−+−=  

B) Determinar el valor de a para el cual el polinomio de Taylor de grado 2 en el origen de la función f(x,y) tome el valor 0,92 en el punto (0.1, ‐0.2) (1,5 puntos) Punto p(0,0) 

2 2 22 2

2 2 2

1 ( ) ( ) 1 ( ) ( ) ( )( , ) ( ) ( 0) ( 0) ( 0) ( 0) 2( 0)( 0)1! 2!

f p f p f p f p f pT x y f p x y x y x yx y x y x y

⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂ ∂= + − + − + − + − + − −⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )2 2 24

2 21; ; 0; 0; 4; 4

f p f p f p f p f paf p ax y x y x y

∂ ∂ ∂ ∂ ∂= = = = = − =

∂ ∂ ∂ ∂ ∂ ∂ 

42

2 ( , ) 1 24aT x y x axy y= + + −  

Particularizando en el punto (0.1, ‐0.2): 

42 (0.1, 0.2) 1 0.025 0.02 0.08 0.92T a a− = + − − = , de donde, 

  

( )3 1/3 1/3

0, 0.025 0.02 0 0.02 4

0.025 5

a no puede sera a

a

=⎧⎪− = ⎨ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

Page 15: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

     

3. Maximizar mediante  el método  de  los multiplicadores  de  Lagrange  ( , ) 2f x y y x= − ,  sujeta  a  la restricción  y senx= , con 0 2x π≤ ≤  (1,5 puntos) 

[ ]

( )

11 ( cos ) cos ( 0,2 )( , ) 2 ; 2 32

( , ) 0 3( , ) 0 0 / 32

x x

y y

f g x x x xf x y y x

f g f gg x y y senx

g x y y senx y sen

πλ λ πλ λ λ

π

⎧ = ⇒ − = − ⎫ = ⇒ = ∈= − ⎫ ⎪ ⎪∇ = ∇ = ⇒ =⎬ ⎨ ⎬≡ − = ⎭ ⎪ ⎪= ⇒ − = = =⎭⎩

 

f alcanza el máximo en 3,

3 2π⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

 y su valor es 3,

3 2f π⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

 

 4. La ecuación implícita cartesiana del Cardioide es                                                .  

Su expresión en coordenadas polares viene dada por                            ., a>0  Calcular su longitud teniendo en cuenta la figura.  (2 puntos)  

( ) ( ) ( )( )

( ) ( ) ( )2 2 22 2 2

2 22 2 2

( ) '( ) 2 1 cos( ) 1 cos ( ) 1 2cos cos

4 cos'( ) '( ) 2

aa a

aasen a sen

ρ θ ρ θ θρ θ θ ρ θ θ θθ

ρ θ θ ρ θ θ

+ = +⎫= + ⇒ = + + ⎪⎬ ⎛ ⎞== − ⇒ = ⎪ ⎜ ⎟⎭ ⎝ ⎠

( ) ( )2

1

2 2 2 2

00 0

( ) ( ) '( ) 2 4 cos 2 2 cos 8 82 2 2

L d a d a d a sen aπθ π π

θ

θ θ θγ ρ θ ρ θ θ θ θ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + = = = =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦∫ ∫ ∫  

 

5. La función 2 2( , ) 2 2 16 ln( )f x y x y x= + − : 

a. Tiene dos puntos críticos: P1(2,0) y P2(‐2,0) b. Alcanza un mínimo en el punto (2,0) c. Alcanza un mínimo en el punto (‐2,0) d. Alcanza un máximo en (2,0) y un mínimo en (‐2,0)   

 Indicar y razonar cuál es la solución correcta (1,5 puntos)  La solución correcta es la b).  Se debe tener en cuenta que x>0 para que el ln(x) esté definido 

( ) ( )22 2 2 2 2x y 2ax 4a x y+ − = +

( )a 1 cosρ θ= +

Page 16: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la
Page 17: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

SOLUCIONES ESA 1 (1/04/2011)

1.- Trace el dominio para el que la función f:

)4yxln()y,x(f 42

se encuentra definida si f: IR2 IR

SOLUCION:

={(x,y)IR2; 04yx 42 }

2.- Evaluar la existencia de límite en el punto (0,0) IR2

de la función f:

y

yx)y,x(f

2

SOLUCION:

k

k1

kx

kxxlim

y

yxlim

2

22

0x

2

kxy

)0,0()y,x(2

, no existe límite

3.- Considerando la definición de derivada parcial evalúe la existencia de xf y yf en el

punto (0,0) IR2

de la función f:

)0,0()y,x(;0

)0,0()y,x(;yx

yyx

)y,x(f 22

32

SOLUCION:

la existencia de xf:

Page 18: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

la existencia de yf:

4.- Determinar los valores de z/x y z/y en el punto (1,1,1) para la superficie z(x,y):

02yyzxyz 33

SOLUCION:

Sea 2yyzxyz)z,y,x(F 33

Luego:

yz3z

F

y3zyy

F

yx

F

2

2

4/3)1,1,1(y

z

yz3

y3zx

z/F

y/F

y

z

4/1)1,1,1(x

z

yz3

y

z/F

x/F

x

z

2

2

2

5.- Determinar la ecuación normal del plano tangente y la ecuación paramétrica de la

recta normal a la superficie

4yzeyxxcos xz2

en el punto (0,1,2)

SOLUCION:

yxe,zx,zexy2xsen)z,y,x(f xz2xz

1,2,2)2,1,0(f

Plano tangente: 2(x-0)+2(y-1)+1(z-2)=0 2x + 2y + z =4

Recta normal:

t2z

t21y

t2x

Page 19: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

6.- Determinar y clasificar todos los puntos críticos locales de la función:

xy6y3x2x6)y,x(f 232

SOLUCION:

0x6y6f

0y6x6x12f0)y,x(f

y

2

x Soluciones: (0,0), (1,-1)

Caso (0,0):

036)0,0(Hdet

012)0,0(x

f

f

2

2

mínimo local

Caso (1,-1):

036)0,0(Hdet

0)1,1(x

f

f

2

2

punto ensilladura

7.- Determinar el punto sobre la recta x + 3y = 10 en el que la función:

xy6y3x2x6)y,x(f 232

alcanza su valor máximo.

SOLUCION:

3

x10x6

3

x103x2x6))x(y,x(f

xy6y3x2x6)y,x(f

3

x10)x(y

2

32

232

3

26x12)x(''f

3

40x

3

26x6)x('f

3

100x

3

40x2x

3

13)x(f 232

Se resuelve f’(x) = 0:

)88913(18

1x),88913(

18

1x 21

La función f tiene dos extremos locales sobre la recta en el )3/)x10(,x( 11 y el

)3/)x10(,x( 22 , siendo el signo:

0)3/)x10(,x(''f 11 mínimo local y 0)3/)x10(,x(''f 22 máximo local

8.- Determine la distancia recorrida por una partícula que describe una trayectoria:

kjir333 t3t2t6)t(

desde el instante t = 1 hasta llegar al punto (48,-16,-24) y la velocidad |v| en este punto.

SOLUCION:

Instante sobre (48,-16,-24): 2t

24t3

16t2

48t6

3

3

3

84)2(vt21t441)t9()t6()t18()t(v

t9t6t18)t(t3t2t6)t(

24222222

222333

kjivkjir

Page 20: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Longitud recorrida: 49dtt21dt)t(vL

2

1

2

2

1

9.- 10.- Determine el triedro de Frenet-Serret, la curvatura y la torsión de una partícula

que describe la trayectoria:

kjir )t(sen)tcos(2)t(sen)t(

para el instante t

SOLUCION:

Page 21: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

 Ejercicio de Seguimiento de Aprendizaje 2          Cálculo II. Graduado en Ingeniería. Grupo GTM2 y GTM4. 

6 ECTS, 2º Semestre, 1er Curso  

24 de mayo de 2011 _________________________________  NOTA: las calificaciones se harán públicas el 1 de junio     

1.  Calcular  ∫∫∫ +E

dxdydzzyzx )44( 22 , siendo E el volumen exterior a la hoja superior del cono z2= x2 + y2 e 

interior al cilindro x2+y2 = 1, con z ≥ 0. (2 puntos) _____________________________________ 

 

2.  Calcular ∫∫D

xydxdy6  sobre el recinto D acotado por las rectas siguientes:  

      02 =− yx ;  42 −=− yx ;  1=+ yx ;  4=+ yx , 

considerando el cambio de variable  ( ))231 vux +=  e   ( )vuy −=

31

 que transforma D en el recinto D’.               

(2 puntos) 

_____________________________________  

3. Hallar el flujo saliente del campo vectorial ( , , ) ( , ,2 )F x y z x y z=  a través de la superficie cerrada S 

que limita el sólido V={(x,y,z)/ 0 ≤  z ≤  4‐2x2‐2y2}, a) directamente, b) por el teorema de la divergencia (3 puntos) 

_____________________________________  

4. Hallar  la integral curvilínea    ( ) ( ) ( )y z dx z x dy x y dzγ

− + − + −∫  en  la que γ es una parametrización de 

la curva dada por  las ecuaciones x2+4y2=1, z=x2 +y2,   a) directamente, b) mediante el T. de Stokes.     (3 puntos) 

  

          

Page 22: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

 EJERCICIO 1 (El resultado correcto, según el enunciado del ESA 2, va multiplicado por 2; es decir: 2π/3)  

 

        

 

Page 23: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

 EJERCICIO 2 (El resultado correcto, según el enunciado del ESA2, va multiplicado por 2; es decir, 328/9)  

3.‐ Calcular  ∫∫D

xydxdy3  sobre el recinto D acotado por las rectas siguientes  

      02 =− yx ;  42 −=− yx ;  1=+ yx ;  4=+ yx  

considerando el cambio de variable  ( ))231 vux +=  e   ( )vuy −=

31

 que transforma D en el     recinto D’.  (4 

puntos) 

Solución: 

A través del cambio de variable el recinto D se convierte en el recinto D’.  

 

El jacobiano de la transformación viene dado por: 31

3/13/13/13/2

),(),(),( −=

−=

∂∂

∂∂

∂∂

∂∂

=∂∂

=

vy

uy

vx

ux

vuyxvuJ ;  

31),( =vuJ  

Luego,  dudvvuJvufdxdyyxfDD∫∫∫∫ =

'

),(),(),(  

  ( ) ( ) ( )∫∫∫∫∫∫−

=−−=⎥⎦⎤

⎢⎣⎡ −+=

0

4

224

1''

291

31

312

313),(),( dvvuvudududvvuvududvvuJvuf

DD

 

9164

36488

91 4

1

2 =⎟⎠⎞

⎜⎝⎛ −+∫ duuu  

x‐2y=‐4 

x‐2y=0 

x+y=4 

x+y=1 x 

v

u=4 u=1 

v=‐4 

v=0 

D’ 

 D 

Page 24: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

EJERCICIO 3 

 

       

 

Page 25: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

  

                                   a) 

         

Page 26: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

EJERCICIO 4 

 

Page 27: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

     _________________________________________________________________________________________________ 

_________________________________________________________________________________________________ Cálculo II.   

 

Page 28: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la
Page 29: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

SOLUCIONES ESA 2 (27/05/2011)

1.- .- El espacio ocupado por el edificio de contención de un reactor nuclear puede aproximarse mediante la región del espacio limitado: lateralmente por la superficie x2 + y2 = 5 superiormente por z2 = 9 – x2 –y2 inferiormente por z = 0 Determinar el volumen del edificio SOLUCION:

2.- Un sólido se encuentra definido en la región del espacio limitada por las superficies:

y = 0 z = 0 z = 4 – x2 x = y2 Su densidad se distribuye según (x,y,z) = kxy, siendo k una constante.

a) Calcular la masa del sólido b) Calcular su centro de masa

SOLUCION:

3.- Calcular el trabajo realizado por una partícula que se encuentra sometida a un campo de fuerza F = 2xy3i + 4x2y2j, que se desplaza, en sentido contrario a las agujas del reloj, sobre la curva C formada por la frontera de la región situada en el primer cuadrante y encerrada por las curvas y = 0, x = 1, y = x3. SOLUCION:

Page 30: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

4.- Determina la circulación del campo F = x2i + 2xj + z2k aplicando el Teorema de Stokes alrededor de la curva 4x2 + y2 = 4 situada en el plano OXY y en la dirección contraria a las agujas del reloj. SOLUCION:

5.- Sea n el vector normal unitario que orienta la superficie 4x2 + y + z2 = 4 con y 0. Sea el campo:

kjiF

z41x)y(tan

x21z 1

Determinar el valor de: S

d· nF

SOLUCION:

6.- Determinar el flujo saliente del campo: F = (6x2 + 2xy)i + (2y + x2z)j + 4x2y3k a través de la pared del cilindro x2 + y2 = 4 limitada al primer octante y con z 3. SOLUCION:

Page 31: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

1

SOLUCIONES DEL ESA-1. GRUPO GIE-2

CÁLCULO II

GRADUADO EN INGENIERÍA DE LA ENERGÍA

DEPARTAMENTO DE MATEMÁTICA APLICADA Y MÉTODOS

INFORMÁTICOS

E.T.S.I. MINAS (Universidad Politécnica de Madrid)

Primer ejercicio

3 3

2 2

3x y, si (x,y) (0,0)

f(x,y) x y

0, si (x,y) (0,0)

a) Continuidad de f:

En puntos diferentes al (0,0) la función es continua, pues se trata del cociente

de dos funciones continuas (pues los polinomios lo son) en que el denominador

no se anula para ningún punto.

El punto conflictivo será, por lo tanto, el (0,0). Para determinar si la función es o

no continua en dicho punto calculamos el límite cuando (x,y)(0,0):

3 3

2 2(x,y) (0,0) (x,y) (0,0)

3x y 0lim f(x,y) lim

x y 0

Resolvemos la indeterminación haciendo el cambio a polares:

3 3 3 3 3

2 2 2 2 2(x,y) (0,0) 0 0

(3cos sen ) 3cos senlim f(x,y) lim lim 0

(cos sen ) cos sen

Dado que (x,y) (0,0)

lim f(x,y) 0 f(0,0)

la función es f(x,y) es continua también en

(0,0).

Así pues, f(x,y) será continua en todo punto de R2.

b) Derivadas parciales y direccionales en (0,0):

El cálculo de las derivadas parciales en (0,0), dado que en ese punto no

tenemos una expresión para la función, lo hacemos aplicando la definición de

derivadas parciales:

Page 32: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

2

3 3

2 2

h 0 h 0 h 0

3 3

2 2

h 0 h 0 h 0

3h 00

f f(0 h,0) f(0,0) h 0(0,0) lim lim lim3 3x h h

3(0) h0

f f(0,0 h) f(0,0) 0 h(0,0) lim lim lim1 1y h h

Análogamente, para las derivadas direccionales, tendremos:

1 2 1 2u

h 0 h 0

3 3

1 22 2 3 3

1 2 1 2

2 2h 01 2

f((0,0) h(u ,u )) f(0,0) f(hu hu ) 0D f(0,0) lim lim

h h

3u uh

u u 3u ulim

h u u

Dado que el vector u es unitario: 2 2

1 2u u =1, resultando finalmente:

3 3

u 1 2D f(0,0) 3u u

c) Derivadas parciales y direccionales en el punto (2,1) en la dirección

/4:

Las derivadas parciales de f(x,y) para puntos diferentes al (0,0) son:

3 2 3

22 2

x 3x 9xy 2yf(x,y)

x x y

2 3 3

22 2

y 3yx y 6xf(x,y)

y x y

Particularizamos las dos derivadas en el punto (2,1) resultando:

f 16 f 7(2,1) ; (2,1)

x 5 y 5

En cuanto a las derivadas direccionales, tenemos en cuenta que en puntos

distintos al (0,0) las derivadas parciales son continuas (por ser cociente de dos

polinomios), por lo que de acuerdo con el teorema de condición necesaria y

suficiente para que una función sea diferenciable, la función f(x,y) será

diferenciable en puntos diferentes al (0,0), en particular lo será en el punto

(2,1). Por ello, podemos aplicar:

Page 33: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

3

1u 2

f f(2,1)uD f(2, (2, u1) 1)

x y

siendo:

1

2

2u cos

4 2

2u sen

4 2

Por lo tanto:

1u 2

f f(2,1)u (2,1)u

x yD f(2,1)

16 2 7 2

5 2 5 2

Operando, resulta:

uD f(2,1)9

210

d) Derivada direccional máxima en (2,1):

La derivada direccional máxima en un punto es el módulo del vector gradiente

en dicho punto:

22 2 2

MAX

f f 16 7(2,1) (2,1

305D f(2, )

5y)

x 5 51

e) Ecuación del plano tangente a f(x,y) en el punto (2,1):

La ecuación del plano tangente será:

f f(2,1)(x 2) (2,1)(y 1z 5 )

x y

Sustituimos los valores de las derivadas parciales en la expresión anterior:

7(x 2

16z )5 (y )

51

5

Operando, se obtiene finalmente:

Page 34: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

4

16z x

5

7y

5

Segundo ejercicio

4 4 2 2f(x,y) x y 8x 8y 20

a) Extremos relativos:

Comenzamos calculando los puntos críticos:

f(x,y)0

x

f(x,y)0

y

El sistema anterior da lugar a:

3 2

3 2

4x 16x 0 x(4x 16) 0

4y 16y 0 y(4y 16) 0

De la primera de las ecuaciones obtenemos: x=0, x=2, x=-2.

De la segunda de las ecuaciones obtenemos: y=0, y=2i, y=-2i.

Consideramos únicamente los puntos en el campo real, de manera que los

puntos críticos serán:

(0,0), (-2,0) y (2,0)

Analizamos ahora su carácter empleando la matriz Hessiana:

2

f 2

12x 16 0H (x,y)

0 12y 16

,

y particularizándola en cada punto crítico:

f f

16 0H (0,0) , |H (0,0) | 0

0 16

, por lo que (0,0) es un punto de silla.

f f

32 0H (2,0) , |H (2,0) | 0

0 16

, por lo que (2,0) es un mínimo relativo.

f f

32 0H ( 2,0) , |H ( 2,0) | 0

0 16

, por lo que (-2,0) es un mínimo relativo.

Page 35: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

5

Por lo tanto la función f(x,y) presenta dos extremos relativos (mínimos) en los

puntos (-2,0) y (2,0).

El valor que toma la función en esos puntos es:

f(2,0) 4 ; f( 2,0) 4

b) Extremos absolutos de f(x,y) en el conjunto D dado por x4+y436

Aplicamos multiplicadores de Lagrange:

4 4

f(x,y) g(x,y)

x x

f(x,y) g(x,y)

y y

x y 36

donde g(x,y)=x4 +y4.

3 3 3 3 2 2

3 3 3 3 2 2

4 4

4x 16x 4 x x 4x x x(x x 4) 0

4y 16y 4 y y 4y y y(y y 4) 0

x y 36

Si x=0 entonces y= 6 . Además: f(0, 6) 104

Si y=0 entonces x= 6 . Además: f( 6,0) 8

Si x≠0 e y≠0:

2 2

2 2

x x 4 0

y y 4 0

Sumamos ahora ambas igualdades resultando:

2 2(1 )(x y ) 0

donde si 1 se llega a un absurdo: -4=0, 4=0, por lo que 1 y entonces no

se obtienen más soluciones.

En resumen el valor mínimo absoluto de f en D se alcanza en los puntos (-2,0)

y (2,0), siendo el valor mínimo de f en D = 4.

Page 36: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

6

El valor máximo absoluto se alcanza en los puntos f(0, 6) , siendo ese valor

=104.

Tercer ejercicio

Se considera la curva en paramétricas

5 t t(t) t,2sen , 2cos

3 3 3

y el punto P 5 ,0,2 se pide:

a) Comprobar que t es el parámetro arco y calcular la longitud de la curva

desde t=0 hasta t=2.

Para comprobar que es parámetro arco:

2 25 2 t 2 t 5 4 t t'(t) , cos , sen '(t) cos sen 1

3 3 3 3 3 9 9 3 3

.

Luego, efectivamente t es el parámetro arco.

Calculamos ahora la longitud pedida:

2 2

0 0

L '(t) dt 1dt 2

b) Triedro de Frenet en el punto P

Comenzamos calculando el vector tangente a la curva:

5 2 t 2 t 5 2 t 2 tT(t) '(t) , cos , sen i cos j sen k

3 3 3 3 3 3 3 3 3 3

Dado que el módulo del vector tangente es:

5 4T(t) 1

9 9

el vector que hemos obtenido es unitario.

Calculamos ahora el vector normal:

Page 37: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

7

2 t 2 t 2 t 2 tN(t) T '(t) 0, sen , cos sen j cos k

9 3 9 3 9 3 9 3

cuyo módulo es: 2

N(t)9

, por lo que el vector unitario normal será:

t tN(t) sen j cos k

3 3

Y, por último, el vector binormal:

i j k

1 t tB(t) T(t) N(t) 5 2cos 2sen

3 3 3

t t0 sen cos

3 3

2 5 t 5 ti cos j sen

3 3 3 3 3

cuyo módulo es: B(t) 1 por lo que el vector obtenido es unitario.

El punto P tiene por expresión paramétrica:

5t 5

3

t2sen 0 t 3

3

t2cos 2

3

Por lo tanto, el triedro de Frenet en el punto P será:

5 2 2 5 2

T(3 ) i cos j sen k i cos3 3 3 3 3

N(3 ) sen j cos k k

Page 38: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Soluciones del 1º ESA. Grupo GIE2. Curso 2010-11

8

2 5 5 2 5

B(3 ) i cos j sen i j3 3 3 3 3

c) Ecuación del plano osculador en el punto P

El plano osculador es el formado por el punto P y los vectores tangente y

normal. Así pues, el vector característico de dicho plano será el binormal. La

ecuación del plano será, por lo tanto:

2 5(x 5 ) (y 0) 0(z 2) 0 2x 5y 2 5

3 3

d) Curvatura en el punto P

Dado que t es el parámetro arco, podemos emplear la fórmula para la

curvatura:

|| ''(t) ||

Como 5 2 t 2 t

'(t) i cos j sen k3 3 3 3 3

resulta:

2 t 2 t''(t) sen j cos k

9 3 9 3

Finalmente, la curvatura será:

2|| ''(t) ||

9

Page 39: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 4A: Integración Doble

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Halle el área total encerrada por la curva:

( ) ( )( ) Nota: Se recomienda realizar un dibujo-esquema del área pedida.

RESULTADOS

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 40: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

Ejemplo 3 (pp. 1024-1025) del Cap. 15 del Libro de Texto

Dado que en la curva aparecen términos del tipo , lo más juicioso es pasarla a polares, obteniéndose:

El área pedida viene dada por:

∫ ∫

∫ ( )

[

]

Page 41: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 4A: Integración Doble

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Hallar, mediante integración doble, el volumen del sólido definido por las superficies:

y el cilindro cuya sección es una circunferencia de radio unidad y cuyo eje es la recta . Nota: Se recomienda realizar un dibujo-esquema del dominio de integración y del volumen pedido.

RESULTADOS

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 42: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

Ejemplo 4 (p. 1025) del Capítulo 15 del Libro de Texto

Las superficies que limitan el volumen pedido son el plano , el paraboloide y el cilindro ( ) .

El dominio de integración es la proyección sobre el plano del cilindro, es decir el círculo limitado por la circunferencia

y ( ) . Dada la geometría del dominio de integración, lo lógico es trabajar en polares, de manera que la

ecuación de la circunferencia queda:

Entonces, el volumen pedido viene dado por:

∬ ( ) ∫ ∫

∫ [ ]

∫ (

)

∫ (

( ))

Page 43: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje 2

Tema 4b: Integrales Triples

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Calcula la integral triple

E

z dV siendo E la cuña situada en el primer octante que resulta

de cortar el cilindro 2 2 1y z por los planos y 0y x x .

RESULTADOS

El sólido está limitado en su parte posterior por el plano x = 0 y al frente por el plano y = x. Sea R la proyección sobre el plano xy. Se integra primero sobre z. La integración sobre R se puede hacer primero sobre x y

luego sobre y. 2( , , ) / 0 1, 0 , 0 1E x y z y x y z y

2

21

2 21 1 1 1

0 0 0 0 0 0 00

1 12 3

0 00

1

2 2

1 1 11

2 2 8

yy y y y

E

y

z yz dV z dz dx dy dx dy dx dy

y x dy y y dy

También se puede proyectar sobre yz. 2( , , ) / 0 1, 0 1 , 0E x y z y z y x y

2

2 21

21 1 1 1 1 1

2

00 0 0 0 0 0 00

1 11

2 2 8

yy y y y

E

yzz dV z dxdz dy zx dz dy dy y y dy

Page 44: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje 2

Tema 4b: Integrales Triples

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Mediante integral triple calcula el volumen del tetraedro acotado por los planos

0, 0, 0, 2 4x y z x y z

RESULTADOS

Fórmula: 2 2

1 1

( ) ( , )

( ) ( , )( , , ) ( , , ) / 0 2, 0 4 2 , 0 4 2

b g x u x y

a g x u x yE

dV dzdxdy E x y z x y z x y x z x y

2 4 2 4 2 2 4 2 2 4 24 2

00 0 0 0 0 0 0

4 2 22 3

2 22 2

0 00 0

Volumen (4 2 )

2 164 2 8 8 2 8 4

2 3 3

x x y x xx y

x

dzdxdy z dydx x y dydx

y xy xy dx x x dx x x

También se hubiese podido calcular como integral doble: Volumen bajo la gráfica de 4 2z x y y por encima de

( , ) / 0 2, 0 4 2D x y x y x

4 22

2 4 2 2

0 0 00

16( , ) (4 2 ) (4 2 ) 4 2

2 3

xx

D D

yV f x y dA V x y dydx x y dydx y xy dx

Finalmente de forma geométrica: 1

6

A B C

A B C

A B C

x x x

V y y y

z z z

2 0 01 32 16

0 4 06 6 3

0 0 4

V

Page 45: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 5A: Análisis vectorial

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

1.- Dado el campo de fuerzas 3 2( , ) 1,3 1F x y y xy

a) ¿Es F conservativo? Hallar la función potencial U del campo vectorial F (1 punto) b) Hallar el trabajo realizado al mover un objeto desde el punto (0,0) al punto (2,0) a lo largo de la

semicircunferencia 2 21 1 0x y con y (1 punto)

c) Hallar el trabajo realizado al mover el objeto a lo largo de la circunferencia completa (0,5 puntos)

RESULTADOS

Solución:

a) Al ser F conservativo la integral

F es de clase C1, R2 es estrellado y 21 23F F

yy x

. Luego F es conservativo. Al ser conservativo la integral no

depende del camino recorrido. Por tanto, se puede calcular la función potencial U a partir de F U

3 33

1

2 22

22

1 ( )1

(́ ) 1 ( )3 (́ ) 3 13 1

UU y dx xy x h yF y

xh y h y y CUU xy h y xy FF xy yy

Luego, 3,U x y xy x y C

b) Al ser el campo F conservativo el trabajo no dependerá

del camino seguido sino únicamente del punto inicial y final.

(2,0)

1 2 1 2

(0,0)

2,0 0,0 2 0 2C

W Fdx F dy Fdx F dy U U

c) Por ser F conservativo, por tratarse de una curva cerrada, el trabajo será nulo.

(2,0) (0,0)

Page 46: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Página 1 de 1

Calificación:

CÁLCULO II. Ejercicio de Seguimiento de Aprendizaje

Tema 5A: Análisis vectorial

FECHA: 28/05/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

1.- Se considera el campo vectorial ),3(),( 2322 yyxxxyyxyxF . Calcular la circulación de F sobre la curva C

de la figura, que va del punto (0,0) al punto (2,3), por dos métodos diferentes: (2,5 puntos)

RESULTADOS

Solución:

Ahora, considerando que F=grad(U), siendo U la función potencial

2 2

2 2 2 2 31

3 2 3 2 3 22 2

3 3 ( )2

(́ ) ( )2

(́ )

U x yF x y xy U x y xy dx x y h y

yxh y y h y C

U UF x yx y x x y h y x yx y F

y y

(2,3)

1 2 1 2

(0,0)

32,3 0,0

2C

W F dx F dy F dx F dy U U

Page 47: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

1

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE

INGENIEROS DE MINAS

DEPARTAMENTO DE MATEMÁTICA APLICADA Y

MÉTODOS INFORMÁTICOS

TITULACIÓN: Ingeniero de la Energía (Grupo GIE-2)

ASIGNATURA: Cálculo II. E.S.A. 2 (26 de mayo de 2011; 12h. 10m.) ----------------------------------------------------------------------------------------------------------

Ejercicio 1 (4 puntos)

Consideramos el campo vectorial:

x yF xe i N(x,y) j

y la curva C formada por dos segmentos rectos y el arco de la elipse de

ecuación cartesiana:

2 2

2 2

x y1

a b

orientada en sentido anti-horario, que se representa en la figura.

(0,0) (a,0)

(0,b)

Page 48: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

2

Se pide:

a) Obtener N(x,y) de manera que el campo vectorial F sea conservativo.

b) Calcular la circulación del campo F , obtenido en el apartado a), desde el

punto (a,0) hasta el punto (0,b).

c) Evaluar, aplicando el Teorema de Green, la integral C

G dr , siendo

2 2 2G xy i x y j .

Solución:

Apartado a)

Para que el campo vectorial sea conservativo se debe cumplir:

x y x yN(x,y) xe xex y

.

Por lo tanto:

x y x y

x y

N(x,y) xe N(x,y) xe dx g(y)x

N(x,y) (x 1)e g(y) K

Hemos obtenido una familia de funciones N(x,y), dependientes de g(y) y de la

constante K. Escogeremos una función concreta de esa familia haciendo, por

ejemplo g(y)=0, K=0, resultando que el campo vectorial conervativo tendrá por

expresión:

x y x y x y x yF xe i (x 1)e j xe ,(x 1)e .

Apartado b)

Puesto que el campo es conservativo, la circulación entre dos puntos es

independiente del camino seguido. Una forma de proceder es obtener la

función potencial de la que deriva el campo vectorial y aplicar el teorema

fundamental del cálculo.

x y x yf(x,y) F(x,y) xe ,(x 1)e

x y x y x y

x y x y x y

f(x,y) xe f(x,y) xe dx (x 1)e g(y) Kx

f(x,y) (x 1)e (x 1)e dy (x 1)e h(x) Ky

Por lo tanto, g(y)=h(x)=0 y la función potencial es:

Page 49: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

3

x yf(x,y) (x 1)e .

Así pues, si llamamos a cualquier camino que empiece en (a,0) y termine en

(0,b), la circulación del campo vectorial se puede obtener por aplicación directa

del teorema fundamental del cálculo:

b aF dr f(0,b) f(a,0) e (a 1)e .

Apartado c)

El campo vectorial dado es de la forma:

G M(x,y) i N(x,y) j ,

siendo:

2 2 2M(x,y) xy , N(x,y) x y .

El teorema de Green es:

2

C R R

N MG dr 2xy 2xy dxdy

x y,

siendo R el recinto encerrado por la curva C. Para resolver la integral doble

empleamos un cambio de variable a coordenadas elípticas:

x a cos t

y b sent

| J | ab

,

con lo que la integral la podremos escribir:

/4 1

3 2 2 2

0 0C

G dr 2 ab costsen t 2 abcostsent abd dt

Operando en la expresión, se obtiene:

2 2

C

(8b 15)a bG dr

60.

Ejercicio 2 (6 puntos)

Se considera la superficie S definida por la ecuación: 2 2 2z x y .

Se pide:

a) Hallar el área de la superficie S limitada por los planos z=1 y z=2.

Page 50: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

4

b) Hallar la masa del sólido de densidad 2 2f(x,y,z) x y limitado por la

superficie S y los planos z=1 y z=2.

c) Hallar, utilizando el Teorema de la divergencia, el flujo del campo

vectorial 2 2F (x y,xy,z xy) a través de la superficie S limitada por los

planos z=1 y z=2.

Solución:

Apartado a)

La superficie del enunciado es un cono de eje vertical, que suponemos cortada

por los planos z=1 y z=2, generándose así un tronco de cono.

El área de la superficie se obtendrá resolviendo la integral

S

A dA , siendo 2 2

x ydA 1 (f ) (f ) .

La función que representa la superficie es: 2 2f(x,y) x y cuyas derivadas

parciales serán:

x y2 2 2 2

x yf (x,y) ; f (x,y)

x y x y

Page 51: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

5

Por lo tanto, podemos calcular ya el elemento diferencial de área:

2 2 2 2

2 2 2 2 2 2

x y 2(x y )dA 1 2

x y x y x y.

Para resolver la integral doble podemos hacer un cambio a coordenadas

polares, es decir:

x r cos , 1 r 2, 0 2

y rsen

dxdy rdrd

Con este cambio el área se expresa como:

r 2

22 2 2 2

0 1 0 0r 1

r 3 2A 2rdrd 2 d d

2 2

Finalmente obtenemos el área buscada:

A 3 2 .

Apartado b)

Obtendremos la masa del sólido, , resolviendo la integral triple:

2 2M f(x,y,z)dxdydz x y dxdydz .

Con el fin de resolver la integral triple podemos realizar un cambio a

coordenadas cilíndricas:

x r cos

y rsen , 0 r, 0 2 , z

z z

dxdydz rdrd dz

Por lo tanto, se tendrá:

42 2 z 2 2 z 2 2

2 3

0 1 0 0 1 0 0 1

zM r rdrdzd r drdzd dzd

4

Page 52: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Solución del E.S.A. 2. Cálculo II. Graduado en Ingeniería de la Energía. 26 de mayo de 2011

6

252

01

1 z 31d 2

4 5 20.

La masa resultante es:

31M

10.

Nota:

Alternativamente, se podría haber resuelto la suma de las integrales:

2 1 2 2 2 2

3 3

0 0 1 0 1 r

31M r dzdrd r dzdrd

10,

donde la primera de las integrales representa la masa correspondiente al

cilindro de radio mientras que la segunda es la masa correspondiente al resto

del sólido.

Apartado c)

El teorema de la divergencia (o de Ostrogradski-Gauss) relaciona la integral

triple de la divergencia de una función vectorial con el flujo de dicha función a

través de la superficie orientada que encierra el volumen en el que se calcula la

integral triple:

V S

divFdxdydz F nds ,

donde n es el vector normal a la superficie. Para el campo vectorial del

enunciado: 2 2F x y i xyj z xyk su divergencia será:

2 2divF (x y) (xy) (z xy) 2xy x 2zxyx y y

.

Por lo tanto, tendremos que resolver la integral triple:

V

(2xy x 2zxy)dxdydz .

Podemos realizar un cambio a coordenadas cilíndricas (ver apartado b) de este

ejercicio). Los límites de integración serán, en este caso, los mismos que los

del apartado anterior. Por tanto, se obtiene:

2 2 z

2 2

0 1 0(2r cos sen rcos 2zr cos sen )rdrdzd 0 .

Page 53: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Página 1 de 1

Calificación:

EXAMEN de CÁLCULO II.

Convocatoria Ordinaria

Tema 1: Cálculo Diferencial en Varias Variables

FECHA: 10/06/11 TIEMPO RECOMENDADO: 30 Minutos Puntuación / Total: 1,5 / 10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS:Nº ENUNCIADO PUNTUACIÓN RESULTADO

1

Dada la función f(x,y) = xy+y2, ¿en qué direcciones habrá que desplazarse desde el punto

(3,2) para que no cambie la función?

1,5 Puntos

El espacio siguiente es para que desarrolle en éste los cálculos correspondientes

EJERCICIO 1 SOLUCION

Page 54: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Ejercicio 2:

Se desea construir un cilindro de volumen 1000 dm3. Las tapas superior e inferior del cilindro están realizadas con un metal que cuesta 20 euros el dm2 mientras que la superficie lateral está realizada con un material cerámico que cuesta 25 euros el dm2. Se pide determinar las dimensiones del cilindro de manera que el coste de fabricación sea mínimo.

Solución:

La función objetivo es el coste de fabricación:

C(x)=20.Área de las tapas + 25.Área lateral.

Dichas áreas son:

Área de cada tapa: πR2

Área lateral: 2πRh

Siendo R el radio del cilindro y h la altura del mismo.

La función a minimizar será pues:

π π π π= ⋅ ⋅ + ⋅ = += ⋅ ⋅ + ⋅ = += ⋅ ⋅ + ⋅ = += ⋅ ⋅ + ⋅ = +2 2C(R,h) 20 2 R 25 2 Rh 40 R 50 Rh .

La restricción que tenemos es el volumen del cilindro, que debe ser: 1000dm3, es decir:

π= −= −= −= −2V(R,h) R h 1000 .

Una forma de proceder es aplicar el método de los multiplicadores de Lagrange. Para ello, imponemos la condición: ∇C(R,h)=λ∇V(R,h) junto con la restricción dada, llegando al sistema de ecuaciones:

λπ π λ π

λ π λπππ

∂ ∂∂ ∂∂ ∂∂ ∂ ==== ∂ ∂∂ ∂∂ ∂∂ ∂ + =+ =+ =+ = ∂ ∂∂ ∂∂ ∂∂ ∂ ==== ⇒⇒⇒⇒ ==== ∂ ∂∂ ∂∂ ∂∂ ∂ ==== = −= −= −= −

2

22

C(R,h) V(R,h)R R 80 R 50 h 2 Rh

C(R,h) V(R,h)50 R R

h hR h 1000V(R,h) R h 1000

.

De la segunda de las ecuaciones obtenemos:

Page 55: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

λ ====50R

.

Podemos introducir este valor en la primera ecuación para obtener la relación entre la altura y el radio del cilindro:

====8

h R5

.

Empleando ahora la restricción:

π ππ π

==== ⇒⇒⇒⇒ ==== ⇒⇒⇒⇒ = == == == =2 2 3 38 5000 5

R h 1000 R R 1000 R 55 8

.

Una vez obtenido el radio se puede obtener inmediatamente la altura, pues sabemos que:

====8

h R5

,

resultando finalmente que el cilindro cuyo coste de fabricación sea mínimo, con la restricción dada para el volumen, tendrá por dimensiones:

π= ≈= ≈= ≈= ≈3

5h 8 9'34dm , R=

π≈≈≈≈3

55 5'84dm

Aunque no se pedía en el enunciado, podemos calcular finalmente el coste del cilindro:

π π= += += += +2C 40 R 50 Rh=12.847’48 €

Page 56: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Pons

Calificación:

EXAMEN de CÁLCULO II.

Convocatoria Extraordinaria

Tema 4: Cálculo integral en varias variables

FECHA: 12/07/11 TIEMPO RECOMENDADO: 1 Hora Puntuación / Total: 3,5 / 10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS: Nº ENUNCIADO PUNTUACIÓN RESULTADO

1

Sea D la región delimitada por las curvas C1, C2, C3 y C4: 2

1 xyC =≡ , xyC −=≡ 32, 13 =≡ yC y 04 =≡ yC

Calcular:

a) ( )∫∫ +D

dxdyyx 22 (1 punto)

b) ( )∫∫ +D

dydxyx 22 (1 punto)

2 Puntos

2

Hallar el volumen del sólido Q, exterior al hiperboloide 1222 =−+ zyx e interior al

cilindro 422 =+ yx .

1,5 Puntos

¡¡ BUEN TRABAJO !!

Los espacios siguientes son para que desarrolle en ellos los cálculos correspondientes

EJERCICIO 1

210

1207

12

81

7

2

15

2

4

11

12

16

7

2

15

2

43

)3(

33

3

)3(

3

1

0

2/72/54

34

1

0

232331

0

23

=

=+−−−+−=

−−−+

−−=

=

−−−+

−=

+= ∫∫

yyy

yy

dyyyy

yyyy

dyxyx

y

y

Page 57: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Pons

EJERCICIO 2

En cilíndricas (r, θ, z):

Page 58: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

EXAMEN de CÁLCULO II.

Convocatoria Ordinaria

Tema 5: Cálculo Vectorial

FECHA: 12/07/11 TIEMPO RECOMENDADO: 1 Hora Puntuación/TOTAL: 3,5/10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS: Nº ENUNCIADO PUNTUACIÓN RESULTADO

1

El morro de un transbordador espacial tiene forma de paraboloide, y debe recubrirse de

plaquetas térmicas que protejan la nave de las altas temperaturas que se producen cuando ésta

ingresa en la atmósfera procedente del espacio exterior. Se propone un ejercicio destinado a

poder calcular la superficie de plaquetas térmicas necesarias para recubrir el morro.

Calcule el área del trozo del paraboloide limitado por su

intersección con el cono .

1,5 Puntos

2

Calcule el flujo normal exterior del rotacional del campo vectorial

que atraviesa, en el sentido de las positivas, el trozo del

paraboloide limitado por su intersección con el cono

.

2 Puntos

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 59: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

EJERCICIO 1:

El área del trozo de paraboloide se obtiene mediante:

Utilizando la ecuación implícita del paraboloide:

se tendrá y:

Por tanto, la integral sobre la superficie se reduce a una integral sobre el círculo :

donde se han utilizado las coordenadas polares definidas por .

EJERCICIO 2:

El flujo del rotacional que atraviesa el paraboloide es:

con

por lo que basta calcular dicha integral de superficie. En lugar de ello, resulta más fácil aplicar el teorema de Stokes dos veces y

calcular una integral doble sobre el círculo cuya frontera es la circunferencia

:

Z

1

1 -1

X

Y

D

S

Z

1

1 -1

X

Y

D

S

Page 60: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la
Page 61: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APE

____

Cálc

F

1

ELLIDOS:

___________

culo II. Gradu

FECHA: 10/06

Determinar g

verifica:

__________

uado en Inge

6/11

grad z(x,y), en

___________

niería

Tema 1: C

ENUNCIAE

n el punto ( ,

sen(x+y) +

___________

EXAM

Convo

Cálculo Di

TIEMPO RE

DOS Y RESENUNCIADO

, ) referido a

+ sen(y+z)+sen

SOLUCION

NOMBRE:

___________

MEN de CÁLC

ocatoria Ord

iferencial

ECOMENDAD

SPUESTASO

al sistema OXY

n(x+z) = 0

___________

ULO II.

dinaria

en Varias

DO: 30 Minut

S A LOS EJ

YZ, para la fun

DNI:

___________

Variables

tos

JERCICIOS

nción que

___________

Calificació

s

Puntuación

S:PUNTUACIÓN

1,5 Puntos

GRUPO:

___________

Página 1

ón:

/ Total: 1,5

N RESULT

s

____

de 1

/ 10

TADO

Page 62: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

Ejercicio 1.

Se considera la curva

= + +� � �

� t t tr(t) e cos(t) i e sen(t) j 2e k

que pasa por el punto π π−P( e ,0, 2e ) . Se pide:

a) Razonar si t es el parámetro arco para la curva dada. b) Obtener la longitud de la curva entre t=1 y t=2. c) Obtener el triedro de Frenet en el punto P. d) Obtener la curvatura en el punto P. e) Obtener las ecuaciones cartesianas de los planos normal y osculador.

Solución:

Apartado a)

Para que t sea el parámetro arco se debe cumplir que || r '(t)�

||=1.

t t t

2t 2 2 t

r '(t) e (cos(t) sen(t)) i e (sen(t) cos(t)) j 2e k

|| r '(t) || e ((cos(t) sen(t)) (sen(t) cos(t)) ) 2e 1

= − + + + ⇒

⇒ = − + + = ≠

� � ��

Por lo tanto, t no es el parámetro arco.

Apartado b)

La longitud de la curva entre t=1 y t=2 es:

= = = −∫ ∫�2 2 t 2

1 1L(t) || r '(t) ||dt | 2e dt 2(e e)

Apartado c)

El triedro de Frenet es el formado por los vectores unitarios tangente, normal y binormal.

Vector unitario tangente:

− += =

r '(t) cos t sent cos t sent 2T(t) , ,

|| r '(t) || 2 2 2

Particularizamos en el punto P, cuya expresión paramétrica es t=π:

π = − −

� 1 1 2T( ) , ,

2 2 2

Vector unitario normal:

Page 63: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

( )= = − − −�

T '(t) 2N(t) sent cos t,cos t sent,0

2|| T '(t) ||

Particularizamos en el punto P, cuya expresión paramétrica es t=π:

π = −

� 2 2N( ) , ,0

2 2

Vector binormal:

π = π × π = − − = + +

� � �

� � � � � �

i j k

1 1 2 1 1 2B( ) T( ) N( ) i j k

2 2 2 2 2 2

2 20

2 2

Apartado d)

Para obtener la curvatura aplicamos la fórmula:

−κ = =�

t|| T '(t) || 2(t) e

|| r '(t) || 4

Particularizamos en el punto P, cuya expresión paramétrica es t=π:

−πκ π = 2( ) e

4

Apartado e)

Plano normal:

El plano normal es el que contiene a los vectores normal y binormal. El vector normal a dicho plano es el tangente, así pues la ecuación cartesiana del plano normal será:

π π− + − + − =1 1 2(x e ) y (z 2e ) 0

2 2 2.

Operando en esta expresión obtenemos:

π+ − =x y z 2 3e

Plano osculador:

Page 64: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

El plano osculador es el que contiene a los vectores tangente y normal. El vector normal a dicho plano es el binormal, así pues la ecuación cartesiana del plano normal será:

π π+ + + − =1 1 2(x e ) y (z 2e ) 0

2 2 2.

Operando en esta expresión obtenemos:

π+ + = 1x y z 2 e

2

Page 65: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Pons

Calificación:

EXAMEN de CÁLCULO II. Convocatoria Ordinaria

Tema 4: Cálculo integral en varias variables

FECHA: 10/06/11 TIEMPO RECOMENDADO: 1 Hora Puntuación / Total: 3,5 / 10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS: Nº ENUNCIADO PUNTUACIÓN RESULTADO

1

Sea D la región delimitada por las curvas C1, C2 y C3, en la que 0≤y≤20:

20161 +=≡ xyC , 2022 +−=≡ xyC y 23 4xyC =≡

Calcular:

a) Área de D a partir de: ∫∫D

dxdy (1 punto)

b) Área de D a partir de: ∫∫D

dydx (1 punto)

2 Puntos

2

Considérese el sólido Q limitado por las superficies 222 yxz += y el plano 1=z .

a) Calcular la masa de Q sabiendo que su densidad viene dada por z2=ρ (1 punto)

b) Calcular el volumen de Q (0,5 puntos)

1,5 Puntos

¡¡ BUEN TRABAJO !!

Los espacios siguientes son para que desarrolle en ellos los cálculos correspondientes

EJERCICIO 1

a) proyectando sobre el eje y

Page 66: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Ramón Rodríguez Pons

b) proyectando sobre el eje x

Nota: en este ejercicio 1, además de esta solución, también se han considerado y valorado otras soluciones

posibles con el enunciado del examen.

EJERCICIO 2

a) en coordenadas rectangulares,

pasando a coordenadas cilíndricas,

b)

Page 67: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

EXAMEN de CÁLCULO II.

Convocatoria Ordinaria

Tema 5: Cálculo Vectorial

FECHA: 10/06/11 TIEMPO RECOMENDADO: 1 Hora Puntuación / Total: 3,5 / 10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS: Nº ENUNCIADO PUNTUACIÓN RESULTADO

1

Deduzca, mediante Cálculo Integral, el área de un tanque de combustible esférico de radio

como los utilizados para el almacenamiento industrial de gas natural.

1,5 Puntos

2

Calcule el flujo normal exterior del rotacional del campo vectorial

que atraviesa la frontera del dominio definido por el paraboloide

y el cono .

Aplicación para curiosos: Una de las Ecuaciones de Maxwell que gobiernan los campos

electromagnéticos es la Ley de Maxwell-Faraday que se escribe:

y describe que la variación de un campo de inducción magnética produce sobre un

circuito cerrado una corriente eléctrica correspondiente al campo eléctrico y, por tanto,

constituye el fundamento de la producción de electricidad mediante alternadores.

El ejercicio da una respuesta al problema de calcular cual es la variación temporal del flujo

total del campo de inducción magnética que atraviesa una superficie cerrada cualquiera:

2 Puntos 0

¡¡ BUEN TRABAJO !!

Los espacios siguientes son para que desarrolle en ellos los cálculos correspondientes

Page 68: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________

Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

EJERCICIO 1: Situamos el centro de la esfera en el origen de coordenadas, de forma que su ecuación implícita en cartesianas es

. Su área vendrá dada por:

Como, en implícitas, , resulta:

integral planteada sobre el cuarto de circunferencia por lo que se hace el cambio a polares:

También se puede resolver el problema en paramétricas, parametrizando la esfera con coordenadas esféricas, en las que su ecuación es . Esta es la

solución adoptada en el Ejemplo 10 del Capítulo 16 del Libro de Texto (pp. 1076-1077).

Otra posibilidad es trabajar en explícitas, para las que la esfera se escribe y aplicar la versión (9) (p. 1077) del Capítulo 16 del Libro de

Texto, de nuevo con idéntico resultado.

Otra posibilidad más consiste en calcular A como área de revolución. Para ello, se considera, para , la circunferencia que hacemos

girar alrededor del eje 0X para obtener la esfera. En tal caso, se tendrá (p. 1078 del Capítulo 16 del Libro de Texto):

EJERCICIO 2

El Teorema de Gauss (de la divergencia) establece que para todo campo vectorial regular (de clase ) sobre un dominio

acotado y limitado por una superficie cerrada regular (con normal unitaria exterior en casi todo punto), se verifica:

Tomando , se tendrá:

ya que para todos los campos de clase .

X

Y

Z

1

1 -1

: Volumen interior al paraboloide y el cono

: Superficie cerrada formada por el paraboloide

y el cono

X

Y

Z

Page 69: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 1 de 2

Calificación:

CÁLCULO II. Ejercicio de Examen Final

Temas 1 y 2: Cálculo Diferencial y Optimización

FECHA: 12/06/12 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Se considera la función real de variables reales

3 3

2 2 si ( , ) (0,0)

( , )

0 si ( , ) (0,0)

x yx y

f x y x y

x y

1. Estudiar su continuidad. 2. Calcular las derivadas parciales en un punto genérico ( , )x y y en particular en el punto (0,0) . Obtener (0,0)f .

3. Estudiar la diferenciabilidad de la función ( , )f x y . En particular analizar si es diferenciable en el punto (0,0)

4. Calcular la derivada direccional (0,0)uD f , siendo cosu i sen j un vector unitario. Calcular también (1,1)vD f siendo

v i j .

5. Dado el punto (1,1,1)P de la gráfica de ( , )f x y , hallar utilizando técnicas de optimización la mínima distancia de dicho

punto al plano 2 2 1x y z . Comprobar que se trata de un mínimo absoluto.

NOTA: Los apartados 1, 2, 3 y 4 valen en conjunto 1,5 puntos. El apartado 5 vale 1 punto. Sólo puntúan los resultados que vayan acompañados de justificaciones teóricas.

RESULTADOS

1. CONTINUIDAD La función ( , )f x y es continua ( , ) (0,0)x y . Ya que se trata del cociente de 2 funciones continuas. Estudiemos la continuidad

en el punto (0,0)

3 3 33 3

3 3

2 2 2 2 2( , ) (0,0) 0 0

Acotado

coslim lim lim cos 0

cosx y

senx ysen

x y sen

La función es continua en (0,0).

2. DERIVADAS PARCIALES

2 2 2 3 3 4 2 2 3

2 22 2 2 2

2 2 2 3 3 4 2 2 3

2 22 2 2 2

3 2 3 2( , )

3 2 3 2( , )

x

y

x x y x x y x x y xyf x y

x y x y

y x y y x y y x y yxf x y

x y x y

3

2

0 0

3

2

0 0

0( ,0) (0,0)

(0,0) lim lim 1

(0,0)

0(0, ) (0,0)

(0,0) lim lim 1

xh h

yk k

hf h f hf

h hf i j

kf k f kf

k k

Page 70: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Manuel Hervás Página 2 de 2

3. DIFERENCIABILIDAD La función ( , )f x y es diferenciable ( , ) (0,0)x y ya que se trata del cociente dos funciones diferenciables. La función aunque

es continua en (0,0) pero las derivadas parciales en (0,0) no lo son por lo que no se verifica la condición suficiente de diferenciabilidad, por tanto hay que utilizar el criterio que da la condición necesaria y suficiente de diferenciabilidad.

2 2( , ) (0,0)

( , ) (0,0) (0,0) ( 0) (0,0) ( 0)lim 0

x y

x y

f x y f f x f y

x y

3 3

2 2

2 2 2 2( , ) (0,0) ( , ) (0,0)

( , ) (0,0) (0,0) ( 0) (0,0) ( 0)lim lim

x y

x y x y

x yx y

f x y f f x f y x y

x y x y

2 2 3 2 2

2 2

3/2 3( , ) (0,0) 02 2

cos coslim lim cos cos

x y

xy yx sen sensen sen

x y

Como el límite no es 0 la función no es diferenciable en (0,0) .

4. DERIVADA DIRECCIONAL

Al no ser diferenciable ( , ) en (0,0)f x y para calcular (0,0)uD f se debe hacer, de acuerdo con la definición, mediante límite.

3 3 3

23 3

0 0

cos

( cos , ) (0,0)(0,0) lim lim cosu

sen

f sen fD f sen

Sin embargo ( , )f x y es diferenciable en (1,1) por lo que se puede usar (1,1) (1,1)v

vD f f

v

1 1 1 1 1 1 1

(1,1) (1,1) (1,1) ; (1,1) (1,1)2 2 2 2 2 2 2

x y v

vf f i f j i j D f f i j i j

v

5. DISTANCIA Si no se exigiese realizar el problema mediante técnicas de optimización resultaría

0 0 0

2 2 2 2 2 2

2 1 2 1 1 1 1 4( , )

32 2 1

Ax By Cz Dd P

A B C

Mediante optimización se exige que sea mínima la distancia de un punto genérico ( , , ) al punto (1,1,1)x y z P

2 2 2( 1) ( 1) ( 1)d x y z Al sustituir la z del plano: 1 2 2z x y y teniendo en cuenta que la raíz es una función

creciente que tiene los mismos extremos que el radicando se obtiene como función a optimizar:

2 22 2 2 2 2( , ) ( 1) ( 1) 1 2 2 1 ( 1) ( 1) 4h x y d x y x y x y x y

2( 1) 8( ) 0 10 8 2 1Punto crítico:

2( 1) 8( ) 0 8 10 2 9

x

y

h x x y x yx y

h y x y x y

Se comprueba que es un mínimo relativo mediante el test de las derivadas segundas

1010 81 1

8 , 36 0 ; 10 0 MÍNIMO RELATIVO8 109 9

10

xx

xy xx

yy

h

h H h

h

Intuitivamente se observa que el mínimo relativo debe ser un mínimo absoluto ya que debe haber un punto en el plano que

esté más cerca del punto (1,1,1)P de la superficie.

2 2 2

1

5 1 1 5 1 1 5 49Sustituyendo en ( , ) se obtiene , , 1 1 1

1 9 9 9 9 9 9 9 3

9

x

z f x y z Q d

y

Page 71: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

      

APELLIDOS:                                           NOMBRE:                                    DNI:                                                

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería                            Prof. Ramón Rodríguez   Página 1 de 2  

Calificación:  

CÁLCULO II.  Final convocatoria ordinaria de Junio 

 

Tema 3: Funciones vectoriales          

 

FECHA: 12/06/12                      TIEMPO RECOMENDADO: 1/2 Hora          Puntuación/TOTAL: 2,5/10  

 

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO 

 Una partícula se mueve a lo largo de una curva γ(t)=r(t) definida por:     Para el instante t=1, determinar: 

a) Su velocidad, rapidez y aceleración (0,5 puntos) b) Los vectores tangente, normal y binormal a la trayectoria en ese instante (1 punto) c) La curvatura y la torsión de la curva en ese punto (1 punto) 

  RESULTADOS 

  

   

   

3

2 3

:2 ( ) , ,3

R R

t t t t t

γ

γ

+ →

⎛ ⎞→ = ⎜ ⎟⎝ ⎠

Page 72: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

      

APELLIDOS:                                           NOMBRE:                                    DNI:                                                

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería                            Prof. Ramón Rodríguez   Página 2 de 2  

 

 O bien,                    

O bien,              

¡¡ BUEN TRABAJO !! 

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes 

 

( )

( ) ( )( )

( )

( ) ( )( )

( )

( )( )

( )

( )

3 2 3 32 2

2 2 2

2 2 22 2 2

4 3

32 2

6,12, 12(́ ) (́1) 1 2 2( ) (1) , , , ya que:'( ) '(1) 3 3 3324

8 16 8 16 8 162 2 1 4 2 1

2 1 2 1 2 2 1(́ ) , ,

2 1 2 1 2 1

2 8 4 8, 2 1 2

T t TN t NT t T

t t t t t t t tt t t

t t tT t

t t t

t t t

t t

− − − −⎛ ⎞= ⇒ = = = ⎜ ⎟⎝ ⎠

⎛ ⎞+ + +⎜ ⎟+ − + − −⎜ + + + ⎟

= =⎜ ⎟⎜ ⎟+ + +⎜ ⎟⎜ ⎟⎝ ⎠

− +=

+ +( ) ( )

( )

3

3 32

8 6 4 2

32

4 8, 1 2 1

64 128 96 32 4'( )2 1

t t

t

t t t tT tt

⎛ ⎞− −⎜ ⎟⎜ ⎟+⎝ ⎠

+ + + +=

+

2 1 2( ) ( ) ( ) , ,3 3 3

B t T t xN t −⎛ ⎞= = ⎜ ⎟⎝ ⎠

3(́ ) (́1) 18 / 3 2( ) (1)(́ ) (́1) 3 9

T t Tk t k

r t r= ⇒ = = =

( )2

(́ )· ´́ ( ) ´́ (́ ) 8 2( ) (1)36 9(́ ) ´́ ( )

r t r t r tt

r t r tτ τ

×= ⇒ = =

×

Page 73: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 1 de 2

Calificación:

CÁLCULO II. Examen Final Convocatoria Ordinaria

Tema 4: Integración Múltiple

FECHA: 12/06/12 TIEMPO RECOMENDADO: 1/2 Hora Puntuación/TOTAL: 2,5/10

ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Hállese el momento de inercia de un disco homogéneo de radio unidad con respecto a un eje perpendicular a él y pasando por su circunferencia. Nota: Se recomienda tomar el eje en el origen de coordenadas, pero no es absolutamente necesario hacerlo así.

RESULTADOS

¡¡ BUEN TRABAJO !!

Utilice la parte trasera para desarrollar en ella un resumen los cálculos correspondientes

Page 74: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería Prof. Santiago de Vicente Página 2 de 2

Ejemplos 4 (p.1025) y (p. 1031) del Capítulo 15 del Libro de Texto Se toma como eje de giro el situado en el origen de coordenadas y perpendicular al plano donde se sitúa el disco (eje ). Entonces, el momento de inercia con respecto a este eje de giro es:

∬ ( ) ( )

Donde ( ) es la densidad en cada punto (constante al ser el disco homogéneo) y:

( ) es el cuadrado de la distancia del punto de coordenadas ( ) al eje situado en el origen.

El dominio plano de integración es el círculo limitado por la circunferencia ( ) . Dada la geometría del dominio

de integración, lo lógico es trabajar en polares, de manera que la ecuación de la circunferencia queda:

Entonces, el momento de inercia pedido viene dado por:

∬ ( ) ∫ ∫

∫ [ ]

∫ (

)

∫ (

( ))

Page 75: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería

Calificación:

EXAMEN de CÁLCULO II. Convocatoria Ordinaria

Tema 5: Cálculo Vectorial

FECHA: 12/06/12 TIEMPO RECOMENDADO: 30 Minutos Puntuación / Total: 2.5 / 10

ENUNCIADOS Y RESPUESTAS A LOS EJERCICIOS: Nº ENUNCIADO PUNTUACIÓN RESULTADO

4

Calcule de dos formas distintas el trabajo que realiza una partícula sometida al campo de fuerzas:

F(x,y,z) = (y-z)i+(z-x)j+(x-y)k cuando da una vuelta sobre la trayectoria descrita por la intersección de las superficies:

x2+4y

2=1

z=x2+y

2

2,5 Puntos

SOLUCION

Page 76: Tema 1: Cálculo diferencial en varias variablesdescubriendoetsime.wdfiles.com/local--files/primero:start/EXÁMENES... · t existen las derivadas direccionales ... Por su parte, la

APELLIDOS: NOMBRE: DNI: GRUPO:

_______________________________________________________________________________________________ Cálculo II. Graduado en Ingeniería