50
EJEMPLO DE LA DISTRIBUCIÓN DE LA PROBABILIDAD BINOMIAL Una fábrica de medicamentos realiza pruebas clínicas con 100 nuevos fármacos potenciales. Cerca del 20% de las sustancias que alcanzan esta etapa reciben finalmente la aprobación para su venta ¿Cuál es la probabilidad de que se aprueben al menos 15 de los 100 medicamentos? suponga que se satisfacen las hipótesis de la distribución binomial, y utilice una aproximación normal con corrección por continuidad. Solución formula p ( x=k ) [ n k ] pk.qnk La media (valor esperado) de y es μ=100 ( 0.2) =20 ; la desviación estándar es σ 100 ( 0.2 )( 0.8 ) =4.0 ¿ ¿la probabilidad buscada es 15 o mas medicamentos se aprueben. Como y= está incluido, la corrección por continuidad consiste en tomar el evento como y≥ 14.5 p ¿ Un examen consta de 10 preguntas al as que hay que contestar si o no suponiendo que a las personas que se le aplica no saben contestar a ninguna de las preguntas y,en consecuencia, contestan al azar, hallar : a) probabilidad de obtener 5 aciertos b) probabilidad de obtener algún acierto c) probabilidad de obtener al menos 5 aciertos

Est Ad is Tic As

Embed Size (px)

Citation preview

Page 1: Est Ad is Tic As

EJEMPLO DE LA DISTRIBUCIÓN DE LA PROBABILIDAD BINOMIAL

Una fábrica de medicamentos realiza pruebas clínicas con 100 nuevos fármacos potenciales. Cerca del 20% de las sustancias que alcanzan esta etapa reciben finalmente la aprobación para su venta ¿Cuál es la probabilidad de que se aprueben al menos 15 de los 100 medicamentos? suponga que se satisfacen las hipótesis de la distribución binomial, y utilice una aproximación normal con corrección por continuidad.

Solución formula

p ( x=k ) [ nk ] pk .qn−k

La media (valor esperado) de y es μ=100 (0.2 )=20 ; la desviación estándar es

σ √100 (0.2 ) (0.8 )=4.0¿

¿la probabilidad buscada es 15 o mas medicamentos se aprueben. Como

y= está incluido, la corrección por continuidad consiste en tomar el evento como y ≥14.5

p¿

Un examen consta de 10 preguntas al as que hay que contestar si o no suponiendo que a las personas que se le aplica no saben contestar a ninguna de las preguntas y,en consecuencia, contestan al azar, hallar :

a) probabilidad de obtener 5 aciertos

b) probabilidad de obtener algún acierto

c) probabilidad de obtener al menos 5 aciertos

Es una distribución binomial, la persona solo puede acertar o fallar la pregunta

Suceso A= (éxito)=acertar la pregunta→ p=p ( A )0.5

SucesoA=noacertar la pregunta→q=p ( A )=0.5

Distribución binomial de parámetros n=10 , p=0.5→B (10 ;0.5 )

A) Probabilidad de obtener 5 aciertos

Page 2: Est Ad is Tic As

Obtener exactamente 5 aciertos k=5, aplicamos la formula:

P ( X=K )=[ nk ]Pk .qnk →k=5n=10 p=0.5q=0.5→P ( x=5 )=[ 105 ] . (0.5 )5 . (0.5 )10−5

[ nk ]= n

k ! (n−k )!numeros combinatorios→ [ 105 ]=¿

P(x=5)=¿

b) Probabilidad de obtener algún acierto

p ( x≥1 )=p ( x=1 )+ p ( x=2 )+ p ( x=3 )+ p ( x=4 )+p (x=5 )+p (x=6 )+ p ( x=7 )+ p ( x=8 )+ p ( x=9 )+ p (x=10)

El suceso “obtener algún acierto “es el suceso contrario a “no obtener ningún acierto “

P ( X=0 )=[ 100 ] . (0.5 ) . (0.5 )10=0.00100

px (≥1 )=1−p ( x=0 )→ p ( x≥1 )=−0.00100=0.999

c) probabilidad de obtener al menos 5 aciertos acertar 5 o mas

p ( x≥5 )=p ( x=5 )+ p ( x=6 )+ p ( x=7 )+ p ( X=8 )+ p ( x=9 )+ p (x=10 )

p ( x≥5 )=0.2461+0.2051+0.1172+0.0439+0.0098+0.0010=06231

2 la probabilidad de que un estudiante obtenga el título de licenciado en farmacia es 0.3

Hallar la probabilidad de que un grupo de siete estudiantes matriculados en primer curso finalice la carrera

a) ninguno de los siete finalice la carrerab) b)finalicen todosc) al menos dos acaben la carrera d) hallar la media y la desviación típica del número de alumnos que acabaran la carrera

A=” obtener el tiulo”→ p=p ( A )=0.3

A= “ no obtener el tiulo “→q=P ( A )=1−0.3=0.7→B=7 ;0.3

A) ninguno de los siete finalice la carrera x=0

Page 3: Est Ad is Tic As

P ( x=k )=[ nk ] pk .qn−k →k=0n=7 p=0.3q=0.7→ p ( x=0 )=[ 70 ] . (0.3 ) . (0.7 )7−0=0.0824

b) finalicen todos x=7

p(x=k)=[ nk ] pk .qn−k →k=7n=3 p=0.3q=0.7→ p=( x=7 )=[ 77 ] . (0.3 )7. (0.7 )0=0.0002

c) al menos dos terminan la carrerax≥2

calculamos la probabilidad del suceso contrario , probabilidad que no termine ninguno mas la probabilidad de que termine uno

P ( x≥2 )=1−¿

La probabilidad de que termine ninguno :P ( X=1 )=[ 71 ] . (0.3 )1. (0.7 )6=0.2471

P ( X ≥2 )=1−[ P ( X=0 )+P ( X=1 )→P ( X ≥2 )=1−[0.0824+0.2471 ] ]=06705

D) Media y desviación típica

Media μ=n . p=7.0,3=2.1

Desviación típica σ √n . p .q √7.0,3 .0,7=1.2124

Page 4: Est Ad is Tic As

DISTRIBUCIÓN DE PROBABILIDADES HIPERGEOMETRICA

Consideramos tomar una muestra de 10 de las 87 cuentas de una compañía de las 87, 13 tenían errores. Encuentre p(2 cuentas incorrectas en la muestra.

Solución

Tenemos N=87 , n=10 , Nϵ=13 y , por lo tanto ,Nf =74 ;queremos p ( y=2 ) .

pγ (2 )(132 )

7410

−2

❑❑ ( 8710 )

=1,175,600,000,0004000,800,000,000

=.294

Page 5: Est Ad is Tic As
Page 6: Est Ad is Tic As
Page 7: Est Ad is Tic As
Page 8: Est Ad is Tic As
Page 9: Est Ad is Tic As
Page 10: Est Ad is Tic As
Page 11: Est Ad is Tic As
Page 12: Est Ad is Tic As
Page 13: Est Ad is Tic As
Page 14: Est Ad is Tic As
Page 15: Est Ad is Tic As
Page 16: Est Ad is Tic As
Page 17: Est Ad is Tic As
Page 18: Est Ad is Tic As
Page 19: Est Ad is Tic As
Page 20: Est Ad is Tic As
Page 21: Est Ad is Tic As
Page 22: Est Ad is Tic As
Page 23: Est Ad is Tic As
Page 24: Est Ad is Tic As
Page 25: Est Ad is Tic As
Page 26: Est Ad is Tic As
Page 27: Est Ad is Tic As
Page 28: Est Ad is Tic As
Page 29: Est Ad is Tic As
Page 30: Est Ad is Tic As
Page 31: Est Ad is Tic As
Page 32: Est Ad is Tic As
Page 33: Est Ad is Tic As
Page 34: Est Ad is Tic As
Page 35: Est Ad is Tic As
Page 36: Est Ad is Tic As
Page 37: Est Ad is Tic As
Page 38: Est Ad is Tic As
Page 39: Est Ad is Tic As
Page 40: Est Ad is Tic As
Page 41: Est Ad is Tic As
Page 42: Est Ad is Tic As
Page 43: Est Ad is Tic As
Page 44: Est Ad is Tic As
Page 45: Est Ad is Tic As
Page 46: Est Ad is Tic As

ias