42
Lic. Fco. Hernánde Físico. CNR Centro Nacional de Radioterapia CNR Física de la Radiobiología Tema: Modelos Radiobiológicos.

Física de la radiología

Embed Size (px)

Citation preview

Lic. Fco. Hernández.Físico. CNR

Centro Nacional de RadioterapiaCNR

Física de la RadiobiologíaTema:

Modelos Radiobiológicos.

Efectos Indirectos: Radiolisis del agua Rol de los Radicales libres

H20

e- e-aqH20

H20H20

H20+H+

OH.

Tiene un e- no apareado y

altamente reactivoRL

R.

𝑩𝑬𝑫=𝒏𝒅 (𝟏+ 𝒅𝜶𝜷 )−𝟎 .𝟏𝟖 𝑮𝒚

𝒅𝒊𝒂𝑻

𝑩𝑬𝑫=𝒏𝒅 (𝟏+ 𝒅𝜶𝜷 )−𝑲𝑻

𝑲=𝒍𝒏𝟐𝜶𝑻 𝒑𝒐𝒕

En los inicios de la radioterapia, se hizo evidente que administrar una sola fracción (dosis única) para el tratamiento del cáncer era sumamente ineficaz, por no decir imposible, por lo que la radioterapia clínica tomó dos directrices principalmente:

1) Protraer o diluir la dosis en el tiempo, aplicando baja tasa de dosis. Este es el principio básico de la Braquitérapia, del que se hablara más extensamente en los apartados siguientes.

2) Fraccionar la irradiación, dividiendo la dosis total en diversas fracciones diarias, lo queconstituye el principio básico de tratamiento con radioterapia externa.

Protacción y fraccionamiento de dosis

Existen muchos modelos

• Se basan en la experiencia clínica, en experimentos a nivel

celular o simplemente en la maravilla o simplicidad de las

matemáticas

• Uno de los modelos más simples y más empleados es el

llamado “Lineal Cuadrático” o modelo “alfa/beta” desarrollado

y modificado por Thames, Withers, Dale, Fowler y muchos

otros.

Un poco de historia

En 1944 Strandqvist hace el primer intento de establecer una

relación matemática entre el tiempo global de tratamiento y la

respuesta a la irradiación.

Cohen en 1949 establece una pequeña modificación, pero para

ambos el parámetro fundamental era el tiempo global de

tratamiento, no incluían en sus cálculos el tamaño ni número de

fracciones administradas.

Ellis observa que el número de fracciones era incluso más

importante que el tiempo de tratamiento y establece en 1969

la fórmula de la Dosis Nominal Estándar (NSD). Su principal

problema era que al no tener en cuenta el tamaño de la

fracción, infraestimaba los efectos tardíos tras fracciones

grandes.

Dosis Total = NSD N0,24 T0.11

Desde entonces, la mayoría de los intentos que han surgido son modificaciones de esta fórmula, entre los que destacan:

• Kirk (1971): “The Cumulative Radiation Effect”- CRE;

• Cohen (1971), incorpora la hipótesis de las células diana

y múltiples parámetros radiobiológicos (inconsistentes

hoy en día con los conocimientos actuales).

• Ellis (1973): “Time- Dose Fractionation “- TDF

La crítica principal es que no establece diferencias entre los

diferentes tumores y tejidos sanos, ni entre los diferentes

tipos de efectos: agudos y tardíos.

Jack Fowler Rodney Withers

Por último, en 1980 surge el Modelo Lineal Cuadrático (MLQ),

que se ha convertido en el modelo más difundido para calcular

las relaciones de isoefecto dada su simplicidad que además es

apoyada por los datos clínicos y biológicos de que disponemos.

Modelo Lineal - Cuadrático

Los modelos empleados para describir las curvas de supervivencia celular tienen en cuenta ciertos aspectos:

Existen dos componentes fundamentales del daño celular

Daño LetalProduce la muerte directa de la célula

Daño SubletalPuede ser reparado, o bien producir la muerte de célula por acumulación tras una dosis de radiación adicional.

El efecto final de una dosis de radiación, depende del tipo de radiación y de la tasa con que ésta se administre.

El modo en que responde una población celular a la radiación depende de la forma en que sus constituyentes se distribuyen en el ciclo reproductivo en el momento en que se administra la dosis.

Modelo Lineal Cuadrático

Curva Dosis Respuesta y Relación Alfa/Beta

En el modelo lineal-cuadrático la sobrevida es igual a:

Luego, si: D = D2 , entonces D = /

)( 2DDeS

La componente representa la pendiente inicial y la componente representa la pendiente terminal de la curva. El cociente / representa la dosis a la cual la contribución de ambas es equivalente.

S es la fracción de supervivencia, D es la dosis, y son constantes características de la población celular estudiada.

El cociente / permite caracterizar a los tejidos desde el punto de vista radiobiológico.

Las condiciones en que puede aplicarse la forma más simple de este modelo son tres:

La dosis se administra en un tiempo mucho menor que el tiempo medio de reparación del daño subletal.

Durante la irradiación la repoblación celular es despreciable.

Si la dosis se administra en fracciones, el intervalo de tiempo entre dos irradiaciones consecutivas es suficientemente largo como para que la reparación de todo el daño subletal sea completa.

Relación de Isoefecto

Consideremos que el Efecto Biológico, E, en tejidos irradiados, está únicamente determinado por la fracción celular superviviente, S.

)ln(SE Si usamos el modelo

Lineal Cuadrático:

2ndndE

n es el número de fracciones y d es la dosis por fracción

Definimos la Dosis Biológica Efectiva o Equivalente, DBE, (en inglés BED, Biological Effective Dose) como:

E

DBE

Dosis Biológica Efectiva o Equivalente (BED)

BED: Es una medida de el efecto (E) de un proceso de irradiación continua o fraccionada.

D: Dosis totaln: Numero de fraccionesd: dosis por fracción

Limitaciones del Modelo LQ

Se asume iguales efectos para cada fracción. Se asume suficiente intervalo de tiempo para la reparación

del daño subletal.

Obtenemos:

dndDBE

1

o bien

d

ndDBE 1

Esta expresión depende sólo del cociente / característico para un tipo de tejido y una reacción particular, de la dosis d y del número de fracciones n.

Comentarios...

DBE tiene unidades de dosis (Gy).

DBE es la dosis que tendríamos que administrar al tejido o tumor para conseguir el isoefecto deseado en fracciones infinitamente pequeñas (n infinitamente grande) suponiendo que la célula sólo tiene posibilidad de morirse siguiendo la vía de muerte celular α.

La DBE es aditiva, el efecto global de varias irradiaciones consecutivas puede calcularse como la suma de la DBE correspondiente a cada una de ellas.

Este concepto, se puede aplicar a cualquier modelo de supervivencia celular.

Veamos...

¿Cuándo dos tratamientos de radioterapia con distinto fraccionamiento (número de fracciones y dosis por fracción (n1, d1) y (n2, d2)) son equivalentes para cierto efecto?

Esto sucede cuando los valores de la DBE que proporcionan dichos esquemas son iguales

222

111 11

ddn

ddn

Los valores de / suelen ser grandes para los tumores, salvo excepciones (melanoma, liposarcoma) y para las reacciones precoces de los tejidos sanos. Un valor aproximado adecuado está entre 10 y 15 Gy.

Para las reacciones tardías en tejido sano, el valor de / es pequeño, unos 2 Gy.

El efecto de la dosis por fracción y de la reparación entre fracciones consecutivas es especialmente importante para la respuesta tardía de los tejidos sanos, pero influye mucho menos en la respuesta del tumor y las reacciones precoces de los tejidos sanos.

Representación de curvas de supervivencia del modelo Lineal Cuadrático típicas para tejidos de respuesta rápida y tumores (línea continua), y para tejidos de respuesta lenta (línea discontinua). Los valores de los parámetros utilizados para confeccionarlas se muestran en la figura.

Curvas de Respuesta a la Dosis

DosisA CB

100%

50%

0%

Óptimo Probabilidad de Complicaciones en

Tejido Normal

Probabilidad de Control Tumoral

Probabilidad de Control Tumoral sin

Complicaciones

PT

PS

PSC

Con la dosis C podría lograrse el 100% de control tumoral pero, debido a las complicaciones, la mayor parte de los pacientes no sobrevivirían al tratamiento.

La dosis B representa el balance óptimo entre el control local del tumor y una incidencia aceptable de efectos secundarios o complicaciones en los tejidos sanos. (Es la dosis a la que PSC es máxima).

Para que la radioterapia sea efectiva la curva PT debe situarse a la izquierda de la curva PS. Cuanto más cerca están estas curvas, más difícil será elegir el nivel de dosis para controlar el tumor sin causar daño a los tejidos normales.

Preguntas

1) Porque razón se debieran compensar las interrupciones?

2) Como cuantificar la interrupción y compensarla?

Esencialmente por la existencia de la repoblación tumoral

Con el modelo Lineal Cuadrático

Compensación de la interrupción

Método 1: conservar el tiempo total de tratamiento, la dosis total y la dosis por fracción.

- fracciones adicionales en fin de semana- fracciones adicionales algunos días por semana

Si la fracciones adicionales se hacen en fin de semana el modelo lineal cuadrático no mostraría ninguna diferencia respecto del esquemas original.Si la compensación de hace con mas de una fracción en algunos días la reparación incompleta mostraría pequeñas diferencias dependiendo del tiempo entre fracciones.

Compensación de la interrupción

Método 2: conservar el tiempo total de tratamiento con aumento de dosis por fracción.

Este método implica la mayor probabilidad de complicaciones tardías como consecuencia del aumento de dosis por fracción.

Compensación de la interrupción

Método 3: aceptar la extensión del tratamiento y hacer fracciones extras.

Este método implica también mayor riesgo de aparición de complicaciones tardías, pero en menor grado que el método 2.

Modelo lineal cuadrático: como utilizarlo ?

Ecuación para tejido tumoral con término de repoblación. Este solo debe aplicarse después de dos semanas de comenzado el tratamiento.

Ecuación para tejido de reacciones tardías (no debe utilizarse término de repoblación).

Ecuación para todos los tejidos en caso de mas de una fracción diaria. Para tejido tumoral debe agregarse el término de repoblación después de la segunda semana de comenzado el tratamiento.

K = exp (- m t )t: tiempo entre fraccionesm: constante de reparación

Ejemplo:

Planificación Inicial: Dosis Total: 70 Gy

Tiempo Total: 7 semanas

Número de Fracciones: 35

Dosis por fracción: 2 Gy (1f x día)

Planificación con Interrupción: Fase I

Dosis dada: 40 Gy

Tiempo : 4 semanas

Número de Fracciones dadas: 20

Dosis por fracción: 2 Gy (1f x día)

Fase II

Interrupción: 10 días (2 semanas)

Fase III

Dosis total faltante: 30 Gy

Tiempo: 1 semana (5 días)

Dosis por fracción: 1.5 Gy

Dosis por día: 600 cGy. ¿ cómo?

Tejidos Normales con Reacciones Agudas - Dependen fuertemente del tiempo total de tratamiento- Dependen poco del tamaño de la fracción

Tejidos Normales con Reacciones Tardías - No dependen del tiempo total de tratamiento- Dependen fuertemente del tamaño de la fracción

BED (tratamiento planificado) = 116.7 Gy

BED (parcial de las 20f dadas) = 66.7 Gy

BED (parcial remanente) = 50 Gy

Cálculo del BED por reparación incompleta

+

=

Hm = 0.33

Buscando en Tablas : el tiempo entre fracciones es 6,5 horas

Tipos de Compensación

PRIMERA FASE DEL TRATAMIENTO

SEGUNDA FASE DEL TRATAMIENTO TIEMPO EXTRA

I FASE INTERRUPCION

COMPENSACION DELTRATAMIENTO

PRIMERA FASE DEL TRATAMIENTO SEGUNDA FASE DEL TRATAMIENTO

I FASE INTERRUPCION

COMPENSACION DEL TRATAMIENTO

Fecha de elaboración de cálculo de BED. __Caso._______Datos Iniciales.Nombre del Paciente.____Historia Clínica. ______Localización. __________Histología. ___________Dosis Total. _______Gy.Dosis Total por día. ____Gy.Nº de fracciones._______

Fecha de Diagnostico. ______Volumen del tumor. ______cm3

Fecha de inicio de Tto._________Fecha de interrupción de Tto._______Fecha de Continuación de Tto. ________Dosis Física Impartida _____Gy, en ____ fracciones.Valoración de compensación.Tiempo total previsto. _____días.

Formato de informe de compensación.

𝐵𝐸𝐷𝑝𝑟𝑒𝑣𝑖𝑠𝑡𝑜=𝑛𝑑(1+ 𝑑𝛼𝛽 )−𝑘𝑇

𝑛=𝐵𝐸𝐷 𝑓𝑎𝑙𝑡∗𝐾𝑇

𝑑 (1+ 𝑑𝛼𝛽

)

𝑛=38.25−0.12∗24

2(1+212

)

𝑛=15.3

1. Interrupciones de mas de una semana de tratamiento sin compensación pueden

implicar una perdida de control local y sobrevida.

2. Cualquier método utilizado para compensar la perdida de eficiencia radiobiológica

en el tejido tumoral traerá como consecuencia un aumento de la probabilidad de

complicaciones en los tejidos normales de reacción tardía.

3. El método de compensación que sumaría menores complicaciones es agregar

fracciones los fines de semana. Este método tiene la limitación que solo puedo

agregar dos fracciones por semana, y si la interrupción fue larga no tendré días

suficientes.

Conclusiones

Conclusiones

Instruir a todos los profesionales de los Servicio sobre la importancia del tiempo

total de tratamiento (cultura radiobiológica).

Informar e instruir a los pacientes, y enfatizar la importancia del tratamiento diario.

Establecer una política general para el manejo de interrupciones y protocolos.

Reportar en los informes, el tiempo total de tratamiento, las causas de las

interrupciones y los métodos de compensación.

Planificar el mantenimiento preventivo del equipo.

Muchas Gracias Por su Atención