31
Solución de Problemas Seminario-Taller de Combustión PREMAC S.A. Se le solicita seleccionar el equipo de combustión para un horno de tratamiento térmico multipropósito tipo caja (dibujo A). Las características de este horno son las siguientes:  1. 6 pies de ancho x 8 pies de largo por 4 pies de alto (dimensiones útiles)  2. Máxima capacidad: Calentar 2500 libras por hora de fundiciones de acero al carbono a 1700°F  3. Máxima temperatur a del horno: 1800°F  4. El horno debe estar en capacidad de mantenerse descargado a una temperatura de 1800°F en caso de que haya una interrupción de producción.  5. Las paredes serán construi das de ladril lo aislan te de 9” 2000°F. Asuma que el techo, las paredes y el piso tienen valores equivalentes de aislamiento.  6. El combustible es Gas Natural con 1000 BTU/CF de poder calorífico disponible a 1.5 PSIG:  7. La pared del horno será abierta varias veces cada hora para cambiar y remover las fundiciones. Las pérdidas  por radiación por la puerta abierta serán 150,000 BTU/Hr de trabajo. Dibujo A www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 1 8' 6' 4' PUERTA

11. Solucion Problemas

Embed Size (px)

Citation preview

Page 1: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 1/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

Se le solicita seleccionar el equipo de combustión para un horno de tratamiento térmico multipropósito tipo caja(dibujo A). Las características de este horno son las siguientes:

  1. 6 pies de ancho x 8 pies de largo por 4 pies de alto (dimensiones útiles)

  2. Máxima capacidad: Calentar 2500 libras por hora de fundiciones de acero al carbono a 1700°F

  3. Máxima temperatura del horno: 1800°F

  4. El horno debe estar en capacidad de mantenerse descargado a una temperatura de 1800°F en caso de que

haya una interrupción de producción.

  5. Las paredes serán construidas de ladrillo aislante de 9” 2000°F. Asuma que el techo, las paredes y el pisotienen valores equivalentes de aislamiento.

  6. El combustible es Gas Natural con 1000 BTU/CF de poder calorífico disponible a 1.5 PSIG:

  7. La pared del horno será abierta varias veces cada hora para cambiar y remover las fundiciones. Las pérdidas  por radiación por la puerta abierta serán 150,000 BTU/Hr de trabajo.

Dibujo A

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 1

8'6'

4'PUERTA

Page 2: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 2/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

A. Determine la potencia requerida y la rangeabilidad del horno. Tabule sus cálculos en la tabla de abajo.

  1. Usando la página 40 de la Guía de Combustión de Eclipse, encuentre la cantidad de calor requerida para subir2500 libras de acero hasta 1700 °F en una hora.

  Calor al Acero _____________________________________BTU/Hr

  2. Usando la página 44 de la Guía de Ingeniería, encuentre la cantidad de calor perdida por las paredes delhorno, techo y piso, las perdidas de calor (HL) se expresan en BTU/Hr por pie cuadrado de superficie dehorno. Usando las dimensiones interiores del horno calcule el área total de las paredes, techo y pisomultiplique esa área por el número de HL de la página 44 . Trate la puerta como una pared.

  Área de las paredes _____________________________________

  Área del Techo _____________________________________

  Área del piso _____________________________________

  Área total _____________________________________

  HL de la página 44 _____________________________________ BTU/hr por pie cuadrado

  Total Pérdidas de Calor= HL x Área = _________________x______________=________________BTU/Hr

  3. Usando la tabla de arriba de la página 51 de la Guía de Ingeniería, encuentre el Calor disponible para Gas  natural quemador con 10% de exceso de aire cuando la temperatura de chimenea es de 1900°C

  Calor Disponible: _____________________________________%

  Entre esta cifra como un decimal en los cálculos de balance de energía.

  4. Complete el Cálculo de balance de energía calculadito la potencia bruta requerida para máxima y mínimacarga del horno.

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 2

Page 3: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 3/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

TABLA DE CÁLCULO DE ENERGÍA

  Máxima Carga Mínima carga

Calor al Acero ________________________ ________________________

+ Perdidas por Paredes ________________________ ________________________

+ Perdidas por Radiación ________________________ ________________________

= Total Calor Requerido ________________________ ________________________

+ Calor Disponible ________________________ ________________________

= Potencia Bruta Total ________________________ ________________________

Cuántos CFH de gas Natural se requieren a máxima potencia? ________________________

Cuántos CFH de aire de combustión se requieren a máxima potencia? _________________

Cuál es la Rangeabilidad (Turn down) __________________________________________

Eficiencia del horno = Calor al acero/potencia bruta _______________________________

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 3

Page 4: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 4/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

B. El Diseñador del horno le ha pedido a usted que usted ponga dos quemadores, dos a cadalado con líneas de centro escalonadas. (Ver dibujo) Usted elije quemadores TJ de alta velocidad porque su alta velocidad es perfecta para esta aplicación.

1. Si se basa usted en el Data Sheet del quemador TJ, que modelo escogería? (Escriba elmodelo en el dibujo) __________________________________________________________

2. Cuál es la máxima potencia de este quemador? _________________________________

3. Cuál es la mínima potencia de este quemador quemando proporcional? _____________

4. Asumiendo que la potencia total de los cuatro quemadores será equivalente a la máximapotencia requerida, cuál es la máxima potencia a la cual serán operados los quemadores?

____________________________________________________________________________

C. Rangeabilidad del Quemador

  Uno de los factores mas importantes en la selección de quemadores es la selección de unsistema de control que garantice suficiente rangeabilidad al quemador. La rangeabilidaddel quemador debe igualar o superar la rangeabilidad calculada en la página 3, de locontrario, el horno tendrá problemas manteniendo las ratas de producción o en condicio-

  nes de vacío, o en ambas.

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 4

Ventilador

Proporcionador

P=

Horno

Quemador

Válvula de Controlde Aire Motorizada

Page 5: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 5/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 5

Aire

Combustible

Alto

AltoBajo

FLUJO

FUEGO

Aire

Combustible

Alto

AltoBajo

FLUJO

FUEGO

Hay dos maneras de controlar las ratas de potencia de los quemadores: proporcional o con aire en exceso (airefijo) hagamos el ensayo con un sistema proporcional primero:

1. Rangeabilidad Proporcional

Los caudales de aire y de combustible se mantienen en la misma relación, por ejemplo 10:1 para el gas naturalen todo el rango de potencias.

Usando los resultados que calculó en la parte B, pasos 3 y 4, calcule la rangeabilidad del quemador proporcio-nal.

Potencia máxima del Quemador=   ___________________ =   ___________________ =__________________________

Potencia mínima del quemador

Compare el resultado con el resultado del horno, cuál es mas alto? ____________________________________

Si la rangeabilidad del quemador es igual o igual a la del horno, bien. De lo contrario, hay mucha potencia en

bajo fuego y el temperatura en vacío se subirá. Usted tiene que encontrar una manera de operar estos quema-dores en bajo fuego.

Mire nuevamente las especificaciones en el catálogo del quemador. En este momento vemos que tipo derangeabilidad podemos lograr con exceso de aire.

2. Rangeabilidad con Exceso de aire

La relación Aire/Combustible es correcta en alto fuego. El caudal de aire se mantiene constante, únicamente secontrola el caudal de combustible.

De la página 1 de este taller, cuál es la temperatura en vacío del horno? ________________________________

Refierase a la temperatura teórica de llama en la parte de debajo de la página 52 de la guía de ingeniería , a quéporcentaje de exceso de aire corresponde 1800°F? ____________________________________________________

PARÁMETRO

Entrada en Alto Fuego

Bajo Fuego Proporcional

Bajo Fuego Aire Fijo

TIPO DE QUEMADOR  (VELOCIDAD)

Media y Alta Velocidad

Media y Alta Velocidad

Media y Alta Velocidad

  50

500.000

50.000

10.000

  75

750.000

75.000

15.000

  100

1.000.000

100.000

20.000

  150

1.500.000

150.000

30.000

TAMAÑO QUEMADOR

PARÁMETRO

Entrada en Alto Fuego

Bajo Fuego Proporcional

Bajo Fuego Aire Fijo

TIPO DE QUEMADOR  (VELOCIDAD)

Media y Alta Velocidad

Media y Alta Velocidad

Media y Alta Velocidad

  50

500.000

50.000

10.000

  75

750.000

75.000

15.000

  100

1.000.000

100.000

20.000

  150

1.500.000

150.000

30.000

TAMAÑO QUEMADOR

Page 6: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 6/31

Solución de Problemas

Seminario-Taller de Combustión

PREMAC S.A.

Si un quemador se opera con este exceso de aire, la temperatura promedio de los gases de salida del quemadorson similares a la temperatura del horno. Ellos serán capaces de mantener la temperatura del horno, pero no laincrementarán. En otras palabras, la rangeabilidad del quemador igualará la rangeabilidad del horno, aunqueel flujo total de gas sea mas alto que el que requiere el horno de acuerdo a nuestros cálculos de la página 3.

Ahora observe el catálogo del quemador TJ. Este nos muestra cuanto exceso de aire tolera el equipo en variaspotencias. Puede este quemador operar con el exceso de aire requerido? __________________________________

Se logran las necesidades de rangeabilidad del horno? __________________________________________________

Para poner a operar el quemador proporcional en alto fuego y con exceso de aire en bajo fuego, sólo senecesitan cambiar los ajustes del proporcionador en bajo fuego.

(Referirse al esquema de la página anterior para ver como se vería un sistema típico)

1. Usando la página 15 de la guía de ingeniería, determine el diámetro apropiado para las _______________________  líneas de aire que alimentan cada quemador. La tubería debe ser dimensionada para

una presión de velocidad de 0.3 a 0.5” w.c.Nota: es posible que el diámetro no coincida con el diámetro de entrada de airedel quemador.

2. Asumiendo que las cuatro líneas del quemador se alimentan del mismo ventilador, _______________________  determine el diámetro de la línea principal

3. Del boletín 720, seleccione el modelo de la válvula de puerto reducido que seinstalaría en la línea de aire

4. Los quemadores requieren una presión de aproximadamente 19.5” w.c. en alto fuego. _______________________Asuma unas pérdidas totales de 3” w.c. a través del sistema, seleccione un ventiladorde combustión del boletín 610

5. del boletín 742 seleccione un proporcionador apropiado para controlar el gas a los _______________________  cuatro quemadores

  a. Que presión hay disponible en la entrada del proporcionador? _______________________

  b. Convierta esto a pulgadas de Columna de Agua (x 27.7) _______________________

  c. Asuma que el proporcionador tiene que operar con una presión de salida de 15.5” _______________________  w.c. de presión de salida en alto fuego, que caída de presión hay disponible a través

del proporcionador? (p. entrada - p. salida)

  d. Qué caudal de gas debe manejar el proporcionador en alto fuego? _______________________

  e. Compare la caída de presión y el caudal con las cifras de las tablas de capacidades _______________________

  en la página 2 del boletín 742. Cuál es el proporcionador mas pequeño capaz dehacer el trabajo?

www.premac-inc.com  · Aut. Sur No. 24-52 · Itagui · Colombia · Tel (574)372 1844. · Fax (574) 371 2403 6

D. Sistemas de Combustión y Aire

Page 7: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 7/31

15

Air, gas and mixture piping systems should be sized todeliver flow at a uniform pressure distribution and withoutexcessive pressure losses in transit.

Two factors cause air pressure loss and consequent pres-sure variations:

1) Friction in piping and bends, and2) Velocity pressure losses due to changes in direction.

In combustion work, piping runs are usually short (under50 ft.), but often have many bends. By assuming that allvelocity pressure is lost or dissipated at each change of direc-tion and by using a pipe size to give a very low velocity pres-sure, other losses can be disregarded. In general, a velocitypressure of 0.3 to 0.5″ w.c. satisfies this need. This is equiva-lent to air velocities of about 2200 to 2800 ft/minute. Forother gases, this velocity is inversely proportional to theirgravities; consequently, higher velocities can be toleratedwith natural gas, but propane and butane piping should besized for lower velocities than air.

The accuracy of orifice meters is also sensitive to pipevelocity, so every effort should be made to keep velocity pres-sure below 0.3″ w.c. in metering runs.

The graph below shows the relationship between velocity,velocity pressure and flow for various pipe sizes handling air,natural gas, propane, and butane. Because the specific gravi-ty of most air-gas mixtures is close to that of air, mixture pip-ing can be sized the same as air piping. The error will beinsignificant.

Example:A burner requires 10,000 cfh air at a static pressure

of 13″  w.c. The blower supplying this burner develops 15″ w.c. static pressure. Piping between the two will run 15 feet,including four 90° bends. What size piping is required?

Solution: Total pressure available for piping losses is15″ w.c. - 13 ″ w.c.  = 2″ w.c.

This allows a velocity pressure loss of:2 ÷ 4  = 0.5″ w.c. for each of the four elbows.

Under the “Air” column on the left-hand side of the Pvgraph, locate 0.5″ w.c. velocity pressure. This is equivalent toabout 2800 ft/minute air velocity. Locate the intersection of the 2800 ft/minute line and the 10,000 cfh line, then dropdown to the first curve below this point, in this case, 4″ pipe.This is the pipe size that should be used.

SIMPLIFIED SELECTION OF AIR, GAS AND MIXTURE PIPING SIZE

If pipe sizing charts or tables aren’t available, you canquickly estimate the maximum air flow capacity of a pipewith these simple equations:

Maximum cfh air = (Nominal pipe size)2 x 1000

The result will correspond to a velocity pressure of about 0.5″ w.c., the maximum recommended for low pressure air systems.

Optimum cfh air = (Nominal pipe size)2 x 750

This will produce a flow rate equivalent to about 0.3″ w.c.velocity pressure.

Example: What is the maximum air flow rate for 2 1 ⁄ 2" pipe?

(21 ⁄ 2)2 = 6.256.25 x 1000 = 6,250 cfh air.

QUICK METHOD FOR SIZING AIR PIPING

Nat.

Gas Air

Pro-

pane

Bu-

tane

3.0

2.0

1.5

1.0

0.40.5

0.3

0.2

0.15

0.1

0.05

5.04.0

3.0

2.0

1.5

1.0

0.50.4

0.3

0.2

0.15

0.1

5.04.0

3.0

2.0

1.5

1.0

0.50.4

0.3

0.2

0.15

0.1

5.04.0

3.0

2.0

1.5

1.0

0.5

0.4

0.3

0.2

0.15

109

8

7

6

5

4

3

2.5

2

1.5

1

1002 3 4 6 8

10002 3 4 6 8

10,0002 3 4 6 8

100,0002 3 4 6 8

1

1.5

2

2.5

3

4

5

6

7

8910

18"

16"14"12"10"8"6"4"3"

2-1/2"

2"

1-1/2"

1-1/4"1"3/4"1/2"3/8"1/4"

VelocityFt/Minx1000

Pv, "wc Pipe Size

Flow, cfh

Shaded AreasIndicate Recommended

Velocity PressureRange

Page 8: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 8/31

40

THERMAL CAPACITIES OF METALS & ALLOYS

Babbit75 Pb/15Sb/10Sn

Pure Zinc

Lead

Alloy 903 Die Cast Zinc

Solder50 Pb/50Sn

0 100 200 300 400 500 600 700 800 900

150

0

50

100

Temperature, °F

     H    e    a    t     C    o    n    t    e    n    t ,     B    t    u     /     l     b

Pure Aluminum

Aluminum Die Cast Alloy 380.0

Pure MagnesiumMagnesium Casting Alloy AZ91A

Titanium AlloyTi-6AI-4V

0.3% CarbonSteel

PureCopper

65-35 Yellow Brass

85-15 Red Brass

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

600

500

400

300

200

100

0

Temperature, °F

     H    e    a    t     C    o    n    t    e    n    t ,     B    t    u     /     l     b

Page 9: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 9/31

44

HEAT LOSSES, HEAT STORAGE & COLD FACETEMPERATURES – REFRACTORY WALLS

HL Hot Face Temperature, °FWall HS

Construction TC 1000 1200 1400 1600 1800 2000 2200 2400

HL 550 705 862 1030 1200 1375 1570 17689" Hard Firebrick HS 12,500 15,400 18,400 21,500 24,700 27,950 31,200 34,500

TC 282 320 355 387 418 447 477 505

9" Hard Firebrick + HL 130 168 228 251 296 341 390 44741  ⁄  2" 2300° Insulating F.B. HS 22,380 27,700 33,060 38,450 43,930 49,350 55,800 61,920

TC 147 162 188 195 211 227 242 260

9" Hard Firebrick + HL 111 128 155 185 209 244 282 32541  ⁄  2" 2000° Insulating F.B. + HS 23,750 29,650 35,640 41,940 48,420 54,890 61,410 68,1202" Block Insulation TC 138 144 156 169 179 193 205 218

HL 185 237 300 365 440 521 – –  41  ⁄  2" 2000°Insulating F.B. HS 1180 1450 1750 2075 2400 2720 – –  

TC 170 190 211 230 253 274 – –  

HL 95 124 159 189 225 266 – –  9" 2000°Insulating F.B. HS 2260 2840 3420 4000 4620 5240 – –  

TC 132 146 160 172 187 200 – –  

HL 142 178 218 264 312 362 416 4749" 2800°Insulating F.B. HS 3170 3970 4790 5630 6480 7360 8230 9160

TC 151 166 183 200 217 234 250 2679" 2800°Insulating F.B. + HL 115 140 167 197 232 272 307 34741  ⁄  2" 2000° Insulating F.B. + HS 14,860 17,340 19,910 22,508 24,908 28,360 31,531 34,664

TC 142 149 161 164 183 202 215 228

9" 2800°Insulating F.B. + HL 71 91 112 134 154 184 204 23041  ⁄  2" 2000° Insulating F.B. + HS 10,670 14,836 19,220 23,771 27,491 31,654 35,078 38,2522" Block Insulation TC 119 127 136 147 156 168 177 187

9" 2800°Insulating F.B. + HL 114 142 172 201 232 264 298 3333" Block Insulation HS 7730 9765 11,760 13,810 15,880 17,973 20,084 22,209

TC 139 150 163 175 188 200 212 224

HL 575 730 897 1075 1300 1525 1775 203041  ⁄  2" Dense Castable HS 5270 9520 11,310 13,060 14,820 16,120 18,300 20,030

TC 282 319 356 393 430 467 504 541

HL 315 410 500 627 694 844 947 1134

9" Dense Castable HS 13,120 16,240 19,960 23,673 26,355 29,212 32,019 35,861TC 218 248 280 305 321 352 377 406

HL 390 490 610 730 860 1000 1155 13329" Plastic HS 17,825 21,735 25,640 29,610 33,345 37,125 41,040 44,415

TC 232 261 290 319 348 378 407 436

8" Ceramic Fiber – HL 27 45 64 86 114 146 178 216Stacked Strips, 8 #/cu ft HS 850 1018 1190 1358 1528 1692 1823 2039Density TC 95 105 115 126 138 152 165 180

10" Ceramic Fiber – HL 16 35 54 76 94 120 142 172Stacked Strips, 8 #/cu ft HS 1054 1262 1473 1683 1895 2098 2262 2528Density TC 92 101 110 119 129 140 151 163

12" Ceramic Fiber – HL 13 27 43 60 79 98 118 143Stacked Strips, 8 #/cu ft HS 1265 1517 1775 2033 2276 2518 2714 3034Density TC 91 97 104 112 121 130 140 151

9" Hard Firebrick + 3" HL 177 240 309 383 463 642 721 800Ceramic Fiber Veneer, HS 1920 3680 5430 7178 9219 11,200 12,503 14,8918 #/cu ft Density TC 170 191 214 235 259 305 320 341

9" 2800°Insulating F.B. + HL 102 125 151 183 227 274 325 4083" Ceramic Fiber Veneer, HS 1150 2012 2910 3795 4576 5402 6272 74508 #/cu ft Density TC 134 143 153 167 183 200 217 242

9" Dense Castable + HL 170 221 273 329 381 487 559 6353" Ceramic Fiber Veneer, HS 1910 3603 5340 7083 8899 10,576 12,136 14,1498 #/cu ft Density TC 164 183 202 222 240 270 289 307

HL = Heat Loss, Btu/hr – sq ft HS = Heat Storage, Btu/sq ft TC = Cold Face Temperature, °FNote:These values are typical for the materials listed and are sufficiently accurate for estimating

purposes. Values for specific brands of refractories may differ.

Page 10: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 10/3151

CHAPTER 8 – COMBUSTION DATA

AVAILABLE HEAT CHARTS

Available heat for Birmingham Natural Gas (1002 Btu/cu ft, 0.60 sp gr) vs. % Excess Air and Combustion Air Temperature(at 10% excess air).

AVAILABLE HEAT FOR VARIOUS FUEL GASES

These curves assume 0% excess air. The excess air curves above for Birmingham Natural Gas can be used for butane,propane, natural, mixed, coke oven, & carbureted water gas without more than 5% error in the available heat.

1000 1100 1200 1300 1400 1500 1600 18001700 1900 2000 2100 2200 2300 2400 25000

10

20

30

40

50

60

70

80

90

Flue Gas Exit Temperature  °F

     %

     A    v    a     i     l    a     b     l    e

     H    e    a    t     (     H     i    g     h    e    r     H    e    a    t     i    n    g     V    a     l    u    e     )

14 0 0 °  F 12 0 0 °  F 10 0 0 °  F 8 0 0 °  F 4 0 0 °  F 

0 % X S  AI R 

10 % X S AI R 

2 5 % X S AI R 5 0 % 

X  S AI R 1 0 0 % X  S  A I  R  

1 5  0  % X  S  A I  R  

2  0  0  % X  S  A I  R  

2  5  0  %  X  S  

A I  R  

3  0  0  %  X   S  

A  I  R  

3   5   0  %  X   S   

A  I   R   

60°F10% Excess Air (preheated) Copyright 1983, GTE Products Corp., Towanda, PA 18848 USAUsedby Permission

BUTANE 3200 BTU

PROPANE 2500BTU

NATURAL GAS 1232BTU

NATURAL GAS 1050BTU

NATURAL GAS 967BTU

MIXED GAS800 BTU

COKE OVEN GAS600 BTUCARBURETED WATER GAS 534 BTU

COKE OVEN GAS 490 BTU

BLUE WATER GAS 310 BTU

PRODUCER GAS157 BTUPRODUCER GAS116 BTU

200 600 1000 1400 1800 2200 2600 3000 3400 38000

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

     A    v    a     i     l    a     b     l    e     H    e

    a    t     B    t    u     /     C    u .

     F    t .

Flue GasTemperature °F

Page 11: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 11/3152

FLUE GAS ANALYSIS CHART

% O2 - DRY SAMPLE

% O2 - SATURATED SAMPLE

% CO2 - NATURAL GAS

% CO2 - PROPANE

% CO2 - #6 OIL

% CO2 - #2 OIL

0 20 40 60 80 100 120 140 160 180 2000

2

4

6

8

10

12

14

16

     %

     F     l    u    e     G    a    s     C    o    n    s    t     i    t    u    e    n    t

% Excess Air

Oxygen curves are plotted for 1002 Btu/cu ft Birminghamnatural gas. These curves can be used for all common fuelgases and fuel oils with no more than 0.2% error in oxygencontent.

Use the “O2 – dry sample” curve with flue gas analyzersthat use dryers or condensers to remove water from the flue

gas sample. For analyzers which add water to produce a satu-rated sample, use the “O2 – saturated sample” curve.

% CO2 curves are based on typical propane and fuel oilanlyses. If the fuel composition differs, actual CO2 curvesmay vary slightly from those shown.

THEORETICAL FLAME TIPTEMPERATURE VS. EXCESS AIR

The maximum theoretical temperature of combustion gasesat the tip of a flame decreases with increasing amounts of excess air. The curve bleow shows this relationship for natur-al gas completely burned in 60°F combustion air, but is reaon-sably accurate for most other common hydrocarbon fuels.

0 200 400 600 800 1000 1200 1400 1600 18000

500

1000

1500

2000

2500

30003200

% Excess Air in Flue Gas

     M    a    x     i    m    u    m     T     h    e    o    r    e    t     i    c    a     l     T    e    m    p    e    r    a    t    u    r    e

    o     f     P    r    o     d    u    c    t    s    o     f     C    o    m     b    u    s    t     i    o    n     (            °

     F     )

HEAT TRANSFER RELATIONSHIPS

ConductionQ  = kA (t1-t2)

LConvectionQ  = fA (t1-t2)Radiation

Q  =AK (T1

4-T24)

1 + 1 - 1P1 P2

Q =heat transferred, Btu/hrA =surface area across which heat is

being transferred, sq. ft.t1 =temperature of heat source, °Ft2 =temperature of heat receiver, °FL =thickness of object through which heat

is conductedk =conductivity of material, Btu-ft

hr-sq ft-°Ff =convection film coefficient, Btu-ft

hr-sq ft-°FK =Stefan-Boltzmann constant,

=.1724 x 10-8 Btu/sq ft-hr-(°R)4

P1 =emissivity of heat sourceP2 =emissivity of heat receiverT1 =temperature of heat source, °RT2 =temperature of heat receiver, °R

(°R = °F + 460)

Page 12: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 12/31

Bulletin 205C

1/04 

High PerformanceVelocity Burners 

New standards for velocity,emissions and flexibility 

Designed to deliver more 

ThermJet Burners represent a techno-

logical leap forward in every area of

design and performance that counts.

• ThermJet has the highest operating

velocity of any burner available.

• Comparison tests with competitive

models prove ThermJet delivers the

lowest emissions.

• Integrated gas and air orifices simplify

burner piping, set-up and adjustment.

• Air and gas inlets are independently

adjustable in 90° increments to suit a

variety of piping alternatives.

• Installation, operation, and

maintenance are simplified and

less costly.

• Made to last…rugged Eclipse

Combustion dependability and

reliability are built in.

• Available in fourteen sizes with max-

mum capacities from 150,000 Btu/hr.

to 20,000,000 Btu/hr. All models are

available for use with preheated

combustion air, see Bulletin 206C.

A performance leader 

Highest velocity flame. ThermJet

produces an intense stream of hot

gases to thoroughly penetrate the

load and deliver precise temperature

uniformity for consistent product

quality and system efficiency.

Unparalleled fuel and control

convenience. ThermJet offers the

convenience of multi-fuel capability

with no nozzle change. Plus, you can

use any control methodology…pulse

firing, excess air or stoichiometric.

T  HERM J ET  

BURNERS 

 E  C  L  I  P

  S  E

EclipseCombustion

Large turndown combined with high

excess air. A wide turndown rangewith high excess air means ThermJet

delivers high velocity benefits and

efficiencies across its operating range.

Dependable ignition. With ThermJet

you can light anywhere in the ignition

range with no pilot required.

Customization with packaged

convenience. All ThermJet

components have been pre-engineered

to come together to meet your specific

requirements. You choose the capacity

range, combustor type, fuel type, thread

type and flame sensing components you

need to do the job.

Big savings. When you figure in the

installation and maintenance savings,

you’ll discover that ThermJet’s top

performance is equaled only by its

cost effectiveness.

Page 13: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 13/31

Patented Design –Uses staged air and gas mixing toprovide a wide turndown rangeand low emissions — lowest inthe industry.

Low Combustion TubeTemperature – For longlife and better efficiency.

HighestVelocity Flame – For

temperature uniformity.

Tube Choices – Alloy orSiC (optional refractoryblock also available).

NPT or BSPInlet Options

GasInlet

AirInlet

IntegratedMetering Orifices –Saves additional stand aloneorifice meters in your gas line.

FlameSensor

Spark Igniter –

For direct spark ignition.

ThermJet Burners

Sets new standards for velocity, emissions and flexibility.

Bulletin 205C 1/04

www.eclipsenet.com

Litho in USA

Page 14: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 14/31

Model TJ0050 Version 2 

ThermJet Burners 

4/20/04

Data 205-3 

• All information is based on laboratory testing in neutral (0.0"w.c.) pressure chamber. Different

chamber size and conditions may affect the data.

• All information is based on standard combustor design. Changes in the combustor will alter

performance and pressures.

• All inputs based upon gross caloric values.

• Eclipse reserves the right to change the construction and/or configuration of our products at any time

without being obliged to adjust earlier supplies accordingly.

• Plumbing of air and gas will affect accuracy of orifice readings. All information is based on generally

acceptable air and gas piping practices.

PARAMETER BURNER VELOCITY MODEL TJ 0050

Maximum input Btu/hr (kW) Medium & High Velocity

Minimum Input, on-ratio Btu/hr (kW)

Minimum Input, fixed air Btu/hr (kW)

Medium & High Velocity

Medium & High Velocity

Gas inlet pressure required "w.c. (mbar)

• Fuel pressure at gas inlet

  (Tap "B"– see page 3)

High Velocity

Medium Velocity

Nat. Gas

Propane

Butane

Nat. Gas

Propane

Butane

Air inlet pressure required "w.c (mbar)

• 15% excess air at maximum input

  (Tap "A" – see page 3)

High Velocity

Medium Velocity

Nat. Gas

Propane

Butane

Nat. Gas

Propane

Butane

High Velocity

Medium Velocity

Nat. Gas

Propane

Butane

Nat. Gas

Propane

Butane

High Fire Flame Length Inches (mm)

(measured from end of combustor)

Maximum flame velocity ft/s (m/s)

• 15% excess air, at maximum input

High Velocity

Medium Velocity

Flame detection U.V. scanner available for all combustors

Flame Rod available for use with alloy or siliconcarbide combustors only

Fuel Natural Gas, Propane, Butane

For any other mixed gas, contact Eclipse for orifice sizing.

500,000 (146.5)

50,000 (14.6)

10,000 (2.9)

16.2 (40.3)

19.6 (48.8)

17.1 (42.6)

8.9 (22.2)

11.4 (28.4)

9.6 (23.9)

16.7 (41.6)

18.0 (44.8)

17.4 (43.3)

9.9 (24.6)

10.9 (27.1)

10.5 (26.1)

25 (635)

33 (838)

30 (762)

28 (711)

36 (914)

39 (991)

500 (152.4)

250 (76.2)

Page 15: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 15/31Eclipse Model TJ0050 v2, Data 205-3, 4/20/04

Performance Graphs

0.0

2.0

4.0

6.0

0 100 200 300 400 500 600

Air Orifice ∆ P vs. Input(Measured from Tap A to Tap C)

15% excess air at maximum input

Input ( x 1,000 Btu/hr)

      ∆    P

   (   "  w .  c .

   ±   1   0   %   )

 Air Orifice (42.0 mm)∆ P

5.1 "w.c. at High Fire

0 45 90 135 18Input (kW)

0.0

10.0

5.0

15.0

      ∆   P   (  m   b  a  r   1   0   %   )

10

100

1,000

10,000

0 500 600400300200100

Input (x 1,000 Btu/hr)

Operational/Ignition Zone

   %   E  x  c  e  s  s   A   i  r

0 150 180120906030Input (kW)

0

20

40

60

80

100

120

   N   O  x  p  p  m    (  a

   t   3   %   O   2   )

NOx - Natural GasNOx - PropaneNOx - Butane

NOx Emissions(High Velocity Combustor)

Correction factor for medium velocity combustor is 1.20

On Ratio: Combustion air is adjusted to 3% O2 at any given input.

n

Emissions from the burner are influenced by:

  • fuel type

  • combustion air temperature

  • firing rate

  • chamber conditions

  • percent of excess air

For estimates of other emissions, contact Eclipse Combustion.

0 500400300200100Input (x 1,000 Btu/hr)

0 150120906030Input (kW)

0.0

1.0

2.0

3.0

4.0

7.0

0 100 200 300 400 500 600

Gas Orifice ∆ P vs. Input

(Measured from Tap B to Tap D)

Input ( x 1,000 Btu/hr)

      ∆   P   (   "  w .  c .

   ±   1   0   %   )

0 45 90 135 180Input (kW)

0.0

2.5

5.0

7.5

10.0

17.5

      ∆   P   (  m   b  a  r   ±   1   0   %   )

Nat. Gas ∆P - 11.5 mm orifice

Propane ∆P - 8.5 mm orifice

Butane ∆P - 8.0 mm orifice

5.0

6.0

12.5

15.0High Fire Gas Orifice ∆ P's

Natural Gas - 5.0"w.c

Propane - 6.8"w.c.

Butane - 4.8"w.c.

Page 16: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 16/31Eclipse Model TJ0050 v2, Data 205-3, 4/20/04

Dimensions & SpecificationsInches (mm)

Burner weight less combustor: 37 lb (17 kg)

8.6"(218)

 8.75"

4 x Ø 0.551" (14)

10.5"(266.7)

12"(304.9)

9.06"(230)

0.40" (10.2)

Ø 4.50"

4 x Ø 0.472" (12)

Ø 6.49"(165)

7.48" (190)

4 x .472" (12)

Ø 6.49" (165)

1" NPTor BSP

(Gas Inlet)

2-1/2" NPTor BSP

(Air Inlet)

.354" (90)

 Tap "D"

 Tap "B"

Tap "A"

Tap "C"

9.05"(230)

Ø 4.73"

 (120.2)

4 x Ø 0.472" (12)

Ø 6.49"(165)

 AlloyT 

Refractory Block 

Silicon Carbide be

T p Locations

(w/RA330 wrapper)

Burner Housing

Weight: 62.5 lb (28.3 kg) Max Chamber Temp: 2,800ºF (1538ºC)

Weight: 3.3 lb (1.5 kg) Max Chamber Temp: 2,500ºF (1371ºC)

Weight: 3.0 lb 1.36 kg) Max Chamber Temp: 1,750ºF (950ºC)

2.39"(60.7)0.25"

(6.35)

3.07"(78)

5.08"(129)

3.66"(93)

8.43"(180)

3.43"(87)

(114.3)

 (222)

Combustor 

Exhaust outlet diameter : Medium Velocity : Ø 2.11 (53.5)

  High Velocity : Ø 1.61" (41)

Page 17: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 17/31

/1 /03

Butterfly Valves 

Full Port & Reduced Port 

version 2 

Data 720 

Body: Powder Coated Cast IronShaft: Zinc plated steelShutter: Carbon steelShaft Packing Seal: Nitrile rubber (Buna-N)

Approvals:

Typical application:

Notes on European applications:

Maximum operating pressure: 1/2" thru 4" 5 psig 350 mbar6" & 8" 3 psig 210 mbar

Operating temperature range: NPT version -40 to 140˚ F. -40 to 60˚ C.

Rc version 32 to 140˚ F. 0 to 60˚ C.

Materials of construction:

Control of air or gas flow in combustion system

4" screwed not acceptable for gas use. 3" screwed is acceptableif pressure is limited to 100 mbar (1.5 psig).

All models Rc 1/2 thru Rc 3 models only

Main pecifications

PARAMETER PECIFICATION

Product Description

Eclipse Butterfly Valves are designed to control airand gas flow to all types of combustion systems.They should not  be used as tight shut-off valves.

Types available

Valves are available for either manual or automaticcontrol and in either full port or reduced portconstruction in 1/2” through 4”, with NPT or Rcthreads. High pressure drop valves are also availablein 1/2”, 3/4” and 1”. Wafer type valves are available in6” and 8”.

Thread Connections

The 1/2” through 4” valves are available with eitherNPT or Rc threads. The 6” and 8” valves are wafertype butterfly valves designed to be sandwiched

between flanges on connecting pipes.Shutters

NPT versions : Furnished with beveled or nonbeveledshutters.

Rc versions: Furnished with nonbeveled shutters.

Indication

All Eclipse butterfly valves feature an easy to readindicator plate and a slot on the end of the shaft toprovide visual indication of the disc position.

ControlManual butterfly valves 4” and smaller have anadjusting cover for setting disc position. A lockingscrew secures the cover at the desired setting.

Automatic control butterfly valves are furnished witha control arm that can be attached to the shaft. Thisallows integration with a variety of position controldevices.

Manual wafer butterfly valves are adjusted byrotating a control arm which can be locked to theindicating plate after positioning.

Accessories

Eclipse stocks a selection of electric operators andmounting kits which can be ordered separately. Theextended shaft length on the automatic butterflyvalves allows the addition of either a second controlarm for simultaneous automatic operation in dualvalve applications, or a cam for a high/low firemicroswitch arrangement.

ManualControl BV

AutomaticControl BV

Note: 

ALL 1/2" Butterfly Valves (NPT/Rc, Manual/Automatic

Beveled/Non-beveled) DO NOT have a "separate"shutter. The shutter is part of the shaft. The termsbeveled and non-beveled do not apply to any ofthe 1/2" But terfly Valves covered in this Data Sheet.

Page 18: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 18/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/032

1/2" 102BV-B 501238 -------- -------- 2BV-A 501239 -------- -------- -------- --------3/4" 103BV-B 501215 3BV-AB 501223 3BV-A 501200 -------- -------- -------- --------

1" 104BV-B 501216 4BV-AB 501224 4BV-A 501201 104BV-RB 501208 4BV-ARB 5012311-1/4" 105BV-B 501217 5BV-AB 501225 5BV-A 501202 105BV-RB 501209 5BV-ARB 501232

1-1/2" 106BV-B 501218 6BV-AB 501226 6BV-A 501203 106BV-RB 501210 6BV-ARB 501233

2" 108BV-B 501219 8BV-AB 501227 8BV-A 501204 108BV-RB 501211 8BV-ARB 501234

2-1/2" 110BV-B 501220 10BV-AB 501228 10BV-A 501205 110BV-RB 501212 10BV-ARB 501235

3" 112BV-B 501221 12BV-AB 501229 12BV-A 501206 112BV-RB 501213 12BV-ARB 501236

4" 116BV-B 501222 16BV-AB 501230 16BV-A 501207 116BV-RB 501214 16BV-ARB 501237

6" wafer 124BV-B 500915 24BV-AB 500998 -------- -------- 124BV-RB 500690 24BV-ARB 500975

8" wafer 132BV-B 500913 32BV-AB 500999 -------- -------- 132BV-RB 500691 32BV-ARB 500976

1/2" 402BV-HD 100129 402BV-AHD 100130

3/4" 403BV-HD 100133 403BV-AHD 1001341" 404BV-HD 100119 404BV-AHD 100123

Catalog

Number

Item CodeCatalog

Number

Item Code

Manual AutomaticNonbeveled shutter

90o rotation

Nonbeveled shutter

360o rotation

Reduced Port Valves

Item CodeCatalog

NumberItem Code Item Code

Catalog

Number

Manual Automatic

High Pressure Drop Valve

NPT

SizeCatalog

Number

NPT

Size

Manual

Full Port Valves

Automatic

Catalog

NumberItem Code

Catalog

NumberItem Code

Beveled shutter75º rotation

Beveled shutter75º rotation

Nonbeveled shutter360º rotation

Beveled shutter75º rotation

Beveled shutter75º rotation

0.5 0.75 1 1.5 2 3 4 6 8

1/2" 5.5 173 212 244 299 345 422 487 595 685

3/4" 15.9 500 612 706 865 998 1,221 1,408 1,720 1,982

1" 29.7 933 1,143 1,319 1,615 1,864 2,280 2,630 3,213 3,702

1-1/4" 65.9 2,071 2,536 2,927 3,583 4,135 5,059 5,835 7,129 8,213

1-1/2" 111.0 3,489 4,272 4,931 6,036 6,965 8,521 9,828 12,009 13,834

2" 180.0 5,657 6,927 7,996 9,788 11,295 13,818 15,937 19,473 22,433

2-1/2" 322.0 10,121 12,391 14,304 17,509 20,206 24,719 28,510 34,836 40,131

3" 457.0 14,364 17,587 20,301 24,850 28,677 35,082 40,462 49,441 56,956

4" 819.0 25,741 31,517 36,383 44,534 51,394 62,871 72,513 88,604 102,072

6" wafer 2600.0 81,718 100,055 115,501 141,377 163,154 199,591 230,201 281,283 324,039

8" wafer 4200.0 132,007 161,628 186,578 228,379 263,557 322,417 371,864 454,380 523,448

0.5 0.75 1 1.5 2 3 4 6 8

1" 14.1 443 543 626 767 885 1,082 1,248 1,525 1,757

1-1/4" 22.8 717 877 1,013 1,240 1,431 1,750 2,019 2,467 2,842

1-1/2" 31.4 987 1,208 1,395 1,707 1,970 2,410 2,780 3,397 3,913

2" 62.7 1,971 2,413 2,785 3,409 3,935 4,813 5,551 6,783 7,814

2-1/2" 87.9 2,763 3,383 3,905 4,780 5,516 6,748 7,783 9,510 10,955

3" 149.0 4,683 5,734 6,619 8,102 9,350 11,438 13,192 16,120 18,570

4" 244.0 7,669 9,390 10,839 13,268 15,311 18,731 21,604 26,397 30,410

6" wafer 553.0 17,381 21,281 24,566 30,070 34,702 42,452 48,962 59,827 68,921

8" wafer 721.5 22,677 27,765 32,051 39,232 45,275 55,387 63,881 78,056 89,921

0.5 0.75 1 1.5 2 3 4 6 8

1/2" 2.7 85 104 120 147 169 207 239 292 337

3/4" 3.2 101 123 142 174 201 246 283 346 399

1" 4.2 132 162 187 228 264 322 372 454 523

Flow Coefficient

Cv-Full Open

Flow Coefficient

Cv-Full Open

Capacity scfh air - "wc pressure dropNPT SizeFlow Coefficient

Cv-Full Open

Full Port

Reduced Port

NPT Size Capacity scfh air - "wc pressure drop

NPT Size

High Pressure Drop

Capacity scfh air - "wc pressure drop

NPT Model Selection and Capacities

Gas - Sp. Gr. Natural - .6 Propane - 1.5 Butane - 2.0

Multifactor 1.29 .81 .70

Multifactors for gases other than air

n Note: Wafer Butterfly Valves are not threaded.For dimensional information, see page 6.

Page 19: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 19/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/03 3

CatalogNo.

ItemCode

NPTSize A B C D

Dimensions, inches

2BV-AB3BV-AB

4BV-AB

5BV-AB

6BV-AB

8BV-AB

10BV-AB

12BV-AB

16BV-AB

-3BV-A

4BV-A

5BV-A

6BV-A

8BV-A

10BV-A

12BV-A

16BV-A

--

4BV-ARB

5BV-ARB

6BV-ARB

8BV-ARB

10BV-ARB

12BV-ARB

16BV-ARB

501239501223

501224

501225

501226

501227

501228

501229

501230

1/23/4

1

1-1/4

1-1/2

2

2-1/2

3

4

3.003.00

2.87

3.12

3.12

3.12

3.87

3.87

5.00

3.663.60

3.90

4.22

4.47

5.09

5.72

6.22

7.28

2.662.60

2.78

2.90

3.03

3.34

3.72

3.97

4.47

1.191.06

1.31

1.50

1.63

1.94

2.25

2.50

3.06

0.610.87

1.10

1.46

1.65

2.13

2.64

3.23

4.17

--

0.87

1.02

1.18

1.54

1.77

2.24

2.80

 Dimensions, Automatic Valves with NPT threads

CatalogNo.

ItemCode

BOREIn.

BOREIn.

CatalogNo.

ItemCode

-501200

501201

501202

501203

501204

501205

501206

501207

--

501231

501232

501233

501234

501235

501236

501237

Beveled shutter75˚ rotation

Nonbeveled shutter360˚ rotation

FULL PORT

2.37

A C

B

D

BORE

A C

1.38

10 mm

B

D

BORE2.37

HIGH PRESSURE DROP360˚ rotation

CatalogNumber

ItemCode

NPTSize A B C D

Dimensions, inches

102BV-B

103BV-B

104BV-B

105BV-B106BV-B

108BV-B

110BV-B

112BV-B

116BV-B

402BV-HD

403BV-HD

404BV-HD

501238

501215

501216

501217501218

501219

501220

501221

501222

100129

100133

100119

1/2

3/4

1

1-1/4

1-1/2

2

2-1/2

3

4

3.00

3.00

2.87

3.123.12

3.12

3.87

3.87

5.00

3.05

3.07

3.33

3.583.82

4.45

5.09

5.58

6.65

2.05

2.07

2.14

2.262.38

2.70

3.09

3.33

3.84

1.19

1.06

1.31

1.501.63

1.94

2.25

2.50

3.06

0.61

0.87

1.10

3.121.46

2.13

2.64

3.23

4.17

0.44

0.55

2 x 0.44

Dimensions, Manual Valves with NPT threads

FULL PORTBeveled shutter

75˚ rotation

REDUCED PORTBeveled shutter

75˚ rotation

REDUCED PORTBeveled shutter

75˚ rotation

HIGH PRESSURE DROP90˚ rotation

CatalogNumber

ItemCode

104BV-RB

105BV-RB106BV-RB

108BV-RB

110BV-RB

112BV-RB

116BV-RB

501208

501209501210

501211

501212

501213

501214

0.87

1.021.18

1.53

1.77

2.24

2.80

BOREInches

BOREInches

CatalogNumber

ItemCode

BOREInches

402BV-AHD403BV-AHD

404BV-AHD

100130100134

100123

0.440.55

2 x 0.44

CatalogNumber

ItemCode

BOREIn.

- - -

- - -

1.25"

1.93"

4x M82.37"

3" & 4"

1/2" thru 2-1/2"

2x M8

2.37"

Actuator Bracket Mounting Holes

Dim: inches

Dim: inchesDim: inches

Dim: inches

Page 20: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 20/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/034

1/2 102BVM 101103 2BVM-A 202081 -------- -------- -------- --------

3/4 103BVM 101104 3BVM-A 101248 -------- -------- -------- --------

1 104BVM 101105 4BVM-A 101249 104BVM-R 101255 4BVM-AR 1012611-1/4 -------- -------- -------- -------- -------- -------- -------- --------

1-1/2 106BVM 101106 6BVM-A 101250 106BVM-R 101256 6BVM-AR 101262

2 108BVM 101107 8BVM-A 101251 108BVM-R 101257 8BVM-AR 101263

2-1/2 110BVM 101108 10BVM-A 101252 110BVM-R 101258 10BVM-AR 101264

3 112BVM 101109 12BVM-A 101253 112BVM-R 101259 12BVM-AR 101265

4* 116BVM 101110 16BVM-A 101254 116BVM-R 101260 16BVM-AR 101266

6" wafer

8" wafer

1/2 402BVM-HD 100131 402BVM-AHD 100132

3/4 403BVM-HD 100135 403BVM-AHD 100136

1 404BVM-HD 100120 404BVM-AHD 100100

Catalog

NumberItem Code

Catalog

Number

CatalogNumber Item Code CatalogNumber Item Code

Nonbeveled shutter

90o rotation

Nonbeveled shutter

360o rotation

Manual

Rc Size

Catalog

NumberItem Code

Manual

Full Port Valves

High Pressure Drop Valve

Catalog

NumberItem Code

Reduced Port Valves

Automatic

Rc SizeNonbeveled shutter

360o rotation

ManualNonbeveled shutter

90o rotation

AutomaticNonbeveled shutter

90o rotation

Nonbeveled shutter

360o rotation

Item Code

Automatic

nNote: Selection information for these valves appears on page 2. Wafer BV Valves are notthreaded and may be used with DN 150 and DN 200 flanged fittings. Dimensions page 6.

Rc Model Selection and Capacities

* 4” screwed valve not approved for European use.  6” and 8” wafer type may be used with DN150 and DN200 flanged fittings.

Gas - Sp. Gr. Natural - .6 Propane - 1.5 Butane - 2.0

Multifactor 1.29 .81 .70

Multifactors for gases other than air

1 2 3 5 8 10 13 15

1/2" 4.7 4 6 7 9 12 13 15 16

3/4" 13.7 12 17 21 27 34 38 43 46

1" 25.5 22 32 39 50 63 70 80 86

1-1/2" 95.8 84 118 145 187 236 264 300 322

2" 155.0 136 192 234 302 382 427 486 521

2-1/2" 277.0 242 342 419 541 683 763 868 932

3" 393.0 344 486 595 767 969 1,082 1,232 1,322

4"* 704.0 615 870 1,065 1,374 1,735 1,938 2,207 2,368

6" wafer* 2251.0 1,968 2,782 3,405 4,392 5,548 6,197 7,056 7,572

8" wafer* 3637.0 3,180 4,495 5,502 7,097 8,964 10,013 11,400 12,234

1 2 3 5 8 10 13 15

1" 12.1 11 15 18 24 30 33 38 41

1-1/2" 27.0 24 33 41 53 67 74 85 91

2" 53.9 47 67 82 105 133 148 169 181

2-1/2" 75.9 66 94 115 148 187 209 238 255

3" 128.0 112 158 194 250 315 352 401 431

4"* 210.0 184 260 318 410 518 578 658 706

6" wafer* 479.0 419 592 725 935 1,181 1,319 1,501 1,611

8" wafer* 625.0 546 772 946 1,220 1,540 1,721 1,959 2,102

1 2 3 5 8 10 13 15

1/2" 2.3 2.0 2.8 3.5 4.5 5.7 6.3 7.2 7.7

3/4" 2.8 2.4 3.5 4.2 5.5 6.9 7.7 8.8 9.4

1" 3.6 3.1 4.4 5.4 7.0 8.9 9.9 11.3 12.1

Capacity nm3 /h air - mbar pressure drop

Reduced Port

Capacity nm3 /h air - mbar pressure drop

High Pressure Drop

Rc Size

Rc SizeFlow Coefficient

Kv-Full Open

Flow Coefficient

Kv-Full Open

Rc Size

Full Port

Capacity nm3 /h air - mbar pressure drop

Flow Coefficient

Kv-Full Open

Page 21: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 21/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/03 5

CatalogNumber

ItemCode

RcSize

A B C D

Dimensions, mm

102BVM

103BVM

104BVM

106BVM108BVM

110BVM

112BVM

116BVM

101103

101104

101105

101106101107

101108

101109

101110

1/2

3/4

1

1-1/22

2-1/2

3

4

76.2

76.2

73.0

79.479.4

98.4

98.4

  127.0

77.5

77.9

84.7

97.0113.0

129.2

141.7

168.9

52.1

52.5

54.5

60.568.5

78.5

84.5

97.5

30.2

27.0

33.3

41.349.2

57.2

63.5

77.8

15.5

22

28

4254

67

82

106

 Dimensions, Manual Valves with Rc threads

CatalogNumber

ItemCode

BOREmm

BOREmm

BOREmm

-

-

104BVM-R

106BVM-R108BVM-R

110BVM-R

112BVM-R

116BVM-R

-

-

101255

101256101257

101258

101259

101260

-

-

22

3039

45

57

71

RcSize A B C D

Dimensions, mm

2BVM-A3BVM-A

4BVM-A

6BVM-A

8BVM-A

10BVM-A

12BVM-A

16BVM-A

--

4BVM-AR

6BVM-AR

8BVM-AR

10BVM-AR

12BVM-AR

16BVM-AR

1/23/4

1

1-1/2

2

2-1/2

3

4

76.276.2

73.0

79.4

79.4

98.4

98.4

127.0

93.091.3

99.2

113.5

129.4

145.3

158.0

184.9

67.765.9

70.6

77.0

84.9

94.5

100.8

113.5

30.227.0

33.3

41.3

49.2

57.2

63.5

77.8

15.522

28

42

54

67

82

106

--

22

30

39

45

57

71

 Dimensions, Automatic Valves with Rc Threads

CatalogNumber

ItemCode

BOREmm

CatalogNumber

ItemCode

 202081101248

101249

101250

101251

101252

101253

101254

--

101261

101262

101263

101264

101265

101266

60.3

A C

B

D

BORE

A C

35

10

B

D

BORE60.3

31.8

49.1

4x M860.3

3" & 4"

1/2" thru 2-1/2"

2x M8

60.3

Dim: mm

Dim: mmDim: mm

Dim: mm

Actuator Bracket Mounting Holes

402BVM-HD

403BVM-HD

404BVM-HD

100131

100135

100120

11.1

13.9

2 x 11.1

CatalogNumber

ItemCode

BOREmm

402BVM-AHD403BVM-AHD

404BVM-AHD

100132100136

100100

11.113.9

2 x 11.1

CatalogNumber

ItemCode

BOREmm

FULL PORTNonbeveled shutter

90˚ rotation

FULL PORTNonbeveled shutter

360˚ rotation

REDUCED PORTNonbeveled shutter

360˚ rotation

HIGH PRESSURE DROP360˚ rotation

REDUCED PORTNonbeveled shutter

90˚ rotation

HIGH PRESSURE DROP90˚ rotation

Page 22: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 22/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/036

Dimensions, Wafer type valves

O   P   E   

N   

6" 124BV-B 500915 162 (6.38) 57 (2.25) 148 (5.81) 257 (10.13) 289 (11.38) 97 (3.81) 117 (4.63) 152 (6.00) 13 (28)8" 132BV-B 500913 162 (6.38) 57 (2.25) 178 (7.00) 317 (12.47) 351 (13.81) 206 (8.13) 130 (5.13) 203 (8.00) 16 (36)

6" 124BV-RB 500690 162 (6.38) 57 (2.25) 148 (5.81) 257 (10.13) 289 (11.38) 97 (3.81) 117 (4.63) 108 (4.25) 16 (35)8" 132BV-RB 500691 162 (6.38) 57 (2.25) 178 (7.00) 317 (12.47) 351 (13.81) 206 (8.13) 130 (5.13) 130 (5.12) 23 (50)

Reduced Port Manual

Full Port Manual

SizeItem

Code

Cat.

No. A B C D E F G kg (lb)

ApproxWgt.Port

Dia.

Dimensions mm (in)

E

B

A

C

F

G

D

Port Dia. (Full Port Valve Shown) 

E

C

F

G

6" 24BV-AB 500998 162 (6.38) 83 (3.25) 157 (6.18) 257 (10.13) 289 (11.38) 97 (3.81) 162 (6.38) 152 (6.00) 13 (28)8" 32BV-AB 500999 162 (6.38) 83 (3.25) 187 (7.38) 317 (12.47) 351 (13.83) 206 (8.13) 193 (7.60) 203 (8.00) 16 (36)

6" 24BV-ARB 500975 162 (6.38) 83 (3.25) 157 (6.18) 257 (10.13) 289 (11.38) 97 (3.81) 162 (6.38) 108 (4.25) 16 (35)8" 32BV-ARB 500976 162 (6.38) 83 (3.25) 187 (7.38) 317 (12.47) 351 (13.81) 206 (8.13) 193 (7.60) 130 (5.12) 23 (50)

Reduced Port Auto

Full Port Auto

kg (lb)

ApproxWgt.Port

Dia.

B

Port Dia.

SizeItemCode

Cat.No. A B C D E F G

Dimensions mm (in)

(Reduced Port Valve Shown) 

Manual

valves

AutomaticValves

Page 23: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 23/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/03 7

 Accessories for automatic BV’s

Eclipse Rotary ActuatorRH mount, 1/2 thru 4, ver. 1 100124 21695 20697LH mount, 1/2 thru 4, ver. 1 100125 21696 20697RH mount, 1/2 thru 4, ver. 2 100127 21695 21048LH mount, 1/2 thru 4, ver. 2 100128 21696 21048

Perpendicular mount, 1/2 thru 1-1/2, ver. 2 100190 21934 21048Perpendicular mount, 2 & 2-1/2, ver. 2 100191 21935 21048Perpendicular mount, 3 & 4, ver. 2 100192 21936 21048

EMP/EMA, Honeywell1/2 thru 4 ver. 1 500928 13095 12730-1 14264 5005271/2 thru 4 ver. 2 100099 13095 12730-1 14264 1022656 and 8 valves 500928-1 13095 12730-2 14264 500537

Honeywell M640 & M9401/2 thru 4 ver. 1 500758 13095 & 12758 12730-1 14264 5005271/2 thru 4 ver. 2 120079 13095 & 12758 12730-1 14264 102265

Control Rod

KitItem Code

Rod notrequired

Crankarmsnot

required

Control Motor Mounting Kits Bracket Coupling Crank Arm

Notes:

• Each Eclipse ver. 2 automatic BV is sold with a Control Motor Arm, Item Code 102265.

• Control Motor Mounting Kits contain brackets, couplings and misc. screws & washers.

• The kits used with EMP/EMA and Honeywell valves also contain a control rod and crank arm.

• These mounting kits are designed to work with a majority of installations. Some applications

may require special components.

• Not all kit components are available for individual sale.

• Contact the factory or your Eclipse representative for more detailed information.

Major Components

90(3.5)

115(4.5)

Item Code 21696Left hand mounting bracketfor Eclipse Rotary Actuator

90(3.5)

15(0.6)

60.3(2.4)

25(0.99)

78(3.1)

205 (8.1)

176 (6.9)

180 (7.1)

40(1.6)

30(1.2)

53(2.1)

Material:Powder coated mild steel, 3.4mm (0.13) nominal thickness.

Dims: mm (in.)

90(3.5)

15(0.6)

60.3(2.4)

25(0.99)

78(3.1)

90(3.5)

115(4.5)

205 (8.1)

176 (6.9)

180 (7.1)

40(1.6)

30(1.2)

53(2.1)

Item Code 21695Right hand mounting bracketfor Eclipse Rotary Actuator

Material:Powder coated mild steel, 3.4mm (0.13) nominal thickness.

Dims: mm (in.)

Page 24: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 24/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/038

 Accessories for automatic BV’s (continued)

7 (.275)

80.0(3.15)

60.3(2.37)

DC2.66

(0.10)

A

24(0.94)

B

Material:Powder coated mild steel, 3.4mm (0.13) nominal thickness.

2X 10 x 19(0.39 x 0.75)

128.0 (5.04)

109.1 (4.30)

85.8 (3.38)

103.0 (4.06)

21934use with

1/2 to 1-1/2valves

21935use with2 to 2-1/2

valves

109.0 (4.29)

91.7 (3.61)

103.0 (4.06)

121.0 (4.76)

Item Code

A

B

C

D

Dim mm (in.) mm (in.)

Perpendicular Brackets for

Eclipse Rotary Actuator

20 dia.

(0.79)23(0.90)

9.55(0.375)

Item Code 20697

Coupling for Eclipse Rotary Actuator

Used with ver. 1 BV's ( 3/8" dia. shaft)

Material: T7075-T6 Aluminum

6.375(0.250)

120.6(4.75)

9.5

(.375)

76.2

(3.00)

9X Ø 6.7 (0.266)thru holes

2X 8.7 (.344) x 61 (2.40)slots

Material: Powder coated mild steel

Item Code 13095

Mounting plate

139.7

(5.50)

Dims: mm (in.)

Couplings for Eclipse Rotary Actuator

7 (.275)

98(3.86)

32(1.26)

60.3(2.37)

4X 10 (0.39)143(5.62)

2.66(0.10)

95(3.75)

24(0.94)

74.2(2.92)

Item Code 21936

Used with 3" & 4" BV's

Material:Powder coated mild steel, 3.4mm (0.13) nominal thickness.

Page 25: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 25/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/03 9

101.6(4.00)

16.8(0.66)

28.4(1.12)

Hex cap screw

5/16-24 X 1/2"

ø "A"

500527 9.6 (0.380)

500535 12.8 (0.505)

500536 16.0 (0.630)

Crank ArmItem Code

DIM "A"

Materials: Zinc plated carbon steel

mm (in.)

152.4(6.00)

ø "A"

16.8(0.66)

28.4(1.12)

500537 16.0 (0.630)

500538 9.6 (0.380)

500539 12.8 (0.505)

Crank ArmItem Code

DIM "A"

Hex cap screw

5/16-24 X 1/2"

Materials: Zinc plated carbon steel

mm (in.)

101.6

(4.00)

ø 10

16.8(0.66)

28.4(1.12)

Item Code 102265

Hex cap screw

5/16-24 X 1/2"

Materials: Zinc plated carbon steel

Dims: mm (in.)

+0.24+0.15

Fits on10mm shaft

Accessories for automatic BV’s (continued)

6.3(0.25)

9X Ø 6.7 (0.266)thru holes

countersunk 82˚

Material: Powder coated mild steel

4X Ø 1/4"-20tapped holes

Item Code 12758

Mounting plate

139.7(5.50)

101.6(4.00)

139.7(5.50)

Dims: mm (in.)

120.6(4.75)

9.5(.375)

76.2(3.00)

9X Ø 6.7 (0.266)thru holes

2X 8.7 (.344) x 61 (2.40)slots

Material: Powder coated mild steel

Item Code 13095

Mounting plate

139.7(5.50)

Dims: mm (in.)

Mounting plates for Honeywell and EMP/EMA actuators

  Dia. Item LengthInches Code In. (mm)

12730 8 (203)

12730-1 10 (254)

12730-2 15 (381)

12730-3 24 (610)

12730-5 6 (152)

5/16

1/2

  Dia. Item LengthInches Code In. (mm)

10175-1 12 (305)

10175-2 15 (381)

10175-3 18 (457)

10175-4 24 (610)

10175-5 30 (762)

10175-6 36 (914)

10175-7 48 (1219)

10175-8 60 (1524)10175-9 72 (1829)

Linkage control rods

Zinc plated cold rolled steel

Crank arms for general use

Page 26: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 26/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/0310

 Control Motors

 Control Motor Accessories

ModelElectricalStroke

Degrees

Timing

Seconds

Torque

in-Lb Volts

Auxiliary

SwitchHz. Amps

Crank Arm

Includedw/Motor

ItemCode

Eclipse

Item Code

12674 Auxiliary slidewire kit.

12670 Auxiliary switch kit.

12676 Weather resistant cover.

12677 Paralleling relay.

12707 135 ohm, 90˚ slidewire.

15766-2 Converter, 4-20mA, for EMP

Eclipse

Item Code Description

 EMP/EMA Only

Notes:

1  Can be used as two position if internal slidewire is not connected

2 Timing can be increased (slower rotation) up to approximately ten times this rating by turning a slotted adjustment screw

  located on the outside of the case.

14892 120 to 24VAC transformer.

Mounts ininternally

16291 Transformer, step down

  120/50/60/25V secondary 40 VA

11946 Adapter bracket

12659 Screw terminal kit

12740 Resistor kit

Eclipse

Item Code Description

Honeywell Only

3 Rotary actuator=SPST, 120VAC, 0.2A inductive, 0.4 non-inductive

  EMP=SPDT, 120VAC, 5.8A inductive, 12A non-inductive. 240VAC, 2.9A inductive, 6A non-inductive4  Can be used with 4-20mA signal with Item Code 12740 resisistor kit.

4

4

4

Eclipse Rotary Actuator

  Std. keypad ACT004A1A1A1AX 90 18 30 110/120 50/60 .04 2

Keypad inverted 180˚  ACT004A2A1A1AX 90 18 30 110/120 50/60 .04 2Two Position

EMA

  EMA-405 12616 180 20 16 120 60 .4 No 15181 Yes

  EMA-405-1 10916 90 10 16 120 60 .4 No 15181 Yes

  EMA-418-1 10912 90 10 60 120 60 .9 No 15181 Yes

Honeywell M6184 A 1015 10826 90 30 150 24 60 .9 No 18093 No

Position Proportioning with Slidewire Feedback

EMP

  EMP-423-11  12618 90 12 60 120 60 .65 Yes 15181 Yes

  EMP-424-11  12622 90 12

2  60 120 60 .65 Yes 15181 Yes

  EMP-453-11  12632 90 40 220 120 60 .65 Yes 15181 Yes

  EMP-454-11  12634 90 40

2  220 120 60 1.80 Yes 15181 Yes

Potentiometer Slaved Proportioning

EMP

  EMP-423-2 12640 90 12 60 120 60 .65 Yes 15181 Yes

  EMP-424-2 12642 90 122  60 120 60 .65 Yes 15181 Yes

  EMP-453-2 12646 90 40 220 120 60 .65 Yes 15181 Yes

  EMP-454-2 12651 90 402  220 120 60 .65 Yes 15181 Yes

Honeywell  M9494 D 1000 16107 90/160 60/120 300 24 50/60 0.8 No 18093 No

  M9484 D 1002 15800-4 90/160 15/30 75 24 50/60 0.8 No 18093 No

  M9484 D 1028 17997 90/160 30/60 150 24 50/60 0.8 No 18093 No

Proportioning, 4-20mA, Weathertight

EMP

EMP-423-4 22755 90 12 60 120 60 .65 Yes 15181 Yes

  EMP-424-4 22735 90 122  60 120 60 .65 Yes 15181 Yes

  EMP-453-4 22756 90 40 220 120 60 .65 Yes 15181 Yes

  EMP-454-4 22757 90 402

  220 120 60 .65 Yes 15181 YesHoneywell

M7284 A 1004 12200 90 30 150 120 50/60 .65 No 18093 No

Mounts directly

to shaft

3

Page 27: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 27/31Eclipse Butterfly Valves, ver. 2, Data 720, 7/16/03 11

Item Code 500558 is a rotating swivel block connectorassembly for joining control rod to control arm. It allows 360°rotation.

Item Code 500569 serves to connect two control rods to onecontrol arm and also allows 360° rotation.

Item Code 14316 swivel connector allows 360° rotation. Itprovides a 20° flex from the swivel center line to accommodatean angular approach of a linkage control rod, but immediacy ofresponse is less positive than Item Code 14264 (at right).

Item Code 14264 is a non-flexing swivel connector that allows360° rotation around swivel center line. Ite provides a morepositive positioning and immediacey of response thatn ItemCode 14316 (at left).

Swivel Connectorsfor 5/16” Diameter Control Rods

Item Code 500542 is a swivel blockthat rotates 360°

Item Code 500543 is a single ball swivel thatrotates 360° while permitting an angularapproach of rod toward control arm.

Item Code 500544 is a double ball swivel thatconnects two rods to one control arm. Allowsangular approach of rod to arm, rotates 360°.

for 1/2” Diameter Control Rods

Page 28: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 28/31

The ES-Series ratio regulators are used in

applications where gas to air proportional

flow is required. The gas flow is controlled as

a function of the air pressure through a

loading line which connects into the top of

the regulator. As the system air pressure

increases, it forces the ratio regulator valve

to open causing the outlet pressure to

increase until the two pressures balance. As

the load line pressure increases, the ratio of

the outlet pressure to the load line pressure

will be slightly less than 1:1.

The ratio regulators have a bias adjustment

for varying the gas flow when setting the

burner at low fire. It can be used to increase

or decrease the gas flow resulting in gas rich

or lean combustion. The adjustment is

restricted in the gas rich direction therefore

limiting the gas flow at zero air pressure.

Ratio Regulators are control valves only and

cannot be used as gas shut-off valves.

The ratio regulators are designed to optimize

performance as ambient temperature and

inlet pressure vary. Features include:

• UL recognized and CE approved for

natural gas, propane, and butane.

• Valve seat design for consistent low fire

repeatability.

• Balanced double diaphragm design

allows regulator to operate over a wide

range of inlet pressures while minimally

affecting outlet pressure.

• Rugged die cast aluminum housing.

• Corrosion resistant internal components.

• Synthetic rubber diaphragms for

excellent low temperature performance.

• Inlet pressure tap with connector (1-1/2”, 2” &3” NPT (Rp) models only).

• High turndown option available.

PRODUCT

FEATURES

Bulletin 742 

3/99

L00059

ES Series

Innovative Combustion Solutions Worldwide

Eclipse

Ratio Regulators

Page 29: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 29/31

Caution: Below 32º F(0ºC), the gas must be free of water vapor which 

 could condense and freeze within the valve.

Compatibility/Temperature Specifications

CompatibleGases

Ambient TemperatureRange

-40º F to 205º F

-40ºC to 96.1ºC

Natural, manufactured,

mixed liquified petroleum or

LP gas-air mixture

Model Specifications

19997

19998

15939

19999

20312

20311

10315

1999010316

19989

ES365

ES365M

ES366

ES366M

ES363

ES363M

ES368

ES368MES369

ES369M

3/4" NPT

1" NPT

1-1/2" NPT

2" NPT

3" NPT

Rp 3/4

Rp 1

Rp 1-1/2

Rp 2

Rp 3

1.0 psi

1.0 psi

5.0 psi

5.0 psi

5.0 psi

69.2 mbar

69.2 mbar

346.2 mbar

346.2 mbar

346.2 mbar

1,245 scfh

 1,380 scfh

6,350 scfh

11,600 scfh

26,000 scfh

35.27 Nm3/hr

39.09 Nm3/hr

179.9 Nm3/hr

328.6 Nm3/hr

736.5Nm3/hr

Mo el Pipe Threa

Maximum

Inlet Pressure Capacit

Part

Number 

Gas inlet pressure must be greater than the total of the outlet pressure plus the pressure drop across the regulator at the required flow.

  Capacity for natural gas (0.60 s.g.) When using propane or butane, divide capacity by conversion factors listed below.

1

2

1 2

4.0(10)

3.5(8 .75)

3.0(7 .5)

2 .5(6 .25)

2.0(5 .0)

1 .5(3 .75)

1.0(2 .5)

0 .5(1 .25)

0. 00 200

(5.66)40 0

(11.33)60 0

(16.99)80 0

(22.66)1000

(28.32)1200

(33.99)1400

(39.66)1600

(45.32)

Model ES365 & ES365M

Model ES366 & ES366M

Capacit , scfh (Nm3/hr)

    P   "  w  c   (  m   b

  a  r   )

0 5,000(141.6)

10,000(283.3)

15,000(424.9)

20,000(566.5)

25,000(708.2)

30,000(849.8)

0

5 (12.5)

10 (25)

15 (37.5)

20 (50)

25 (62.5)

30 (75)

35 (87.5)

Model ES363, ES363MModel ES368, ES368MModel ES369, ES369M

Capacit , scfh (Nm3/hr)

    P   "  w  c   (  m   b  a  r   )

Flow vs. Pressure Drop, 3/4” & 1” NPT (Rp) Models Flow vs. Pressure Drop, 1-1/2”, 2” & 3” NPT(Rp) Models

Note: These graphs are for natural gas (0.60 s.g.). For propane or butane, multiply the gas flow by the factor listed below to calculate the equivalent natural gas flow, then find the pressure drop from the above graphs.

Example:  Find the pressure drop created by 15,000 scfh of propane through an ES369 ratio regulator.

1.  Convert propane to the equivalent natural gas flow: 15,000 x 1.58 = 23,700 scfh.

2. Plot the point where 23,700 scfh crosses the ES369 curve on the above graph.

3.  Translate the intersection point back to the Pressure Drop axis.

4. The pressure drop at 23,700 scfh natural gas, equivalent to 15,000 scfh propane, is approximately 23.5” wc.

  GAS CONV. FACTOR

Propane (1.5 s.g.) 1.58Butane (2.0 s.g.) 1.82

Conversion Factors

Eclipse Ratio Regulators, Bulletin 742, 3/992

Page 30: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 30/31

Dimensions, Models ES365(M) & ES366(M)Dimensions are in inches (mm)

Dimensions, Models ES363(M), ES368(M) & ES369(M)

1 Both sides on ES363(M) and ES368(M). Far side only on ES369(M).

Outlet End View

SwingRadius

Inlet

Outlet

1/8"NPTLoad Line

4(101.6)

5-11/16(144.5)

3-7/8(98.4)

1-1/2(38.1)

2-3/8(60.3)

4-1/4(107.9)

ES365(M) 3/4" NPT (Rp 3/4)

ES366(M) 1" NPT (Rp 1)

ES365(M) 3/4" NPT (Rp 3/4)

ES366(M) 1" NPT (Rp 1)

RadiusSwing

Outlet End ViewB Dia.

D FLoad Line

E

A

COutlet

Inlet Pressure Tap

Inlet

Mo elES363

ES363M

ES368

ES368M

ES369

ES369M

5-7/16"

138.1mm

8-5/16"

211.1mm

11-13/16"

300mm

9"

228.6mm

11-1/4"

285.7mm

16-1/16"

407.9mm

7"

177.8mm

9-1/8"

231.7mm

13-7/16"

341.3mm

5-1/2"

139.7mm

7-5/8"

193.6mm

10-3/8"

263.5mm

2-3/8"

60.3mm

3-1/8"

79.3mm

4-7/8"

123.8mm

3-3/4"

92.2mm

4-5/16"

109.5mm

6-1/8"

155.5mm

1/2"NPT

Rp 1/2

3/4"NPT

Rp 3/4

3/4"NPT

Rp 3/4

wing

Ra ius   A B C D E F

Inlet/

Outlet1-1/2" NPT

Rp 1-1/2

2" NPT

Rp 2

3" NPT

Rp 3

Eclipse Ratio Regulators, Bulletin 742, 3/99 3

Page 31: 11. Solucion Problemas

7/21/2019 11. Solucion Problemas

http://slidepdf.com/reader/full/11-solucion-problemas 31/31

Select a combustion system ratio regulator based on the followingconsiderations:

1. Ratio regulator selection based on flow:

• Define the maximum gas flow required for the system.

• Identify the ratio regulator for that flow based on the capacities listed in Model  Specification Chart on page 2.

2. Minimum inlet pressure calculation:

• Define the pressure drop through the ratio regulator based on the Flow vs.  Pressure Drop curves and conversion factors listed in the Specification  section.

• Calculate the pressure losses through components mounted beween the  ratio regulator and the burner.

• Define the gas pressure required at the burner.

• Calculate the minimum inlet pressure to ratio regulator by taking 125% of the

  sum between the ratio regulator drop, component drops and burner pressure.

• Verify that the inlet pressure is within the ratio regulator limit. If not, make the  necessary changes to the ratio regulator or the upstream pressure control.

Contact your Eclipse Combustion representative, or the factory, for help in selecting the proper ratio regulator for your application 

Model Selection