35
NÚMEROS REALES I. Clasificación Los números reales están constituidos por los números racionales (números naturales, números enteros y números fraccionarios) y los números irracionales. a) Números Naturales (N) Los números naturales son números que no necesitan representarse como fracciones o decimales. Además, los números naturales no pueden ser negativos. En otras palabras, los números naturales son los números con los que contamos. Ejemplos de números naturales: N= {1,2,3,……} b) Números Enteros (Z) Los enteros son los números naturales y sus opuestos incluyendo el cero. Por lo tanto, los enteros pueden ser negativos. Ejemplos de números enteros: Z={…-4,-3,-2,-1,0,1,2,3,4,…} c) Números Racionales (Q) Los números racionales son aquellos números que pueden expresarse como una fracción de dos números enteros. Ejemplos de números racionales: Q= {a/b,donde b ≠0 } Q= {4/5,5/3,7/4,…}

NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

NÚMEROS REALES

I. Clasificación

Los números reales están constituidos por los números racionales (números naturales,

números enteros y números fraccionarios) y los números irracionales.

a) Números Naturales (N)

Los números naturales son números que no necesitan representarse como fracciones o

decimales. Además, los números naturales no pueden ser negativos. En otras palabras, los

números naturales son los números con los que contamos.

Ejemplos de números naturales:

N= {1,2,3,……}

b) Números Enteros (Z)

Los enteros son los números naturales y sus opuestos incluyendo el cero. Por lo tanto, los

enteros pueden ser negativos.

Ejemplos de números enteros:

Z={…-4,-3,-2,-1,0,1,2,3,4,…}

c) Números Racionales (Q)

Los números racionales son aquellos números que pueden expresarse como una fracción de

dos números enteros.

Ejemplos de números racionales:

Q= {a/b,donde b ≠0 }

Q= {4/5,5/3,7/4,…}

Page 2: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

d) Números Irracionales (I)

Los números irracionales son aquellos que no pueden expresarse como una fracción de dos

enteros.

Ejemplos de números irracionales:

I= {π,√3,…}

R= Q u I

I.1 Realiza los siguientes ejercicios con números reales:

Número Natural Entero Racional Irracional

6

-10

√𝟒

𝟐

𝟔

2.44444

e

II. Representación gráfica de los números reales.

Los números reales se pueden representar en la recta numérica.

Page 3: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

III. Operaciones de Números Enteros

1. Suma y Resta de Números Enteros

a) Suma.- Los números se suman y el resultado lleva el mismo signo de los números.

Ejemplo:

+5+3 = + 8

-5-3 = - 8

b) Resta.- Los números se restan y el resultado lleva el signo del número de mayor valor.

Ejemplo:

-12+3 = - 9

+10-4 = + 6

c) Suma y Resta con paréntesis

c1.Cuando un signo positivo antecede a un paréntesis, los números que están dentro

conservan su signo.

Ejemplo:

6 + (+3) = 6 + 3 = 9

6 + (--3) = 6 – 3 = 3

c2.Cuando un signo negativo antecede a un paréntesis, los números que están dentro cambian

su signo.

Ejemplo:

6 – (3) = 6 – 3 = 3

6 – (-3) = 6 + 3 = 9

Page 4: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

III.1 Realiza los siguientes ejercicios de sumas y restas con números enteros.

1) (-4) + (-1) =

2) 4 + (-2) =

3) 7 + (-5) =

4) -5 + 2 =

5) -3 + (-5) =

6) -15 + 20 – 7 =

7) -1 + 8 =

8) 6 – 12 =

9) 8 – 5 =

10) 8 – 3 =

11) 14 + 6 – 25 =

12) 2 + 4 – 8 =

13) 2 + 2 – 9 =

14) -13 – 4 – 5 =

15) 228 – 110 + 140 – 85 =

16) 14 + 6 – 25 =

17) 10 – (13) =

18) -8 – (-16) =

19) 2 – (-9) =

20) -14 – (-25) =

21) 164 – (238) =

22) (-15) – (-2) + (7) – (-20) =

23) (-5) + (2) + (-4) – (-2) + (-2) =

24) (-11) – (-5) – (-14) + (-3) =

25) 25 – (-6) – (-22) + 32 =

26) 17 + (4 – 10) =

27) 9 + (6 – 25) =

28) 5 – (16 – 7) =

29) 10 – (6 – 15) =

30) -18 – (-6 + 2) =

31) 7 – (9) + (-8) – (-4) =

32) (-15) – (-2) + (7) – (-20) =

33) (-1) + (-6) =

34) 3 + (-6) =

35) (-3) + (12) =

36) 6 + (-3) + 2 =

37) 10 – 6 =

38) -10 + 10 =

39) -8 + 10 =

40) 4 – 7 =

41) -2 – 2 =

42) -8 + 7 =

43) 30 + 6 + 18 + 10 =

44) -8 -3 + 6 =

45) 4 – 5 + 8 =

46) -12 – 10 – 8 – 25 =

47) -1205 + 1167 =

48) 30 + 6 + 18 + 10 =

49) 20 – (14) =

50) -4 – (16) =

51) 10 – (-7) =

52) -30 – (-18) =

53) 624 – (-274) =

54) 7 – (4) – (-8) + (-5) =

55) 3 - (-2) – (-7) – (4) =

56) 11 + (7) – (24) – (-8) =

57) (-5) + (-2) – (-8) – (-10) =

58) 15 + (14 – 22) =

59) -4 + (-15 + 2) =

60) (-11) – (-5) – (-14) + (-3) =

61) 7 (-4) – (-8) + (-5) =

62) 10 + (7) – (24) – (-8) =

63) -16 –(-4) +5 +6 =

64) -25 + (-30) – (-12) + (-10) =

65) 6 – (7-9) + (3-11) =

66) 6- (12-20) – (23-9) =

Page 5: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

67) 17 - (16 – 7) =

68) 2- (13 – 21) =

69) 6 – (8) + (-20) – (-25) =

70) 2- (-13) + (-7) – (14) + (19) =

71) (-5) + (2) + (7) – (-20) =

IV. Leyes de los Signos para la multiplicación

(+)(+)=+

(-)(-)=+

a) La multiplicación de números con igual signo siempre dará positivo el resultado.

Ejemplo:

( + 2 ) ( + 4 ) = + 8

( - 2 ) ( - 4 ) = + 8

b) La multiplicación de números con diferente signo siempre dará negativo el resultado.

(+)(-)= -

(-)(+)= -

Ejemplo:

( + 5 ) ( - 3 ) = - 15

( - 8 ) ( + 2 ) = - 16

4.1 Realiza los siguientes ejercicios aplicando la ley de los signos para la multiplicación.

1) 3 ( -9 ) =

2) -13 ( 3 ) ( 4 ) =

3) 12 ( 3 ) ( -1 ) =

4) -4 ( -6 ) ( -10 ) =

5) ( -4 )( -2 )( 4 ) =

6) -2 ( -3 ) ( -4 ) =

7) -10 ( -12 ) =

8) 4 ( 3 ) =

9) -3 ( 5 )( -2 )( 4 ) =

10) -4 ( -2 )( 4 ) =

11) 10 ( 10 ) -9 =

12) -5 ( 13 ) +7 =

13) 14 -5 ( 4 ) =

14) -17 +2 ( 8 ) =

15) 15 (7 -3 ) =

16) -7 ( 5 -21) =

17) -4 (3 -2) =

18) 8 -9 (8 -11) =

19) 16 -9 ( 7 -14) =

20) -5 (1 -9) -19 =

21) 3 ( 4 ) +5 ( 2 ) -6 =

22) 9 (7) -6 (10) -7 (-4) =

23) 8 (12 -5) -4 +7 (2 -10)=

24) 8 -3 (-2 -5) +8 (-3 +7) =

Page 6: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

25) -15 (-4) =

26) 5(-4)(0)=

27) -8 (-3) (2)=

28) -5 (-2)=

29) -2(-2) (4) (-5) (1) (-1)=

30) 4 (-5) =

31) 2 (-4) (8) (-3) =

32) -4 (-5) (8) =

33) 10 (10)(-1000000)=

34) -2 (-3) (-4)=

35) 17 (4) -4 =

36) -3 (13) -3 =

37) 23 – 3 (7)=

38) -12 -8 (6)=

39) 20 (8 -12)=

40) -30 (-17 +17)=

41) -3 +4 (3- 2) =

42) 9 – 3 (-5 -2 )=

43) 4 (3 -17)-8=

44) 20 – (-18) +8 (-2) =

45) 12 -2 (8) +2 –(-9)=

46) 8( 2)(-4) -6 (7-8)=

47) 4-6 (10)-6 (-8)+7 (2) -10=

48) 2 (-2 -6 )-7 +4 (8 +1)=

49) 9 ( -8 +6) +9 -4 (7 -3 )=

50) (4-5)(9-3)

51) -1 +4 (-8) +2 (-3)+ (4-5)-1 =

52) (-2)(-2)+4 (-5)-(1)(-1)=

53) 8(-2)(-3)+7(-4)(-3)=

54) (9-1)(4+6)-(3+1)=

55) (8-2)(4-3)-(4-2)=

56) -2 (9 -4) -6 (4-3)+10 (2-10)=

Page 7: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

V. Leyes de los Signos para la división

a) La división de números con igual signo siempre dará positivo el resultado.

(+)/(+)=+

(-)/(-)=+

Ejemplo:

+ 4

+ 2= + 2

− 4

− 2= + 2

b) La división de números con diferente signo siempre dará negativo el resultado.

(+)/(-)= -

(-)/(+)= -

Ejemplo:

+ 8

− 2 = − 4

− 15

+ 3= − 5

5.1 Realiza los siguientes ejercicios aplicando la ley de signos para la división.

1) 54

9=

2) 10

2=

3) 25

5=

4) 48

16=

5) −10

2=

6) 15

3=

7) 48

−8=

8) −90

−9=

9) −18

−3=

10) 57

−19=

Page 8: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

11) 9

3=

12) 15

−3=

13) −35

7=

14) 30

−5=

15) 16

4=

16) −36

−4=

17) 18

9=

18) −20

4=

19) −63

−7=

20) −15

−3=

21) −28

14=

Page 9: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

5.2 Miscelánea de ejercicios:

1) 2(8)

4=

2) −3(−4)

−6=

3) 3(14)

7=

4) 8(5)

10=

5) 24(4)

−8=

6) 18(4)

−8=

7) 36

6(5) =

8) 18

−3(2) =

9) 32

−2(8) =

10) −36

9(−4) =

11) 40

8+ 2 =

12) 24

8+ 4 =

13) 98

14− 7 =

14) 32

−4− 12 =

15) 6 +12

4=

16) 15 +20

5=

17) 27 −18

9=

18) 16 +4

−4=

19) 9 +9

−9=

20) 20 −10

−5=

21) 42 −28

−7=

22) 6

2+

9

3=

23) −6

2−

24

8=

24) −3(5)−(−2)(4)

−6(7)=

25) −3(5)−3

−2(−3)=

26) −7+(−4)+5

−9(8)=

27) 3(1)−5(−2)

2(−3)=

28) 2+5(−3)−3

−3(−2)+5(−2)=

29) −2(3)(4)+3(6−8)−4

−17+5(3)=

Page 10: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

VI. Criterios de Divisibilidad

Son reglas que permiten determinar si un número es divisible o no entre otro, sin necesidad de realizar la

división.

a) DIVISIBILIDAD POR 2: Un número es divisible entre dos si termina en cero o en cifra par.

•24 es divisible entre 2 porque es par.

•31 no es divisible entre 2 porque no es par.

b) DIVISIBILIDAD POR 3: Un número es divisible entre tres, si la suma de sus cifras es múltiplo de tres.

•42 es divisible por 3 porque 4 + 2 = 6 es múltiplo de tres.

•43 no es divisible por 3 porque 4 + 3 = 7 que no es múltiplo de tres.

c) DIVISIBILIDAD POR 5: Un número es divisible entre cinco cuando acaba en cero o en cinco.

•35 es divisible entre 5 porque acaba en cinco.

•540 es divisible entre 5 porque acaba en cero.

d) DIVISIBILIDAD POR 6: Un número es divisible entre 6 si es divisible a la vez entre 2 y entre 3 (La

suma de las cifras ha de ser 0 o múltiplo de 3 y además ser par).

•30468 es divisible entre 6.

En principio por ser número par es divisible entre 2, Veamos si lo es entre 3: La suma de sus cifras es: 3 +

0 + 4 + 6 + 8 = 21 que es múltiplo de 3. Por consiguiente 30468 es divisible entre 6.

e) DIVISIBILIDAD POR 7: Un número es divisible entre 7 si al multiplicar por dos el último y restar el

resultado del producto a la cifra que se forma con los números restantes el resultado es cero o un

múltiplo de 7.

•147 es divisible entre 7, ya que 14 – 2 (7) = 14 – 14 = 0

•196 es divisible entre 7, ya que 19 – 2 (6) = 19 – 12 = 7 y 7 es múltiplo de 7.

•245 es divisible entre 7, ya que 24 – 2 (5) = 24 – 10 = 14 y 14 es múltiplo de 7.

Page 11: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

f) DIVISIBILIDAD POR 9: Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de

9.

•2610 es un múltiplo de 9, sumamos cada uno de sus dígitos

2 + 6 + 1 + 0 = 9

g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma

de las cifras en posición par con la suma de las cifras en posición impar es cero o múltiplo de 11.

•363 es divisible entre 11, ya que: I 6 – (3 + 3) I = I 6-6 I = I 0 I = 0

•2618 es divisible entre 11, ya que: I (6 + 8) – (2 + 1) I = I 14-3 I = I 11 I = 11 y 11 es múltiplo de 11.

6.1 De cada uno de los siguientes números determina su divisibilidad de acuerdo a los criterios

anteriores.

Divisibilidad

Número Entre 2 Entre 3 Entre 5 Entre 6 Entre 7 Entre 9 Entre 11

42

30

70

154

1155

2100

1750

VII. Números Primos Y Compuestos

a) Número Primo: Es aquel que solo tiene dos divisores: la unidad y él mismo.

b) Número Compuesto: Es aquel que tiene más de tres divisores.

7.1 Ejercicios: Determina cuál de los siguientes números es primo o compuesto.

Page 12: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

3. Criba de Eratóstenes

La criba de Eratóstenes permite hallar todos los números primos menores que un número natural dado

n. Se forma una tabla con todos los números naturales comprendidos entre 2 y n, y se van tachando los

números que no son primos de la siguiente manera: Comenzando por el 2, se tachan todos sus múltiplos;

comenzando de nuevo, cuando se encuentra un número entero que no ha sido tachado, ese número es

declarado primo, y se procede a tachar todos sus múltiplos, así sucesivamente. El proceso termina

cuando el cuadrado del mayor número confirmado como primo es mayor que n.

Número Primo Compuesto

5

12

4

1

37

18

41

53

36

61

83

48

49

Page 13: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

VIII. Descomposición de un Número Entero en Factores Primos.

En el campo de las matemáticas, se conoce como factor cada número o expresión que participa en una

multiplicación. Los factores primos de un número entero son los números primos divisores exactos de

ese número.

Ejemplo.

20 2

10 2

5 5

1

8.1 Descomponer en factores primos los siguientes números enteros.

45 105 216

90 342 225

343 55 169

Page 14: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

IX. Mínimo común múltiplo (m.c.m)

El mínimo común múltiplo es el menor de todos los múltiplos comunes de 2 o más números.

Ejemplo

16 24 2

8 12 2

4 6 2

2 3 2

1 3 3

1 1 m.c.m = 2 x 2 x 2 x 2 x 3 = 48

9.1 Ejercicios: Determina el mínimo común múltiplo de los siguientes números.

a) 20 38 = b) 24 36 = c) 28 98 = d) 6 4 9 = e) 20 50 100 = f) 12 18 20 = g) 72 108 60 = h) 48 12 7 = i) 24 18 = j) 21 12 7 = k) 22 48 100 = l) 22 48 34 = m) 36 46 52 = n) 45 68 40 = o) 18 64 48 = p) 236 225 146 = q) 5226 2 = r) 20 1240 = s) 93 12 = t) 9 8 6 = u) 50 100 150 =

Page 15: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

X. Máximo Común Divisor (M.C.D)

Es el mayor de los divisores en común de 2 o más números:

Ejemplo:

48 36 60 2

24 18 30 2

12 9 15 3

4 3 5 M.C.D = 2 X 2 X 3 = 12

10.1 Ejercicios: Determina el máximo común divisor de los siguientes números.

a) 8 12 =

b) 20 50 100 =

c) 60 90 150 =

d) 45 60 =

e) 18 27 =

f) 45 68 40 =

g) 18 64 48 =

h) 24 36 60 =

i) 90 180 270 =

j) 18 36 48 =

k) 18 36 =

l) 72 24 36 18 =

m) 81 64 125 =

n) 10 21 27 =

o) 12 18 48 =

Page 16: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

XI. Fracciones.

a) Definición de Fracción Propia: Se llama fracción propia a aquella fracción donde el numerador (el

número de arriba) es menor que el denominador (el número de abajo).

Ejemplo:

𝟑

𝟓 (Tres quintos) y

𝟓

𝟔 (cinco sextos) Son fracciones propias.

b) Definición de Fracción Impropia: Las fracciones impropias son aquellas cuyo numerador es mayor que

el denominador. Su valor es mayor que 1

Ejemplo:

𝟗

𝟓 (Nueve quintos) y

𝟕

𝟒 (siete cuartos), Son fracciones impropias.

c) Definición de Fracción Mixta: Se llama fracción mixta aquella fracción que está formada por una parte

entera y una fraccionaria.

Ejemplo:

13

4 (Un entero tres cuartos), 2

1

3 (dos enteros un tercio)

d) Convertir Números Mixtos a Fracciones Impropias.

Para convertir un número mixto a fracción impropia se utilizan los siguientes pasos.

•Multiplica el entero por el denominador de la fracción.

•Al resultado anterior súmale el numerador, el resultado de estas operaciones sería el numerador la

fracción impropia y se conservaría el denominador original para la fracción resultante.

Ejemplo: 6 𝟓

𝟕 =

47

7

Respuesta 47

7 = 6

5

7

Page 17: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

e) Suma y Resta de Fracciones con igual denominador.

Al tener el mismo denominador en las fracciones que vamos a sumar o restar, dejamos el mismo

denominador y sumamos o restamos el numerador.

Ejemplo:

Si sumamos 𝟕

𝟏𝟎 𝐲

𝟏𝟎

𝟏𝟎 dejamos 10 como denominador de la fracción resultante y sumamos los

numeradores, 7 + 10 = 17. Por lo que el resultado de la fracción sería 𝟏𝟕

𝟏𝟎

d) Suma o resta de fracciones con denominadores coprimos (no tienen divisores en común).

Para calcular la suma o resta de este tipo de fracciones tendremos que multiplicar los denominadores

para hallar el denominador de la fracción resultante, y para conseguir el numerador tendríamos que

multiplicar el numerador de una de las fracciones por el denominador de la otra y viceversa, y

posteriormente, sumar o restar el resultado, dependiendo del tipo de operación que tengamos que

realizar.

Ejemplo:

Sumemos 𝟏𝟏

𝟏𝟎+

𝟐

𝟑

Los denominadores son 10 y 3, que son diferentes y no tienen divisores en común, por lo que tendremos

que multiplicarlos entre ellos. 10 x 3 = 30, por lo que 30 será el denominador de la fracción resultante.

Para calcular el numerador, tendremos que multiplicar 11 x 3 = 33 y 10 x 2 = 20, y sumar los resultados,

33 + 20 = 53, que sería el numerador de la fracción obtenida.

11

10+

2

3=

53

30

e) Suma o resta de fracciones con un denominador que es divisor del otro.

Ejemplo:

Vamos a sumar 13

20+

3

4

Los denominadores de estas fracciones son diferentes pero el 4 es un divisor de 20, podemos multiplicar el 4 por un número para que nos dé 20, es decir, por 5. Multiplicamos tanto el numerador como el

denominador de 3

4 por 5 y nos quedaría

15

20 y realizamos la suma de ambas fracciones, que nos

daría como resultado 28

20. Pero

28

20 se puede simplificar ya que 28 y 20 son múltiplos de 4, por lo

que dividimos numerador y denominador entre 4, teniendo 7

5 como resultado final.

13

20+

3

4=

13

20+

15

20=

28

20=

7

5

Page 18: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

f) Suma o resta de fracciones con el mínimo común múltiplo (mcm)

Ejemplo:

Vamos a sumar 3

12+

10

8

12 y 8 son los denominadores de las fracciones a sumar, que son diferentes entre sí y tienen divisores en

común, por lo que vamos a descomponer factorialmente los números para saber cuál es el mínimo

común múltiplo, como muestra en la imagen que tenemos posteriormente.

12=22×3 8=23

Para calcular el mínimo común múltiplo tenemos que escoger los divisores comunes y no comunes

elevados al mayor exponente. 22×3=24

Por lo tanto, el denominador común es 24.

Ahora, para calcular el numerador de cada una de las fracciones que vamos a sumar, dividimos el

mínimo común múltiplo calculado entre el denominador, y el resultado lo multiplicamos por el

numerador.

24

12= 2 3×2=6 Fracción resultante:

6

24

28

8= 3 10×3=30 Fracción resultante:

30

24

Y sumamos los denominadores de ambas fracciones, por lo que la fracción que obtenemos de la suma de

ambas fracciones es 36

24

Pero esta fracción se puede simplificar si dividimos numerador y denominador entre 12. La fracción

irreducible sería 3

2.

3

12+

10

8=

6

24+

30

24=

36

24=

3

2

g) Multiplicación de Fracciones.

Multiplicar en línea: Se multiplican los denominadores para obtener el denominador final y se

multiplican los numeradores para obtener el numerador final.

4

15

9

Primero debemos simplificar las fracciones para que resulte más fácil multiplicar después. Por lo tanto,

para simplificar lo que haremos será descomponer cada número en factores primos.

Page 19: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

4=2×2

8=2×2×2

15=3×5

9=3×3

Y sustituimos cada número de las fracciones por sus factores primos.

4

15

9=

2 × 2

2 × 2 × 2×

3 × 5

3 × 3=

5

6

h) Cómo se hace una multiplicación de fracciones con un número entero.

Cuando queremos multiplicar una fracción por un número entero es muy sencillo, simplemente el

número entero lo pasamos a fracción poniendo como denominador un 1.

Ejemplo: 3

6×7

La fracción 3

6se puede simplificar como hemos visto en el ejemplo anterior descomponiendo en factores

primos y nos queda 1

2.

El número entero 7 lo pasamos a fracción poniendo un 1 como denominador: 7

1

Ahora multiplicamos en línea: multiplicamos denominadores: 2×1=2

Multiplicamos numeradores: 1×7=7

De esta manera, nos queda la fracción: 7

2

3

6× 7 =

3

2 × 3×

7

1=

7

2

i) División de Fracciones

Método 1 de división de fracciones: Multiplicar en cruz.

Este método consiste en multiplicar el numerador de la primera fracción por el denominador de la

segunda fracción y el resultado colocarlo en el numerador de la fracción final. Por otro lado, tenemos

que multiplicar el denominador de la primera fracción por el numerador de la segunda fracción y el

resultado lo escribimos en el denominador de la fracción final.

Page 20: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

Se llama método de la cruz por el siguiente esquema:

2

3 ∶

7

5

En amarillo: Se multiplica el numerador de la primera por el denominador de la segunda. El resultado se

escribe en el numerador.

En verde: Se multiplica el denominador de la primera por el numerador de la segunda. El resultado de

escribe en el denominador.

2

3 ∶

7

5=

10

21

Método 2 de división de fracciones: Invertir y multiplicar.

Este método consiste en invertir la SEGUNDA FRACCIÓN, es decir, cambiar el denominador por el

numerador y cambiar el numerador por el denominador. Después, se multiplican las dos fracciones.

Recuerda que para multiplicar fracciones se hace en línea: Numerador por numerador y denominador

por denominador.

2

3 ∶

7

5 →

2

3 ×

5

7

Siguiendo con el ejemplo anterior, tenemos que invertir la segunda fracción, por lo tanto cambiamos el

7 por el 5 y el 5 por el 7. Ahora cambiamos la división por una multiplicación.

Para multiplicar las dos fracciones tenemos que multiplicar la línea: numerador por numerador y

denominador por denominador.

2

5

7=

10

21

11.1 Resuelve las siguientes operaciones de fracciones.

Page 21: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

1) 3

4+

2

4+

5

4=

2) -7

3-

5

3-

2

3=

3) 9

5+

4

5-

7

5=

4) -8

2+

3

2-

5

2=

5) 1

2+

5

2=

6) 6

9-

11

9=

7) 5

6+

7

6=

8) 1

3-

4

3=

9) 1

6-

5

6-

11

6=

10) -7

15+

8

15-

11

15=

Page 22: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

11) 1

2+

5

6=

12) 5

6+

4

9=

13) 5

6-

1

4=

14) 7

12-

3

8=

15) -5

9-

9

4=

16) 3

2-

1

3+

1

4=

17) 3

4-

1

6+

3

8=

18) 7

4-

7

8+

1

12=

19) 5

6-

7

8-

11

12=

20) 2

5-

5

6+

3

10=

Page 23: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

21) 12

3+

5

6+

10

2=

22) 5

6+

7

4-

10

3-

9

8=

23) -3

4-

10

8-

9

2=

24) -6

5+

7

2-

11

10+

12

3=

25) 3

4+

5

3-

13

12=

26) 3

2-

5

3-

8

5+

9

4=

27) 4

10(

5

8) =

28) -6

4(-

8

3) =

29) -12

14(

7

24) =

30) -1

4(

5

2) (

8

10) =

Page 24: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

31) 2

3(

3

4) =

32) 3

4(

7

18) =

33) 5

2(

8

15) =

34) -3

2(

2

4) =

35) 4

3(-

1

2) =

36) 3

4(

1

3) (

1

2) =

37) 4

3(-

1

5) (

1

4) =

38) 4

2(-

2

3) (

1

2) =

39) 8

3(-

1

6)

1

3=

40) (4

3)ᶟ=

Page 25: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

41) (−3

4) ᶟ =

42) (-1

2)

5=

43) (-5

6)

2=

44) (2

3)

4=

45) 5

6:

5

3=

46) 4

9:

8

3=

47) -12

21:

32

14=

48) 12

32:-

81

8=

49) 1

4⁄

23⁄

=

50) 3

8⁄

13⁄

=

Page 26: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

51) -

5

8⁄

310⁄

=

52) 1

4⁄

310⁄

=

53) 3

8⁄

-1216⁄

=

54) 10

14⁄

-1521⁄

=

XII. Raíz Cuadrada.

Calcular una raíz cuadrada significa encontrar cuál es el número que multiplicado por sí mismo, o sea

elevándolo al cuadrado, nos da por resultado el número original. Si el número es un número cuadrático,

la raíz cuadrada es exacta, trabajando con los números naturales, es decir de los números enteros y

positivos. Si decimos que 6×6 = 36 entonces, la raíz cuadrada de 36 es 6, otro ejemplo: Si 4×4 es = 16

entonces la raíz cuadradade16 es 4 Calcular raíces cuadradas es sencillo si entiendes el concepto: hallar

la raíz cuadrada de un número significa encontrar ese número que elevado al cuadrado (multiplicado

por sí mismo) te da el número del cual partiste. Hay números cuya raíz cuadrada es exacta, ya sea dentro

de los naturales, enteros, decimales o fracciones pero hay otros que no son exactos y para ello hay que

hacer un proceso especial para tener exactitud o hacerlo por aproximación, según la necesidad que

tengas.

Los números cuyas raíces cuadradas son exactas se denominan números cuadráticos. Los números

cuadráticos provienen de elevar cada número al cuadrado, es decir de multiplicarlos por sí mismos. Por

ejemplo la raíz cuadrada de 49 es 7 porque 7×7 es 49. Esto se escribe: Hay métodos aproximados para

calcular las raíces no exactas, estas pueden ser reemplazadas por las calculadoras y evitar un trabajo

engorroso el cual te lo explicaremos para que los sepas por si tienes que calcular una raíz cuadrada y no

tienes acceso a una calculadora.

Page 27: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

1. Calcular una raíz cuadrada primero debemos conocer las partes de ella: el número que está adentro

del símbolo de la raíz (81) se denomina radicando, el número pequeño que está sobre la parte superior

del símbolo se denomina índice (en este caso es un 2 y si bien lo escribí recuerda que cuando es un dos

no se escribe) y el resultado se denomina raíz cuadrada (9).

2. Trabajaremos primero con los números cuadráticos y como estas son raíces cuadradas fáciles de

recordar elaboraremos una lista:

Page 28: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

3. Estas raíces cuadradas son sencillas de calcular si recordamos los cuadrados de los números

principales, digamos desde el cero hasta el 10 , 11 o 12 y también algunos números sencillos como el 20,

30, 40…así como el 100 o 10.000 o 100.000, etc

4. Mientras más sepamos más fácil será, hay multiplicaciones fáciles que nos permiten calcular raíces

fáciles, por ejemplo si 20 x 20 es 400, la raíz cuadrada de 400 será 20. Fíjate en este detalle: cuando

multiplicas 20 x 20 estás multiplicando 2×2= 4 y le estás agregando un cero de cada número 20, entonces

te quedará: 20 x 20 = 400 ,por lo tanto la raíz cuadrado de 400 podemos dividirla en dos partes:

calculamos la raíz de 4 (que es 2) y como el 400 tiene dos ceros al dos le agregamos a la derecha un solo

cero, es decir que dividimos la cantidad de ceros por dos (esto es cuando se trata de una raíz cuadrada, si

fuera una raíz cúbica se dividen por tres). Recuerda este procedimiento puede aplicarse cuando el

número es cuadrático, si en cambio tuviéramos 500 y quisiéramos sacar la raíz cuadrada esto no nos

serviría porque 5 no tiene raíz cuadrada exacta, nos resultará 26,067977…..(podríamos aproximarlo a

26,07) pero para este caso deberíamos recurrir a una calculadora o al algoritmo que ya te explicaremos.

5. Pero si queremos calcular una raíz cuadrada que no es exacta podemos hacerlo por aproximación,

por ejemplo si queremos calcular la raíz cuadrada de 30 no será un número entero pero al menos

podemos saber entre que números estará comprendida. ¿Cuáles son los números cuadráticos más

próximos? Por defecto es el 25 y por exceso el 36, por lo tanto la raíz cuadrada de 30 estará

comprendida entre 5 y 6, es decir será un poco más grande que 5 pero menorque6. Si lo resolvemos con

una calculadora para verificar veremos que: √30= 5,47…

Page 29: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

6. Ahora calcularemos la raíz cuadrada de un número más grande para aprender el proceso. Por ejemplo:

Si queremos hallar la raíz cuadrada de 131137, lo primero que debemos hacer es separar los dígitos de

dos en dos de derecha a izquierda como te muestra la figura. Trazamos unas líneas que servirán para

cálculos, en la primera es donde iremos formando el resultado de la raíz cuadrada.

7. Tomamos el primer número que en este caso es de dos dígitos (13) y buscamos qué número multiplicado

por sí mismo se acerca, sin pasarse al 13. Lo escribimos a la derecha: 3×3=9 y ese resultado lo colocamos

debajo del 13 y restamos (13-9=4). En la parte superior ponemos la primera cifra del resultado que es 3.

8. Ahora bajamos las siguientes dos cifras quedando formado el número 411. En el segundo espacio

colocamos el doble de 3 (3×2=6), es decir de la primera cifra del resultado.

Page 30: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

9. En el paso siguiente debemos agregar detrás del 6 un número que será la segunda cifra del número que

formará con el 6 y lo multiplicaremos por también por él sin que se pase de 411 y sea lo más cercano

posible, por ejemplo: 62×2=124(está muy lejos del 411, 66 x 6=396, este es el correcto porque si hacemos

67×7 nos pasaremos. Lo escribimos y colocamos como segunda cifra del resultado al 6.Restamos 411-396=

15

10. En el próximo paso bajamos las dos cifras siguientes formándose el número 1537. Escribimos el doble

de 36 que es 72 y nuevamente buscamos un número para agregar detrás del 72 y que al multiplicarlo no

supere al 1537. Por ejemplo: 723 x 3= 2169 (se pasa por lo que buscaremos más pequeño). Si pruebas

verás que la única posibilidad es el 2 porque 722 x 2 = 1444, luego lo colocamos debajo del 1537 y

restamos. Agregamos el 2 en el resultado final (362) y nos quedó un resto de 93.

12.1 Realiza los siguientes ejercicios de raíz cuadrada.

1. √196

2. √324

3. √441

4. √529

5. √676

6. √961

Page 31: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

7. √576

8. √2304

9. √567

10. √6400

11. √42

12. √57

13. √62

14. √148

15. √3946

Page 32: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

16. √97

17. √86

18. √235

19. √854

20. √4659

21. √2834

XIII. JERARQUIA DE OPERACIONES

Es el orden en que se realizan las operaciones:

1. Operaciones dentro de los símbolos de agrupación.

{ ( ) }

2. Potencias y Raíces

3. Multiplicación y División de izquierda a derecha.

4. Sumas y Restas Ejemplo:

7 + 3 (5 – 1) = 7 + 3 (4) = 7 + 12 = 19

13.1 Ejercicios:

1) 5 + ( 17 – 5 ( 2 ) ) =

Page 33: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

2) 33

3 + √9 - 7 + 4 * 3 =

3) 27 + ( 5 ) − 10 =

4) 16 * 2 / 4 =

5) 3 ( 9 ) + ( 6 + 5 – 3 ) – 12 / 4 =

6) 3 – 8 + ( 5 – ( - 2 ) ) =

7) 1

2 (

1

4+

1

3 ) =

8) ( 3

4+

1

2 ) / (

5

3+

1

6 ) =

9) 7 ( 3 ) + 2 ( 6 − 2 ) + 23 − 7 (√4) =

10) 2 − 15 − 3 ∗ 4 =

11) 2 – ( 5 – 3 ) + ( 2 – ( 3 * 21 + 1 − ( 3 − 4 ) =

12) 12 – 27 / 3 + 6 / 2 =

13) ( 6 ) * ( ( - 2 ) + ( - 7 ) ) =

14) 2 - 32 * 5 + 14 / 2 + 2 =

15) √144 - 22 + 3 ( 2 – ( 4 – 2 ) ) =

16) 5 ( 3− ( - 1 ) ) + 6 – 1 =

17) 100− 2 * 25 – 50 * 200

100 =

18) 3 ∗ 23 – ( 3 – 4 ) + 2 * √225 =

19) 14− ( 8 + 7 ) – ( 4 + 2 – 3 – ( - 4 + 5 ) ) =

20) – 36 + ( - 8 / ( - 5 + 3 ) + 12 / (- 2 + 2 ) =

XIV. NOTACION CIENTIFICA

La notación científica es una forma de representar un número mayor o pequeño utilizando potencias de

base de diez.

Los números se escriben como producto:

b * 10n

Page 34: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

Ejemplos:

1 100

10 101

100 102

1 000 103

10 000 104

100 000 105

1 000 000 106

10 000 000 107

10 000 000 000 1010

0.1 10(-1)

0.001 10(-3)

0.000 000 001 10(-9)

•Por lo tanto, un número como:

236 518 000 000 000 000, puede ser escrito como:

2.36518 x 10 (-7)

•Y un número pequeño como:

0.000 000 632 puede ser escrito como:

6.32 x 10(-7)

14.1 Ejercicio:

Escribe los siguientes números en notación científica.

1) 0.0000 3651 =

2) 564 000 000 =

3) 0.000 000 00007 =

4) 820 000 000 =

Page 35: NÚMEROS REALES a) Números Naturales Ejemplos de números ... · g) DIVISIBILIDAD POR 11: Un número es divisible entre 11 si el valor de la diferencia o resta de la suma de las

5) 0.000 000 000 000 081 =

6) 315 000 000 =

7) 0.000 0006 =

8) 0.000 000 0313 =

9) 366 000 0000 =

10) 218 000 000 =

BIBLIOGRAFÍA:

•Salazar, L. (2006). Algebra. Ciudad de México: Publicaciones culturales.

•Gallegos, H. A. & Reyes, R. (2016). Matemáticas simplificadas. Ciudad de México: CONAMAT

•https://www.vitutor.com/di/r/o_e.html

•https://www.smartick.es/blog/matematicas/recursos-didacticos/suma-resta-de-fracciones/

•https://www.smartick.es/blog/matematicas/fracciones/multiplicacion-de-fracciones/

•https://www.smartick.es/blog/matematicas/fracciones/division-de-fracciones/