34
1

UNIDAD N° 1 DISTRIBUCIÓN DE PROBABILIDADESvirtual.usalesiana.edu.bo/web/conte/archivos/3962.pdf · 1 UNIDAD N° 1 DISTRIBUCIÓN DE PROBABILIDADES Competencia: -Identifica y utiliza

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

1

1

UNIDAD N° 1

DISTRIBUCIÓN DE PROBABILIDADES

Competencia:

-Identifica y utiliza correctamente los modelos probabilísticos en la resolución de problemas

inherentes a variables aleatorias en forma general.

Objetivos.

-Resolver correctamente todo tipo de problema que tengan que ver con la incertidumbre , mediante

la utilización de los modelos probabilísticos

Descripción general de la unidad:

-Esta unidad comprende el desarrollo de las diferentes distribuciones de probabilidades tanto

discretas como las continuas con sus respectivas características más aplicadas en el campo de la

Ingeniería

Tema Nº1 :Distribuciones Discretas

Competencia: Identifica y utiliza los Modelos de Distribuciones Discretas en la resolución de

problemas inherentes a variables aleatorias discretas

Descripción del tema:Se desarrollarán los principales Modelos de Distribución Discretos, con sus

respectivas características,para su posterior aplicación a la resolución de problemas.

Tema Nº 2:Distribuciones Continuas

Competencia: Identifica y aplica los principales Modelos de Distribución Continuos en la

resolución de problemas inherentes a variables continuas

Descripción del tema:Se desarrollarán los Modelos de distribución Continuas más utilizadas en la

Ingeniería de acuerdo a sus características,y su posterior aplicaciópn en la resolución de problemas.

Lectura:Millar/Freund/Jonson “Probabilidad y Estadística para Ingenieros”Edo.de

México 1992 Pgs. 93 al 128

Bibliografía Básica: Moya y Saravia (1988) “Probabilidad e Inferencia Estadística((2ª ed)

Perú .Pags.407 al 553

Referencia electrónica:

http://www.itchihuahua.edu.mx/academic/industrial/sabaticiruta/private/01UNIDAD%20IV.uhtm

2

INTRODUCCIÓN Entre uno de los objetivos de la Estadística Matemática es de determinar una distribución de probabilidad o un modelo probabilistico que satisfaga una serie de supuestos para analizar los resultados obtenidos de un experimento aleatorio. Entre las distribuciones de probabilidades tenemos: a) Las distribuciones discretas como ser la Bernoulli, Binomial, Hipergeométrica,

Geométrica, Poisson, etc. b) Las Distribuciones continuas tenemos la Uniforme, Experimental, la Normal, X2, F, t DISTRIBUCIONES DISCRETAS Son aquellas distribuciones cuya variable aleatoria es discreta

1.DISTRIBUCIÓN BERNOULLI : XBernoulli (p) Se tiene la distribución Bernoulli, cuando las pruebas ó ensayos son de carácter dicotómico, es decir sólo tienen 2 posibles resultados: E = éxito ; F = fracaso ],[ FE por ejemplo:

Sean los siguientes experimentos aleatorios:

1 : “Lanzar una moneda” ],[1 SC

2 “Determinar el sexo del ” ],[2 MV

3 : “verificar el resultado de un examen” ],[3 ra

DEFINICIÓN

Se dice que una v. d. XBernoulli sii sv Rx= [0,1]; donde la V.A.D. x:” N° de éxitos obtenidos en un ensayo dicotómico”; cuya FUNCIÓN DE PROBABILIDAD O CUANTÍA p(x)=p[X=x]=px(1-p)1-x; Rx= 0.1 Donde p = probabilidad del éxito q = probabilidad del fracaso de tal manera que p+q=1 ó p = 1-q

ó q = 1-p cuya distribución de probabilidad y representación gráfica es:

x P(x)

0 q 1 p

3

p q 0 1 FUNCION DE DISTRIBUCION ACUMULADA F (x) F(x) = p (X x) = 0 si x < 0 q si 0 x<1 1 si x 1 CARACTERISTICAS Entre sus principales caracteristicas tenemos: 1) LA MEDIA

ppqxE

pxPxxE

)(1)(0)(

)()(

pxxP

pxP

x

0)(

9)(

10

Mediante la F.g.m. sabemos que uno de los teoremas de la f.g.m.

rx

r

dt

tMdr

)(' por lo tanto debemos antes determinar

la xxtxtxx qpeeEtMfgm 1)( desarrollando la

111)1(010)0()( qpeqpetMfgm ttx

sabemos que

001 0

'

)('')(

0pepe

dt

peqdxE t

tt

t

2) LA VARIANZA

212222 )()( pqpxxExV xx

)1(10)( 20201022 PpppqqpxV

mediante la f.g.m. 22

2 ')( xV

donde

0

0002'

'

''

)(''' pepe

dt

peqd

dt

tMdt

t

t

t

t

x

)1()( 2 ppppxV

P(x)

x

t =0

p

q+etp

p.q

p

p.

q

4

DISTRIBUCIÓN BINOMIAL X B(n,p) ó b(x :np) Se llama experimento aleatorio binomial a un N° fijo “n” de reiteraciones independientes de un experimento aleatorio Bernoulli que tiene las siguientes característica: 1. Los resultados de cada prueba son de carácter dicotómico, es decir Bernoulli 2. Las n pruebas Bernoulli son independientes 3. La probabilidad de éxito “p” supuestamente se mantiene constante en cada prueba

DEFINICIÓN una v.a.d Xb(n,p), donde X : “ N° de éxitos obtenidos en “n” ensayos Bernoulli” con Rx = 0,1,2,3,... n cuya FUNCIÓN DE PROBABILIDAD O CUANTÍA

P(X)= P[X=x]=(n

x )pxqn-x:Rx0,1,2,3...n

Donde p = probabilidad de éxito q = probabilidad de fracaso n = N° de ensayos Bernoulli FUNCIÓN DE DISTRIBUCIÓN Ó ACUMULADA F(x)

F(x)= P(X x) =B(x;np)=

x

k

xnkn

nxsi

nxsi

xsi

qpk

0

10

0

0

)(

CARACTERÍSTICAS

1) LA MEDIA npqpxxxPxxE xnxn

Rx

)()()(

2) LA VARIANZA npqnpqpxxxExV xnxn

22222 )()()()(

3) LA FGM nttx

x epeEtM )]1(1[)(

RESOLUCIÓN DE PROBLEMAS CON MODELOS PROBABILISTICOS Para resolver correctamente problemas inherentes a modelos probabilìsticos, se sugiere en un principio seguir los siguientes pasos:

5

1. Determinar el tipo de distribución de probabilidad que sigue la v. a. X de acuerdo las características del experimento en cuestión.

2. Definir la v. a X de manera clara y completa con su Rx. 3. Determinar los parámetros de la función de probabilidad. 4. Utilizar correctamente la función de probabilidad, ó la acumulada ó tablas ó CPU. Ejemplo La probabilidad de que cierto ordenador de cierta marca determinada falla, ante una descarga eléctrica es del 1% ¿cuales son las probabilidades de que entre 10 ordenadores de dicha marca en un laboratorio. a) 3 fallen b) a lo más 2 fallen c) al menos 3 fallen d) el promedio y varianza que un ordenador falle SOLUCIÓN

1) Como todo ordenador tiene sólo 2 posibles resultados falle o no falle (dicotómico) 2) Suponiendo que cada ordenador funciona independientemente 3) Suponiendo que la probabilidad de falla de los ordenadores es casi constante

Entonces asumimos que la v.a.d. X b(n. p)P(x)=(n

x )px qn-x Rx =0,1,2....n

Donde la v. a. d. X: “N° de ordenadores que fallan ante una descarga eléctrica de entre 10”

n=10: p=0.01:q=0.99 Rx=0,1,2.......10 10...2,1,0;99.001.0)( 1010

x

xx RxxP

a) 3 fallen 00011.0)99.0()01.0(3)3( 7310

xP

b) a los más 2 fallen 9999.0)2()1(1)0()()2(2

0

PPPxPxP

c) al menos 3 fallen )10(...)4()3()()3(10

3

PPPxPxP

mediante el complemento 00011.09999.01)2(1)3( xPxP

d) El promedio E(x)=np=10(0.01)=0.1=10%La Varianza V(x):npq=10(0.01)(0.99)=0.099 APLICACIÓN DE LA BINOMIAL EN EL MUESTREO Considerando cada elemento de una muestra aleatoria (m.a.) como un ensayo Benoulli entonces la Distribución Binomial puede aplicarse en el muestreo bajo las siguientes circunstancias:

6

1. Cuando el muestreo es con o sin reemplazo de una población infinita o muy grande 2. Cuando el muestreo es con reemplazo de una población pequeña o finita Bajo estas 2 circunstancias entonces la v.a.d. X se define X:”N° de elementos de la clase de nuestro interés en una m.a. de tamaño n”

Donde Población

eresdenuestroelementosdeN

N

Kp

int

nxN

k

N

kxxXPxp

xnxn

...3,2,1,0:1][)(

NOTA.- en la práctica el muestreo se lo realiza sin reemplazo de poblaciones finitas especialmente cuando se realiza control de calidad, por lo tanto la distribución adecuada es la hipergeométrica. USO DE TABLAS Cuando el tamaño de la m.a. es muy grande )30( n el cálculo de las probabilidades

resulta tedioso porque lo que se sugiere utilizar paquetes estadísticos ó las tablas las que están construidas en términos de la función de distribución ó acumulada F(x); para ello se debe utilizar las siguientes relaciones Para probabilidades acumuladas

x

k

nxpnkbpnxBxXPxF0

....2,1,0);.;().;()(

Para probabilidades puntuales P(x=x)=b(x:n.p)= B(x:n;p)-B((x-1);n.p) Ejemplo En una importación de computadoras muy grande, se sabe que por experiencia que el 25% de las mismas están infectadas con cierto virus. Se relaciona al azar 20 computadoras del lote de importación, para efectuar un control de calidad. a) Cual es la verdadera distribución de probabilidad y cual debe asumirse por necesidad

del N° de computadoras infectadas con el virus b) Cual es la probabilidad de que 3 cpu estas infectados c) Cual la probabilidad que más de 3 estén infectadas d) Determinar la media, la varianza y la desviación estándar

7

SOLUCIÓN a) Como se trata de realizar un control de calidad la verdadera distribución es la

hipergeométrica, pero como no se conoce la población N se asume la distribución

Binomial. X b(n,p) 20...2.1,0)75.0()25.0()( 2020

xxxp xx

Donde P=0.25; q=0.75; n=20; x:”N° de CPU infectados en una m.a. de 30” Rx=0,1,2......20

b) P 1339.075.025.03)3(173

20

xP

Tablas P(x=3)=b(3;20;0.25)=B(3;20;0.25)-B(2;20;0.25)=0.2252-0.0913=0.1339

c) PxPxPxP 7748.075.025.0375.025.0275.025.0175.0)25.0(01)3(1)(3173

20182

2019

20200

2020

4

tablas P[x>3]=1-P[x 3]=1-B(3;20;0.25)=1-0.2252=0.7748

d) 94.175.3)75.0)(25.0(20)(;5)25.0(20)( 2 npqxVnpxE

DISTRIBUCIÓN GEOMÉTRICA Esta distribución es una de los casos especiales de la Binomial y se utiliza cuando existe un proceso Bernoulli y se desea obtener el primer éxito. DEFINICIÓN Se dice que la v.a.d.x...G(p): donde p= probabilidad del éxito en cada intento Donde X:”N° de ensayos Bernouli hasta obtener el 1er éxito “Rx=1,2,3... FUNCIÓN DE PROBABILIDAD P(x)=P[x=x]=pqx-1 : Rx=1,2,3... FUNCIÓN DE DISTRUBUCION F(x)=P[x x]= 0 si x<1 1-qx si 1

LA MEDIA p

xxPxE1

)()(

LA VARIANZA 2

222 )()(p

qxExV

LA DESVIACIÓN TÍPICA 2

)(p

qxV

LA f.g.m 2

12)(qeq

pqeqptM

t

tx

PROPIEDADES

1. No tiene memoria 2. Es decreciente, es decir P[x]<P(x-1) 3,2x

8

Ejemplo 1. Si la probabilidad que un postulante para aprobar la tesis en un intento al finalizar sus

estudios académicos es del 75% ¿cuál la probabilidad de que un postulante apruebe la tesis? a) En el primer intento b) En el segundo intento c) En el cuarto intento d) Cual su esperanza matemática

SOLUCIÓN Como X~G(p) P(x)=0.75(0.25)x-1 Rx =1,2,3...donde p=0.75; q=0.75; “Nº de intentos

hasta aprobar la tesis” a) Primer intento X=1 ) P(x=1)=(0.75)(0.25)1-1=0.75=75%

b) Segundo intento X=2 P(x=2)=(0.75)(0.25)2-1=0.1875 19%

c) Tercer intento X=4 P(x=4)=(0.75)(0.25)4-1=0.0117 2%

Ejemplo 2. Suponga que la probabilidad de obtener línea durante la mayor congestión de llamadas

telefónicas de un canal de TV es del 3% en cada intento que se haga.

Calcular la probabilidad de que sean necesarios exactamente a) 6 intentos para tener línea b) A lo más 3 intentos

SOLUCIÓN

XG(p)P(x)= 0.03(0.97x-1 : Rx= 1,2,3,…. p =0.03 : q =0.97 x: “Nº de intentos hasta obtener línea” Rx= 1,2,3,….

a) x= 6 intentos P(x=6) = 0.03(0.97)6-1 = 0.0258

b) x 3P(x 3)= F(x=3)= 1-qx= 1-0.973= 0.0873

P(x3)= 0873.002823.00291.003.0)97.0(03.0)97.0(03.0)97.0(03.0)( 2103

1

xP

DISTRIBUCION BINOMIAL NEGATIVA O PARCIAL Es otro caso especial de la Binomial y es una extensión de la Geométrica, que se utiliza cuando los experimentos aleatorios son también un proceso Bernoulli, hasta que ocurra el n-ésimo éxito:

9

DEFINICIÓN Se dice que una v.a.d. ).(.~ pvPx donde:

r = Nº de exactos obtenidos p = probabilidad del éxito X:” Nº de veces o intentos que se realiza el experimento Beunoulli hasta obtener r éxitos” tal que r x; Sii FUNCION DE PROBABILIDAD

...2:1,:1

1)(

vvvPqp

v

xxxPxP

x

vxv

FUNCION DE DISTRIBUCIÓN F(x)

rxSi

rxSiqp

r

kxxP rkr

:

:

1

10

LA MEDIA

p

vqp

v

xxxE vxv

1

1)(

LA VARIANZA

2

222 )()(p

rxExV

q

Ejemplo 1 Una maquina se utiliza para fabricar ciertos chips en serie se sabe que la probabilidad de cada chip sea defectuosos es del 10%. Si se controla la calidad del CHIP producido sabiendo que la máquina se apaga cuando se producen 4 chips defectuosos; cual es la probabilidad de que la máquina pare en el 10mo chip producido. p=10 q =90 v=4 x=10

10

0045.0.......0(849.01.014

11010

10:"

4º:"

...6,,4:9.01.014

1),(.~

4104

44

xPAP

xAparemaquinalaA

sdefectuosocontrolarhastaproducidoschipsdeNx

TRx

xPpvPxx

x

Ejemplo 2 La probabilidad que un CPU de cierta marca expuesto a cierto virus se contagie es del 0.40. cual es la probabilidad de que la 10ma CPU expuesto sea al 3ra en contraerla SOLUCION p =0.40 q =0.60 v =3 x =10

0645.060.040.02

910

310expº:"

,...2,1,::1

1),(.~

73

xP

contraerlaenlaseahastavirusaluestosCPUsdeNx

vvvxqpv

xxPpvPx

aa

vxv

DISTRIBUCIÓN MULTINOMIAL Es una generalización de la distribución Binomial, se utiliza cuando se tienen ensayos o experimentos aleatorios que tienen más de 2 posibles resultados, donde las probabilidades de los resultados son los mismos en cada ensayo, todos los ensayos son independientes. DEFINICIÓN

Sea un experimento aleatorio ε que tiene las siguientes características

1) tiene K posibles resultados E1,E2.... Ek que son:

a. Mutuamente excluyentes jiEjE .:

b. Colectivamente exhaustivos

i

k

i

E1

2) La

k

i

iii PquetalresultadoesimoideléxitodeladprobabilidpEP1

1

Se dice que las vs.as.ds. kipnlMultinomiax ii ...3,2,1:,.~

11

Donde Xi:”Nº de veces que el evento Ei ocurre en los n ensayos Rxi=[0,1,2...n];i=1,2,3...k Sii

FUNCIÓN DE PROBABILIDAD P(x1,x2.... xk)= kx

k

xx

k

pppxxx

n...

!!...!

!21

21

21

MEDIA E(xi)=npi LA VARIANZA V(xi)= npiqi donde qi=1-pi i=1,2,...k Ejemplo Las probabilidades de que una lamparilla de cierto tipo de proyector de diapositivas dura menos de 40 hrs. de uso continuo es 0.30 Entre 40 y 80 hrs. de uso continuo es 0.50 Ó de mas de 80 hrs. de uso continuo es 0.20 respectivamente Calcular la probabilidad de entre 8 lamparillas: 2 duran menos de 40 hrs. 5 duran menos de 40-80 hrs. 1 dura más de 80 hrs. SOLUCION Sean los eventos E1:”Duran menos de 40 hrs”P[E1] = 0.30

E2:”Duran entre 40 y 80 hrs”P[E2] = 0.50

E3:”Duran menos de 80 hrs”P[E3] = 0.30

Como

1)( 1

3

1EPademasUyEjE

ii

slamparillaentreientoEocurreelevdevecesqueNx

pnlMultinomiax

i

iii

8)3,2,1(º:"

.~

0945.0)20.0()50.0()30.0(!1!5!2

!8)1,5,2(

1

5

2152

3

2

1

P

x

x

x

Ejemplo La probabilidades que una declaración de impuestos sea llenado correctamente es del 60% que tenga un error favorable del declarante es del 20% que tenga un error favorable al fisco es del 10% que tenga ambos tipos de errores es del 10% Se elige al azar 10 de tales declaraciones para una auditoria

12

Cual es la probabilidad que 5 estén correctas; 3 tengan error favorable al declarante 1tenga error que favorece al fisco y 1temga ambos tipos de error. SOLUCION Sean los eventos E1: “Declaración correcta”P[E1] = 0.60

E2: “Declaración favorable al declarante”P[E2] = 0.20

E3: “Declaración favorable al fisco”P[E3] = 0.10

E4: “Declaración error de ambos tipos”P[E4] = 0.10

Como 1)( 1 EPademasEjEi

ii plMultinomiaxUE ,10.~1

nesdeclaracioentreiEeventoelocurrequevecesdeNx i 10)4,3,2,1(º:"

0314.0)10.0()10.0()20.0()60.0(!1!1!3!5

!10)11,3,5( 1135 P

DISTRIBUCIÓN HIPERGEOMÈTRICA Esta distribución se utiliza generalmente cuando se realiza un muestreo sin repetición de una población finita N conocida que se divide en : 2 clases M éxito y N-M fracasos, donde la probabilidad del éxito ya no es constante porque en cada extracción es diferente por lo tanto los ensayos ya no son independientes, tiene mucha aplicación cuando se efectúa control de calidad. DEFINICIÓN Se dice que una v.a.d X ~ H(N,nM)ó h(x:NnM)donde N =tamaño de la población X:”Nº exactos en un m.a. de tamaño n sin reposición n =tamaño de la m.a. ó Nº de extracciones Rx=[0,1,2..Min (n, M) Sii M =Nº de elementos exitosos FUNCION DE PROBABILIDAD

MnMinR

n

N

xn

MN

x

M

xxPxp c ....2,1,0:)(

13

FUNCION DE DISTRIBUCIÓN

9,(

00

1

0

),(0)(

MnMinxSi

xSii

x

k

MnMinx

n

N

kn

MN

k

M

xxPxF

MEDIA

N

MnxPxxE )()(

VARIANZA

11)( 2

N

nN

N

M

N

MnxV factor de corrección

Ejemplo Como parte de un estudio sobre la contaminación del aire un Ing. Geológico decide examinar la emisión de gases tóxicos de 6 de los 24 camiones de una CIA si 4 de esos camiones, emiten cantidades de gases tóxicos. Cual es la probabilidad de que:

a) Ninguno de ellos b) Mas de 3 emitan gases

SOLUCION Como se trata del control de calidad X~H(N,n,M) N = 24 n = 6 M =4 éxitos N-M = 20 fracasos

0014.0134596

190

6

24

46

20

4

4)4()4(3)

2880.0596.134

760.38

6

24

06

20

0

4

0)

4,3,2,1,0

6

24

6

204

)(

PxPxPb

xPa

xxx

xP

14

Ejemplo En el laboratorio de Sistemas hay 20 CPUs donde existen 6 CPUs con desperfecto. Si se elige aleatoriamente 4 CPUs para su reparación.

a) cual es la probabilidad de que al menos 1 CPU deba ser reparado b) cual es el Nº esperado de CPU para ser reparado y su varianza

SOLUCION Como se trata de control de calidad y se tiene el tamaño de la población N = 20 n = 6 M =4 N-M = 14 X~H(N,nM) Donde X: “Nº de CPUs que tienen desperfecto de entre 20” Rx=0,1,2,3,4

7074.0600.7

376.5

19

16

20

14

20

24)(

120

420

20

61

20

64

11)(

2.120

64)()

7934.0

4

20

4

14

0

6

1)0(11)

xV

N

nN

N

M

N

MnxV

N

MnxEb

xPxPa

APROXIMACIÓN DE LA HIPERGEOMETRICA A LA BINOMIAL Cuando la población N es grande con relación a n es máximo el 10% de N; n 0.1N por lo tanto el muestreo puede ser con o sin reemplazo, por lo tanto la probabilidad del éxito

son casi independiente se puede aproximar a la binomial con Mqn

Mp 1:

)(...2,1,0:1):(),,,( nMMInxN

M

N

MxnMxbMnNxh

xnxn

LA MEDIA

N

MnnpE x

15

LA VARIANZA

N

M

N

MnnpqxV 1)( 2

Ejemplo Una importación de 100 computadoras, de las cuales 25 se sabe que tienen desperfecto. Se realiza un control de calidad para ello se toman 10 computadoras, cual es la probabilidad:

a) de que 2 tengan desperfectos b) cual el Nº esperado de CPUs con desperfecto y para ello utiliza la verdadera

distribución y una aproximación si se puede SOLUCION Como se trata de control de calidad

La verdadera distribución X ~ H(N.n.M)

n

N

xM

MN

x

M

xp )(

N = 100 n = 10 M =25 N-M =75 X: “Nº de computadores que tienen desperfecto entre 10

5.2100

2510)

292.0

10

100

8

75

2

25

2)

10....2,1,0

xEb

xPa

Rx

Como n=10 N 10/de 100se puede aproximar mediante la binomial

2515.075.025.02

10)2()

0751

25.0100

25

82

xpa

N

Mq

N

Mp

16

DISTRIBUCIÓN MULTIVARIADA Es una extensión de la hipergeométrica y se aplica cuando se realiza control de calidad de una población que se clasifica en k clases de diferentes tipos M1, M2, Mk

Tal que N= i

k

iMU

1donde se extraen un m.s. de tamaño n sea reposición de una población

tamaño N, donde: a) Cada extracción tiene k posibles resultados b) Los ensayos no son independientes

DEFINICIÓN Se dice que los vs.as.ds. Xi ~ Multivariante Donde Xi=”Nº de objetos del i-esimo tipo”

Rxi=0,1,2... Mn(Mi,n) Sii tal que nxi

FUNCION DE POBABILIDAD

P(xi,x2... xk: N,n)=

N

k

k

n

x

M

x

M

x

M...

2

2

1

1

Ejemplo En un depósito hay 20 TV de los cuales 10 son de 20’’: 6 de 18’’ ;4 de 15’’, se elige al azar 10TV. Cual es la probabilidad de que haya 5 de 20’’, 3 de 18’’ y 2 de 15’’. SOLUCION Como N= M1+ M2+M3=10+6+4=20xi ~Multivariado

M1=Nº TV de 20” = 10x1 =5 Xi: “Nº de TV del i= esimo tipo” i=1,2,3

M2= Nº TV de 18”=6X2=3 Rxi=0,1,2,3,4

M3= Nº TV de 15”=4X3=2 1637.0189.46

560.7

10

20

2

4

3

6

5

10

)10:20:2,3,5(

p

DISTRIBUCIÓN DE POISSON Por su aplicación es una de las mas importantes tanto como Proceso Poisson o como aproximación a la Binomial

17

1) COMO PROCESO POISSON Se considera como proceso, cuando la v.a.d. X es el Nº de eventos que ocurren en un intervalo de tiempo o en una región espacio o volumen. DEFINICIÓN

Se dice que una v.a.d. x ~ ótp )( x~ );( txf i

donde =Nº promedio de ocurrencias de eventos en una unidad de medida: que

pueden ser intervalo de tiempo, región especificad, dichas ocurrencias son independientes Sii FUNCIÓN DE PROBABILIDAD

..71828.2...3,2,1,0:)()( exetxXPxP tx

donde t = Nº promedio de ocurrencias de los eventos en las t unidades de medida

cuando t= fijo t=

3,2,1,0:!

)()(

xx

exxPxP

x

FUNCIÓN DE DISTRIBUCIÓN

0!

)(

00

0

xk

exxPxF

xSikx

LA MEDIA txE )(

LA VARIANZA txV 2)(

USO DE TABLAS Para facilitar el calculo se tiene confeccionados tablas en función de distribución

):()( xFxxPxF

En caso de valores puntuales ):1();(),( xFxFxfxxP

18

Ejemplo Supongan Que llegan en forma aleatoria una serie de llamadas a una central telefónica con promedio de 3 llamadas por minuto. Calcular la probabilidad de que ocurran: a) 4 o más llamadas en el periodo de un minuto b) 4 o mas llamadas en el periodo de 2 minutos c) 4 o mas llamadas en el periodo de 20 segundos SOLUCION Como la ocurrencia de los eventos se da en periodos de tiempo )(.~ tPx

Donde = 3 llamadas t=1 minuto ...3,2,1,0!

3)(

3

xx

exP

x

x:”Nº de llamadas en un minuto

a)

3520.06

27

2

9

1

3

1

31

!3

3

!2

3

!1

3

!0

31

32101314

03

33323130

4

e

eeee

PPPPxPxPxP

b) 849.0151.013131462*3 FxPxPt

c) 019.09801.01)3(131)4(1331 FxPxPt

2) COMO APROXIMACIÓN A LA BINOMIAL

Cuando la muestra N y la probabilidad del evento es muy pequeño existe distribución binomial, es decir p<0.1 y np 5: p 0.005: n 20: n>30 Entonces se puede utilizar la PISSON como límite o aproximación de la binomial Donde ctenpxE )(

2,1,0!

ˆ!

)(

xx

epnxb

x

etxP

x

i

tx

FUNCION DE PROBABILIDAD ctenpxx

exP

x

...3,2,1,0!

)(

FUNCION DE DISTRIBUCIÓN

0:!

)(

0:0

0

xk

exxPxF

xSikx

k

LA MEDIA npxE )(

19

LA VARIANZA npxV 2)(

Ejemplo Se sabe que el 5% de la CPUs ensamblados en cierta factoría tiene ensamblaje defectuoso. Cual la probabilidad de que 2 de 100 CPUs ensamblados estén defectuosos: a) mediante la verdadera distribución b) mediante una aproximación

SOLUCION n =100 p = 0.05 q = 0.95

0842.02

)(25

!2

5)2(

2,1,0:!

5)(5)05.0(100

)

0812.095.005.02)2(

"500º"

100...3,2,1;95.005.0)()05.0;100(.~)

552

5

2102100

10100

eexP

xx

exPnp

POISSONlaaónaproximaciunamedianteb

xP

entresensambladamalCPUsNx

xxxpbxa

x

xx

PROPIEDAD REPRODUCTIVA Si 2 o mas variables tienen una misma distribución entonces la resultante de sumar o restar será una nueva variable que tendrá la misma distribución de probabilidad que sus sumandos.

Si Xi ~ misma distribución .~1

YxSi i

n

i

misma distribución i= 1,2...n

Si nPX iii ,...2,1)(.~

i

n

i

i PYxY 1

(.~

20

Ejemplo

En una fabrica el Nº de accidentes por semana sigue un proceso de POISSON con parámetro 2 .

Determinar: a) la probabilidad de que haya 4 accidentes en el transcurso de 3 semanas b) la probabilidad que haya 2 accidentes en una semana y otros 2 accidentes en la

semana siguiente c) Es lunes y ya hubo un accidente. La probabilidad que en aquella semana no

haya mas de 3 accidentes

SOLUCION

Definiendo las variables POISSON con parámetro 3,2,1:2 ii

X= “Nº de accidentes en cualquier semana X1: “Nº de accidentes en la 1ra semana” X2: “Nº de accidentes en la 2da semana” X3: “Nº de accidentes en la 3ra semana” Como las 3 v.a son independientes 6222(.~321 PxxxY

8348.08647.0

1429.08647.0

)1(

)0()3(

)1(

)31(

)1(

)1(3(13)

22

0733.0!2

2)2()2()22()

"3º:"1339.0!4

6)4()

21

22

2121

64

xP

xPxP

xP

xP

xP

xPxPxxPc

exPxPXxPb

semanasenaccidentesdeNYe

YPa

DISTRIBUCIONES CONTINUAS Los espacios muéstrales continuos y las v.a.c. surgen cuando se trabaja con cantidades que se miden en una escala continua (velocidad de una CPU; la cantidad de alcohol en la sangre, la cantidad de nicotina en un cigarrillo, etc.) Entre las principales distribuciones de probabilidad continua tenemos la uniforme, la experimental, la norma, algunas distribuciones muéstrales como la Chi cuadrado, la t estudiante, la Fisher, etc.)

21

LA DISTRIBUCIÓN UNIFORME X~U [a,b] DEFINICIÓN Se dice que una v.a.c. X tiene distribución uniforme o rectangular en el intervalo [a, b] tal que a< b Sii FUNCION DE PROBABILIDAD O DENSIDAD

bxa

eoc

abxf ;

;0

1)(

ab

1

a c d b

Para cualquier sub. intervalo [c, d] donde

ab

cdcd

ababdx

abdxcPbdca x

d

c

d

c

111

además P(x=x) =0 Se dice distribución uniforme porque la dxcP es la misma para todos los sub intervalos

que tienen la misma longitud. FUNCION DE DISTRIBUCIÓN O ACUMULADA

baxSi

bxaSi

axSi

ab

axxxPxF

ab

axdx

abdx

abxxPxF

x

a

x

0

1

)(

11)(

a b x’ LA MEDIA

2

1)(

badx

abxxEa

b

LA VARIANZA

1212

1)(

22222 ba

óab

x

badx

abxxV

b

a

F(x)

22

Ejemplo 1 Suponga que un punto es elegido al azar en el intervalo (1;4) Calcular la probabilidad de que el punto esté:

a) En la posición 3 b) El punto este entre 3/2 y 3

SOLUCION X ~ U[a, b]donde a =1 ; b =4 X: “posición del punto en el intervalo [1,4]”

4

41

1

1

14

1

0

)(;41;

0

3

1)(

;xSi

xSi

xSix

xFxxf

eoc

3 3

3

3

3

3

2

32

3

2

1

2

3

3

1

2

33

3

1

3

1

3

13

2

3)

0)0(3

1

3

1

3

1)3()

xdxxPb

xdxxPa

o también mediante la función distribución acumulada

2

1

6

3

33

2

3

1

3

2

2

3)3(

2

333

2

3

21

23

FFxPxPxP

Ejemplo 2 Suponga que cierta línea de transporte publico pasa por un determinado paradero de control o de espera, a un horario estricto con intervalos de 30 minutos durante el día. Si un pasajero llega a ese paradero en un instante aleatorio durante el día. Calcular la probabilidad de que tenga que esperar:

a) más de 15 minutos b) Exactamente 7 minutos

23

SOLUCION

X ~ U[0.30]donde a = 0 ; b =30 X = “tiempo de espera en minutos del pasajero”

30

300

0

30

1

030

0

0

)(;300;

0

30

1)(

;

xSi

xSi

xSixx

xFxxf

eoc

07)

2

1

30

15

30

1

30

1)15()

3015

30

15

xPb

minutoxdxxPa

Ejemplo 3 Sea la v.a. X...U[0,6] calcular

3

1

6

1

6

51

151]15[1]51[1

]232[1]23[1]23[

32

6:]2[

FFxPxPPxP

xPxPxP

doreemplazanquesabemosxP

DISTRIBUCIÓN EXPONENCIAL

Es un caso particular de la distribución gamma, que se aplica no solo a la ocurrencia del 1er acierto en un proceso POISSON, si no también en los tiempos de espera entre los aciertos; también se aplica en la teoría de la confiabilidad de un sistema, y la teoría de colas. DEFINICIÓN X ~ EXP

Se dice que una v.a.c. X tiene distribución exponencial con parámetro

FUNCION DE PROBABILIDAD O DENSIDAD

eoc

xexf

x

;0

0;)(

donde e = 2.71828...:; = Cte. >0

0 1 x

368.0e

F(x)

24

FUNCION DE DISTRIBUCIÓN 1

0

0

1

0][)(

xSi

xSi

exXPxF

x

1 x

MEDIA

1

)(0

dxexxE x

VARIANZA

222

2

0

22 112)(

dxexxV xx

Ejemplo 1 Si el Nº de automovilistas que corren a cierta velocidad, que un radar detecta por hora en cierta localidad es una v.a. POISSON con =8.4 hrs. Cual es la probabilidad de tomar un

tiempo de espera menos a 10 minutos entre automovilistas sucesivos? SOLUCION X ~ EXP( ) donde =8.4 hrs.

Donde X: “tiempo de espera en minutos”

0

0

1

0)(;

;0

0;4.8)(

4.8

4.8

xSi

xSi

exF

eoc

xexf

x

x

Como X =10 minutos x horasmin

hora

6

1

60

1

7534.012466.0

4.84.86

1

)0(4.8)(4.8

04.8

4.8

00

4.8

61

61

61

61

eee

dxedxexP

x

x

mediante la acumulada 7534.01)(4.8

61

61 6

1

eFxP

F(x)

25

Ejemplo 2 El tiempo durante el cual una marca de computadora que opera en forma efectiva antes de su primera reparación, se distribuye exponencialmente con un promedio de fallas de 360 días

a) Si una de estas computadoras ha durado al menos 400 días, cual la probabilidad de que dure al menos 200 días más

b) Si se están usando 5 de tales ordenadores, cual la probabilidad de que al menos 3 de ellos continúan funcionando después de 360 días

SOLUCION

X~EXP( ) X ~ EXP )(3601

Como E(x)=360=

6011

0

0

1

0)(;

;0

0;)(

360

360

3601

xSi

xSi

exF

eoc

xexf x

x

X: “ tiempo que opera el ordenador hasta la primera falla

9

5

360

360

400 3601

600 3601

400

600

400

400600400600400200200

e

dxe

dxe

xp

xp

xP

xxPxxxxP

x

x

Ó mediante la acumulada

5556.09

5

36

20

360

400

360

600

360

400

360

600

360

400

360

600

11

11

)400(1

)600(1

4001

6001

400

600

eee

e

e

e

e

F

F

xP

xP

xP

xp e

RELACION ENTRE EL MODELO EXPONENCIAL Y POISSON La distribución exponencial tiene una relación especial con la PISSON porque X~P[ ]donde X: “N° de veces que ocurre un evento en un periodo “t” con promedio ”

la v.a. T: “tiempo entre la ocurrencia de 2 eventos consecutivos de POISSON

T ~ EXP[ ]

TEORIA DE LA CONFIABILIDAD (Rt) Una de las aplicaciones principales de la distribución exponencial se da en la confiabilidad del funcionamiento normal de un sistema o componente electrónico.

26

DEFINICIÓN La confiabilidad (Rt) de un sistema en determinado medio ambiente, durante un periodo “t”, se define como la probabilidad de que su tiempo para fallar (T) excede a su tiempo de funcionamiento normal (t)

tt eetTPtTPtR 111)(

Ejemplo La probabilidad de buen funcionamiento de un elemento de cierto equipo de sonido se distribuye exponencialmente con:

eoc

tetf

t

:

0

0

;02.0)(

02.0

Determinar la confiabilidad del elemento en un periodo de 50 hrs.

SOLUCION

3679.0)50(50 1)50(02.0 eeRTP

DISTRIBUCIÓN NORMAL

Es la distribución mas importante de la teoría estadística, porque casi todos los fenómenos físicos, científicos sociales psicológicos, tienen un comportamiento normal, además casi todas las distribuciones bajo ciertos requisitos se pueden aproximar mediante la normal. DEFINICIÓN

Se dice que una v.a.c. X ~ N( 2, ) Sii

FUNCION DE PROBABILIDAD

xexfx

;2

1)( 2

2/

donde 71828.2

...1416.3

e

2

1

F(x)

MoMe

27

CARACTERÍSTICAS

1. Es simétrica respecto a

2

1)(

xfdonde

2. Es creciente en el intervalo , cuando x<

3. Es decreciente en el intervalo , cuando x>

FUNCION DE DISTRIBUCIÓN

dxxfxxxPxFx

)(][)( ½

LA MEDIA

dxxfxxE )()(

LA VARIANZA

222 )()(

dxxfxxV

DISTRIBUCIÓN NORMAL ESTANDAR Estandarizar la Normal significa llevar

o trasladar la distribución hasta que 0 y 12

Mediante la v.a.e.= 1.0....; Nzzx

=0 z z x

USO DE TABLAS

Cuando la v.a.c. X ~ N( 2, ) no esta estandarizada ( 1:0 2 ), la misma se la debe

estandarizar con

xz y colocar en acumulada F(z)ó zzPz )(

Ejemplo Sea X...N(5,4)cual la probabilidad de que x

a) toma valores entre 4 y 7? b) Toma valores mayores que 10?

F(x) - 1

2

1

F(x)

F(z)

28

SOLUCION

a)P[4<x<7]estandarizando mediante

xz

donde 2;4;5 2

5328.03085.08413.0)5.0()1(5.0115.02

57

1

54

FFzPzpzp

xP

0062.0)5.2(15.215.22

51010)

FzpzP

xPxPb

Ejemplo El tiempo T requerido para contagiarse un computadora por cierto virus es una v.a. normal con media 31 segundos y desviación estándar 5 segundos.

a) Cual la probabilidad que un ordenador se contagie con el virus en menos de 35 segundos

b) Si un ordenador particular se observa que no está siendo contagiado por el virus en 30 segundos, cual es la probabilidad de contagiarse antes de los 35 segundos

SOLUCION T ~ N(31,5) T: “tiempo requerido para contagiarse una CPU con el virus en segundos”

7881.0)8.0(5

4

5

313535)

FzP

TPTPa

63.05793.0

3674.0

)2.0(1

)2.0()8.0(

2.0

8.02.0

30

353030/35)

53130

53135

53130

F

FF

zP

zP

zP

zP

TP

TPTTPb

PROPIEDAD REPRODUCTIVA La distribución normal también goza de esta propiedad, es decir:

Sean n.v.a. independiente : X1+ X2+...+Xn donde Xi...N 2; ii si sumamos dichas variables

n

i

i Yx1

~ 2

;yyN donde

n

i

iy

n

i

iy

1

22

1

;

n

i

iy

n

i

iNY

1

22

1

;.~

29

Ejemplo

Sea una v.a. 32

2x

xxy i

donde Xi...N 2

; ii ; i =1,2,3

5;11;5

2525;2023

22

21

321

a) Cual la distribución de probabilidad Y? b) Calcular P[Y>0] SOLUCION

Como Xi...N 2; ii =Y...N 2

; yy

donde

)9;7(.~

3951154

1

4

1

2

72516202

1

)()(2

1

2)(

2

3213212

321321

NY

xvxvxvxxx

vyv

ExxExExxx

EyE

yy

y

y

y

0099.09901.01)33.2(13

7

3

)7(00

FzP

YPYP

y

y

TEOREMA CENTRAL DEL LIMITE Este es el teorema mas importante de la estadística, porque mediante la misma nos permite aproximar a la distribución normal sumas finitas de v.a. independientes, que pueden tener cualquier distribución de probabilidad con media y varianzas conocidas DEFINICIÓN Sea una sucesión de n. v. a. i.: X1, X2, ... Xn

Cuyas medias E(Xi)= i y cuyas varianzas V(Xi)=2i (conocidas y finitas)

Si sumamos los n.v.a.i.: X1+X2+...+ Xn=Yn, con la condición que los Xi contribuyan con

una cantidad mínima despreciable a la variación de la suma

30

La v.a.e. de la variación: 1) )1.0(.~;2

1

2

11 NZY

x

Z n

i

in

n

i

i

n

i

i

n

i

i

n

CASO ESPECIAL Cuando Xi....MISMA DISTRIBUCION La secuencia de las n.v.a.i.: X1,X2,..., Xn

E(Xi)= y V(Xi)= 2

Yn=X1+X2+...+ Xn= 1x

2) n

nx

n

nxxZ

iii

n

22

ó también dividiendo entre “n”

)1.0(.~; NZn

xZ n

n

n

n

nn

x

n

i

Ejemplo1 Suponiendo que la vida útil de un componente electrónico de uso continuo, tiene distribución exponencial, con un promedio de 100 hrs. Tan pronto como se deteriora, es reemplazado por otro para que continúe funcionando.

a) calcular la probabilidad de que durante 209,5 días se necesiten mas de 36 de estos componente

b) cuantos de estos componentes se necesitan par que duren al menos 4536 hrs., con una probabilidad de 0.9901

SOLUCION

Como

1.~EXPX i donde X: “Duración del i=esima componente” en horas” I=1,2,......36

Donde

1001

)(xE

;100;1001

)( 2

2

xV Yn: “tiempo total de duración de los n componentes”

n=36

n.u 600

360036

36100

36003610036

YY

n

nxZ

i

n

31

a)

9913.038.238.2

600

360050285028

36

3636

FZP

ZPandoestandarizYP

b)

643.64018.8018.8

33.2100

100536.4

0099.0100

100536.4

0099.09901.01536.4

9901.0536.419901.0536.4

22

nxnX

nXhaciendoecuaciónlaoresolviendn

n

críticovaloreldonden

nZP

adoestandarizYP

YPYP

n

n

nn

Ejemplo 2 La longitud que se puede estirar sin ruptura un filamento de nylon es una v.a. exponencial con media de 5000 pies. Cual es la probabilidad aproximadamente que la longitud media de 100 filamentos este comprendido entre 4750 y 5550 pies. SOLUCION

5000

1.~: EXPX

X: “longitud de estiramiento sn ruptura del i-esimo filamento” i=1,2....100

5558.03085.08643.0)5.0()1(1.15.0

100

5000

10050005550100

5000

5000457055504750)5000(

1)(

)(5000

1)(

100

1002

2

FFzP

zxPxV

andoestandariznx

ZporxE nn

APROXIMACIONES DE LAS DISTRIBUCIONES DISCRETAS A LA NORMAL Mediante el teorema central del limite, se pueden aproximar distribuciones discretas a la norma, para ello se debe convertir un v.a continuo, mediante factores de corrección de acuerdo a las siguientes situaciones:

5.05.0)6

5.0)5

5.0)4

5.0)3

5.0)2

5.05.0)1

bxaPbxaP

xxPxxP

xxPxxP

xxxPxxP

xxxPxxP

xxxPxxP

32

RESUMEN DE LAS APROXIMACIONES MEDIANTE

)1.0(.~2

NZX

Z

i

ii

DISTRIBUCION REQUISITO MEDIA VARIANZA V.A ESTANDAR CORREGIDA

BINOMIAL

21

21

21

;

;5

;10

pnq

pnp

pn

npqxV

np

)(

npq

npxZ

5.0

Hipergeométrica

Nn

Nn

05.0

1.0

11)(

N

nN

N

M

N

MnxV

N

Mn

11

5.0

NnN

NM

NM

NM

n

xZ

POISSON

5

n

n

2

n

nxZ

5.0

Ejemplo 1 1 si la v.a. X....b(20;0.5) calcular la P[x =7] a) De manera exacta, b)Aproximada SOLUCION

Sabemos que nxqpxxP xnxn

...2.1.0;)(

Donde n=20 p=0.5

q=0.5 a) Exactamente o con la verdadera distribución binomial

0739.05.05.07)7(137

20

xP

b) Aproximadamente mediante la Normal Donde np =10 corrigiendo ]5.075.07[ xP

0732.057.112.1

57.112.1

5.75.624.25.05.010

24.2

105.6

24.2

105.7

FF

ZPZP

ZPZP

andoestandarizxPnpq

5.75.6 xP 5.75.6 xP

33

Ejemplo 2 Suponga que la probabilidad de que cierta marca de CPU, esta en servicio después de 1 año es 0.80. Si la “U” adquiere 35 de tales CPUs. Cual la probabilidad de que

a) 7,b)al menos 5 de las CPUs adquiridos NO esta en servicio después de 1 año? SOLUCION

Xb(n,p) Xb(35;0.20)

n = 35; p =0,20; q =0,80 Como n = 35>10 y p=0.20<0.5 podemos aproximar mediante la Normal con np=7 y

3664.26.5 npq

a)

1664.0)21.0()21.0(

21.021.02113.02113.03664.2

75.7

3664.2

75.6

5.05.75.67

FF

ZPZPZPZP

npq

npxZdondexPxP

b)

8554.0)06.1(1056.113664.2

75.41

515.45.055

FZPZP

xPxPxPxP

Ejemplo 3 El tiempo que un cajero de un banco emplea para atender a un cliente es una v.a. con media 3.1 minutos y una desviación estándar de 1.7 minutos. Si se observan los tiempos y corresponden a 64 clientes ¿Cuál la probabilidad de que el tiempo promedio de los mismos sea por menos 3.4 minutos? SOLUCIÓN Como X .~ P(x)

64

7.1

1.3

1.3

2

n

0793.09207.01

)41.1(1

41.117.1

641.34.31

4.36414.364

F

zPzP

xPxP