12
TEMA 8: PRODUCCION INDUSTRIAL DE METABOLITOS SECUNDARIOS Dr. Pedro F. Mateos González I. METABOLITOS SECUNDARIOS DE INTERES INDUSTRIAL Los metabolitos secundarios son moléculas sintetizadas por determinados microorganismos, normalmente en una fase tardía de su ciclo de crecimiento, cuyas características son: (i) No son necesarios para el crecimiento del microorganismo que los produce. En estado natural, sus funciones se hallan ordenadas a la supervivencia de la especie, pero cuando los microorganismos que los producen se desarrollan en cultivo puro los metabolitos secundarios no desempeñan esa misión. (ii) Generalmente se producen como mezclas de productos muy relacionados químicamente entre sí. Por ejemplo, una única cepa de una especie del género Streptomyces produce 32 antraciclinas diferentes. (iii) Cada uno de estos productos es producido por un grupo muy reducido de organismos. (iv) La producción puede perderse fácilmente por

Produccion Industrial de Metabolitos Secundarios

Embed Size (px)

Citation preview

Page 1: Produccion Industrial de Metabolitos Secundarios

TEMA 8: PRODUCCION INDUSTRIAL DE METABOLITOS SECUNDARIOS

Dr. Pedro F. Mateos González

I. METABOLITOS SECUNDARIOS DE INTERES INDUSTRIAL

Los metabolitos secundarios son moléculas sintetizadas por determinados microorganismos, normalmente en una fase tardía de su ciclo de crecimiento, cuyas características son:

(i) No son necesarios para el crecimiento del microorganismo que los produce. En estado natural, sus funciones se hallan ordenadas a la supervivencia de la especie, pero cuando los microorganismos que los producen se desarrollan en cultivo puro los metabolitos secundarios no desempeñan esa misión.

(ii) Generalmente se producen como mezclas de productos muy relacionados químicamente entre sí. Por ejemplo, una única cepa de una especie del género Streptomyces produce 32 antraciclinas diferentes.

(iii) Cada uno de estos productos es producido por un grupo muy reducido de organismos.

(iv) La producción puede perderse fácilmente por mutación espontánea (degeneración de la raza), por lo que son muy importantes las técnicas de conservación de estos microorganismos.

De todos los productos tradicionales obtenidos por fermentación, los más importantes para la salud humana son los metabolitos secundarios. Donde se incluyen, además de los antibióticos, ciertas toxinas (micotoxinas), alcaloides (ácido lisérgico), factores de crecimiento vegetal (giberelinas) y pigmentos.

Los metabolitos secundarios mejor conocidos son los antibióticos, de los que se han descubierto más de 5000, cifra que aumenta a razón de una media aproximada de 300 por año, aunque la mayoría carecen de utilidad pues son

Page 2: Produccion Industrial de Metabolitos Secundarios

tóxicos para los organismos vivos. Aproximadamente el 75% de los antibióticos conocidos son producidos por actinomicetos. Algunas especies son excepcionales productores de antibióticos, por ejemplo Streptomyces gryseus produce al menos 40 antibióticos diferentes.

II. RELACIONES ENTRE TROFOFASE - IDIOFASE

En el metabolismo secundario las fases de crecimiento se denominan trofofase, fase de crecimiento logarítmico donde normalmente no se producen los metabolitos secundarios, e idiofase, fase estacionaria donde normalmente se producen los metabolitos secundarios. Aunque es una simplificación pensar sólo en dos fases, esta simplificación nos permite comprender mejor la fermentacción industrial de los metabolitos secundarios. Es decir, si nosotros queremos producir un metabolito secundario primero debemos asegurar las condiciones apropiadas durante la trofofase para un buen crecimiento y después, debemos alterar esas condiciones en el momento adecuado para asegurar una excelente producción del metabolito secundario.

Este retraso en la formación de metabolitos secundarios es uno de los principales mecanismos mediante el cual los microorganismos productores de antibióticos evitan el suicidio, puesto que al comienzo de la fase logarítmica de crecimiento son sensibles a su propio antibiótico, para posteriormente, durante la idiofase, volverse resistentes al antibiótico que están produciendo.

Los factores que ponen en marcha la producción de metabolitos secundarios al final de la trofofase no se conocen; únicamente se sabe que este mecanismo se dispara normalmente cuando algún nutriente del medio se ha agotado. En algunas ocasiones el nutriente responsable es una fuente de Carbono, en otras, sin embargo es el Nitrógeno o el Fósforo. La explicación puede ser que al faltar nutrientes se alteren los metabolitos primarios y se originen inductores de los enzimas encargados de la síntesis de los metabolitos secundarios. Otra explicación puede ser que al faltar la fuente de Carbono cesa la represión por catabolito, sintetizándose a partir de este momento los enzimas necesarios para la biosíntesis de estos metabolitos secundarios.

Cualquiera que sea el mecanismo general por el que se dispara el metabolismo secundario al final de la trofofase, es un hecho que en este punto hay unos cambios muy fuertes en la composición enzimática de las células, apareciendo los enzimas que están específicamente relacionados con la formación de metabolitos secundarios. Sin embargo, e independientemente de este aspecto

Page 3: Produccion Industrial de Metabolitos Secundarios

general del metabolismo secundario, se ha puesto de manifiesto la existencia de sistemas de regulación que juegan un papel importante en la síntesis de determinados productos industriales.

III. EFECTO DE LOS PRECURSORES

Las manipulaciones, tanto del medio de cultivo como de las condiciones ambientales que se llevan a cabo durante el screening secundario de una forma sistemática, incluyen la adición de centenares de aditivos en los medios de cultivo que puedan actuar como posibles precursores del producto que estamos investigando. Ocasionalmente se encuentra un precursor que incrementa de forma notable la producción de este metabolito secundario. El precursor puede incluso dirigir la síntesis de un determinado producto de entre varios que se producían anteriormente; es lo que se conoce como biosíntesis dirigida.

Como ejemplos de precursores están el ácido fenilacético en el caso de la producción de bencil penicilina; determinados aminoácidos específicos en la producción de actinomicinas y tirociclinas; ácidos benzoicos sustituidos en la formación de novobiocinas.

En muchas fermentaciones, sin embargo, los precursores no muestran ninguna actividad. Esto es debido a que su síntesis por el microorganismo no es el factor limitante de la producción del metabolito secundario. En estos casos, la adición de aditivos ha revelado efectos dramáticos, tanto estimuladores como inhibidores en la producción del metabolito secundario por parte de una molécula no precursora. Este efecto se debe normalmente a la interacción de estos compuestos con los mecanismos reguladores del microorganismo productor. Precisamente, estudiando estos efectos se puso de manifiesto que los mecanismos reguladores de los microorganismos ejercen un efecto notable en la producción de los metabolitos secundarios.

IV. INDUCCION ENZIMATICA

Page 4: Produccion Industrial de Metabolitos Secundarios

A lo largo de los estudios sobre el papel que el triptófano juega como estimulador de la biosíntesis de alcaloides por Claviceps (Cornezuelo del centeno) se puso de manifiesto que la inducción enzimática juega un papel importante en la producción de metabolitos secundarios.

Si bien el triptófano es un precursor en la biosíntesis de estos alcaloides, no es un factor limitante; ya que su efecto estimulador se debe en gran parte a la inducción de la síntesis de los enzimas que dan lugar a la síntesis de los alcaloides. Existen tres razones que han llevado a esta conclusión:

(i) Los análogos del triptófano, que no se incorporan a la molécula del alcaloide, es decir, que no son precursores, estimulan la producción de los alcaloides.

(ii) El triptófano se debe añadir durante la trofofase ya que si se añade durante la idiofase tiene poco efecto.

(iii) El triptófano añadido es absorbido por la célula durante la fase de crecimiento y alcanza su mayor concentración intracelular justo antes de la síntesis de los alcaloides.

Otro efecto de inducción similar es el de la metionina en la biosíntesis de cefalosporina por Cephalosporium acremonium. A pesar de que la metionina provee azufre al antibiótico, la estimulación de la formación de cefalosporina C se debe a un efecto de inducción. Se llegó a esta conclusión ya que la metionina debe añadirse durante la trofofase; además, la metionina puede ser reemplazada por su análogo norleucina que no tiene azufre en su molécula, por lo que su efecto no puede ser debido al hecho de aportar azufre.

La inducción también juega un papel muy importante en determinar la relación entre los componentes de la mezcla que se produce en una fermentación. Por ejemplo, en la fermentación para la producción de estreptomicina se produce estreptomicina y manósido estreptomicina. La conversión de manósido estreptomicina en estreptomicina se cataliza mediante el enzima -D-manosidasa que es inducido por manano.

V. REGULACION POR RETROALIMENTACION

Page 5: Produccion Industrial de Metabolitos Secundarios

La regulación por retroalimentación también parece jugar un papel fundamental en el metabolismo secundario. Por ejemplo, el cloranfenicol al igual que la cicloheximida, penicilina y otros antibióticos limitan su propia producción actuando por retroalimentación generalmente sobre el primer enzima de la ramificación que conduce a la síntesis de este metabolito.

Otro caso de regulación por retroalimentación sucede cuando la ruta metabólica ramificada, mediante la cual se sintetiza el metabolito secundario, conduce a su vez a la síntesis de un metabolito primario, como es el caso de la lisina y la penicilina en Penicillium chrysogenum. En un primer momento se encontró que la L-lisina disminuía la producción de penicilina, pero no se sabía porqué; hasta que se descubrió que el -aminoadipato es un intermediario en la biosíntesis de los dos, lisina y penicilina. La disminución en la formación de penicilina por lisina está causada por la inhibición por retroalimentación de la homocitrato sintasa, que es el primer enzima en la biosíntesis de lisina.

Otro camino mediante el cual actúa la regulación por retroalimentación en la formación de metabolitos secundarios implica la inhibición y la represión de las fosfatasas por fosfato. Muchas fermentaciones se inhiben por ortofosfato (H3PO4) a concentraciones (>10 mM) que no son inhibidoras para el crecimiento. En algunos casos se explica ya que los intermediarios de la ruta metabólica del producto que nos interesa están fosforilados, aunque el producto final no lo esté. Las fosfatasas actuarían en estos intermediarios.

Un ejemplo lo tenemos en la biosíntesis de estreptomicina donde actúan varias fosfatasas en la formación de estreptidina y en el último paso, desfosforilación de la estreptomicina fosfato, donde el enzima que cataliza esta reacción también está inhibida por el fosfato inorgánico.

VI. REGULACION CATABOLICA

La represión catabólica fue observada en la industria de antibióticos mucho antes de que se conociera y se entendiera el significado general de este fenómeno. Durante el desarrollo de la producción de penicilina se observó que la glucosa, que era una magnífica fuente de carbono para el crecimiento del microorganismo, era un sustrato muy malo para la producción de penicilina; sin embargo, se observó que la lactosa, que soporta un crecimiento muy pobre, es un buen sustrato para la producción de penicilina. Por lo tanto, el

Page 6: Produccion Industrial de Metabolitos Secundarios

medio clásico de Jarvis y Johnson lleva una mezcla de glucosa y lactosa.

Los mecanismos moleculares de la regulación catabólica se esclarecieron en la década de los 70. Hoy sabemos que la regulación catabólica está mediada por el nivel intracelular de un nucleótido especial, el monofosfato cíclico de adenosina (AMPc), cuyo nivel intracelular es inverso a la concentración de glucosa en el medio de cultivo. Mientras existe glucosa en el medio de cultivo el nivel intracelular de AMPc es sumamente reducido, debido a que la glucosa inhibe la actividad adenilciclasa, enzima que interviene en la síntesis de AMPc. Cuando la glucosa del medio se agota, la concentración intracelular de AMPc aumenta rápidamente. El AMPc sintetizado forma un complejo con una proteína existente en la célula, denominada "proteína receptora de AMPc". Este complejo de proteína receptora y AMPc actúa sobre el gen promotor al objeto de inducir la síntesis de los enzimas necesarios para la utilización de otras fuentes de carbono distintas a la glucosa. La glucosa inhibe gran cantidad de metabolitos secundarios.

La represión catabólica también juega un papel importante en la determinación de la concentración relativa de cada uno de los antibióticos de una misma familia química que se producen en una fermentación. Este es el caso de la producción de estreptomicina por Streptomyces gryseus. Como ya hemos dicho, el manano es el inductor de la manosidasa que convierte la manósido estreptomicina en estreptomicina; sin embargo, este enzima no se sintetiza si hay glucosa (>0,5%) en el medio debido a la represión catabólica. Sólo cuando la glucosa ha desaparecido se produce el enzima que es inducido por manano. En este caso la represión catabólica juega un papel fundamental en el porcentaje de manósido estreptomicina producido en esta fermentación.

VII. REGULACION POR EL ESTADO O CARGA ENERGETICA

La producción de clortetraciclina se reduce en gran cantidad cuando existe fosfato inorgánico en el medio. En las fermentaciones para la producción de clortetraciclina, la idiofase comienza cuando se agota el fosfato en el medio. Puesto que en la biosíntesis de clortetraciclina donde intervienen 72 intermediarios, ninguno de ellos fosforilado, este efecto del fosfato no se debe a la regulación por retroalimentación de fosfatasas. Sin embargo, es posible que esta regulación esté mediada por la carga energética ya que el contenido en ATP de dos cepas de Streptomyces aureofaciens, una poco productora (200 µg/mL) y la otra muy productora (2000 µg/mL) de clortetraciclina, difieren en

Page 7: Produccion Industrial de Metabolitos Secundarios

que la cepa menos productora tiene de 2 a 4 veces más ATP que la más productora. En ambas cepas la concentración de ATP aumenta en la trofofase y disminuye en la idiofase, durante la producción de clortetraciclina.

VIII. INCREMENTO DE LA PRODUCCION DE METABOLITOS SECUNDARIOS

La mayoría de los controles descritos en este capítulo se eliminan mediante manipulación ambiental o mediante la obtención de mutantes mal regulados.

1.- Manipulación ambiental

Catabolito: eliminación de la glucosa del medio.

Inducción: adición de manano al medio.

Carga energética: disminución de fosfato en el medio.

Precursores: adición de precursores al medio.

2.- Selección de mutantes mal regulados

A. Revertientes

La estrategia consiste primeramente en seleccionar las mejores cepas productoras del antibiótico. Estas cepas se someten a mutación con un agente mutágeno (UV, luz ultravioleta o NTG, nitrosoguanidina). De los mutantes obtenidos se seleccionan aquellos que no sean productores del antibiótico (se seleccionan aquellas cepas que poseen una proteína inactiva). Estos mutantes se vuelven a someter a mutación y se seleccionan aquellas cepas que sean de nuevo productoras del antibiótico (se obtienen mutantes dobles desregulados en un gen en el que actúa esa proteína inactiva).

B. Resistencia a análogos

Page 8: Produccion Industrial de Metabolitos Secundarios

La estrategia es la misma que la descrita con los metabolitos primarios.

C. Mutasíntesis

Se realiza mediante la mutación en el gen que codifica para un precursor del antibiótico natural, con lo que se consigue la síntesis de una molécula de antibiótico incompleta. Cuando se añade al medio el precursor que no puede sintetizar el microorganismo, éste reanuda la producción del antibiótico natural. De esta manera se pueden obtener nuevos antibióticos simplemente añadiendo precursores con estructuras ligeramente diferentes.