276
 A le j andra Gonzá l ez Dávila Helena Lluis Arroyo  A braham Pi t a La r r aña g a Ciencias 2 Física

Ciencias Dos-fisica

Embed Size (px)

Citation preview

Page 1: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 1/276

Alejandra González Dávila

Helena Lluis Arroyo

Abraham Pita Larrañaga

Ciencias 2

Física

Page 2: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 2/276

Nombre del alumno (a)

Escuela Grupo

DISTRIBUCIÓN GRATUITA, PROHIBIDA SU VENTA

Querido alumno (a) de secundaria:

Este libro se entrega gratuitamente para tu formación, y es

parte del esfuerzo que estamos haciendo el Gobierno Federal

y los Gobiernos de los Estados para convertir la educación en

la llave de las oportunidades y el éxito para ti y tu familia.

Este libro es tuyo. Aprovéchalo y cuídalo.

Maestra (o): Consulta los Libros de Texto de Secundaria en línea,

en la siguiente dirección electrónica http://libros.conaliteg.gob.mx/

Page 3: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 3/276

Alejandra González Dávila

Helena Lluis Arroyo

Abraham Pita Larrañaga

Ciencias 2Física

Page 4: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 4/276

COORDINACIÓN EDITORIAL

Roxana Martín-Lunas Rodríguez

ASISTENCIA EDITORIAL

Rosa Trujano López/Alógrafo

AUTORÍA

Alejandra González Dávila, Helena Lluis Arroyo, Abraham Pita Larrañaga

COLABORACIÓN ESPECIALMireya Gally Jordá

REVISIÓN TÉCNICA Y PEDAGÓGICA

Marco Vladimir Lemus Yañes, Abdiel Macías Arvizu

CORRECCIÓN DE ESTILO

Abdiel Macías Arbizu

DISEÑO DE INTERIORES Y CUBIERTA

Monocromo, Martha Covarrubias Newton, Rosa Trujano López/Alógrafo

FORMACIÓN ELECTRÓNICA

Rosa Trujano López/Alógrafo, Nora Mata, Alejandro Elizondo Orihuela, Arturo Acosta, José Pichardo Yañez

COORDINACIÓN ICONOGRÁFICA

Elena Martín-Lunas Rodríguez

ILUSTRACIONES

Trazo Magenta, Carlos A. Orenda, Graciela Guzmán Pérez, Martha Covarrubias Newton, Karina MendozaFOTOGRAFÍA

Carlos Hahn Ramírez, Pedro Zúñiga (fotografías de laboratorio).Archivos: Dreamstime.com, Photos.com, Nasa, Shutterstock, Everystock, Sciencephoto.com, Glow Image

FOTOGRAFÍA DE LA CUBIERTA

Aurora Boreal (Dreamstime.com)

CRÉDITOS ICONOGRÁFICOS

© Carlos Hahn Ramírez: pp. 12 (izq.), 13 (der.), 15, 16 (izq.), 36-37,39, 42 (arr.), 48, 57, 63, 70, 71, 72(arr. y ab.), 73 (ab.), 77 (arr.), 79 (ab.), 82, 88, 99 (der.), 101, 102 (ab.), 105-106, 124, 128, 153 (arr. der.),154 (der.), 170, 175, 179 (arr.), 185, 186 (ab.), 188, 189, 191, 200, 229, 232, 233 (arr. y ab. der.), 239,240 (ab. der.), 241, 247 (arr. y centro), 248, 249. © Magali Sarmiento Fradera: pp. 117, 176, 180, 220,228. © Correo del Maestro: pp. 17, 24, 38, 40, 41 (arr.), 50, 54, 58 (ab.), 60, 75, 77 (ab.), 78 (ab.), 83,104, 111 (ab.), 167, 174 (ab.), 178, 233 (centro).

GESTIÓN DE DERECHOS Y PERMISOS

Correo del MaestroAGRADECIMIENTO

Instituto Luis Vives A. C., Instituto Escuela

© 2014 Alejandra González Dávila, Helena Lluis Arroyo, Abraham Pita Larrañaga

ISBN: 978-607-9034-51-1

DERECHOS RESERVADOS© 2014,CORREO DEL MAESTRO, S.A. DE C.V.Av. Reforma No. 7 Int. 403, Cd. Brisa,Naucalpan Estado de México, México, C.P. 53280Tels. 53-64-56-70 / [email protected]

Miembro de la Cámara Nacional de la Industria Editorial Reg. Núm. 2817Impreso en México

La presentación y disposición en conjunto de Ciencias 2. Física son propiedad del editor. Ninguna parte de esta obra puede ser reproducida o transmitida, mediante ningún sistema o método,electrónico o mecánico (incluyendo el fotocopiado, la grabación o cualquier sistema de recuperación y almacenamiento de la información), sin consentimiento por escrito del editor.

Ficha Catalográfica

Sistema de clasificación Melvil Dewey

530

G65

2014 González Dávila, Alejandra

Ciencias 2 : Física /Alejandra González Dávila, Helena

Lluis Arroyo y Abraham Pita Larrañaga ; ilustraciones Carlos A.

Orenda…[et al.] – México : Correo del Maestro, 2014

272 p. : il.

ISBN 978-607-9034-51-1

1. Física – Estudio y enseñanza. I. Lluis Arroyo, Helena, coaut.

II. Pita Larrañaga, Abraham, coaut. III.Orenda, Carlos A., il. IV.t

Page 5: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 5/276

Presentación

Querido alumno:

CORREO DEL MAESTRO tiene el enorme gusto de poner en tus manos el libro Ciencias 2. Física, como unaimportante herramienta que te ayudará a lo largo del curso en varias formas: para aprender de manera

autónoma, en conjunto con tus compañeros, y con el valioso apoyo y guía de tu maestro.

Este libro pretende mostrarte de forma clara y amena numerosos ejemplos encaminados a alentar aun

más tu curiosidad, y a multiplicar tus preguntas sobre por qué las cosas son como son y funcionan comofuncionan. Nada hay más estimulante para un joven como tú que cuestionar y desmenuzar la Naturaleza

toda, dentro y fuera de ti mismo, lo más pequeñito y lo más grande, lo más lento y lo más veloz, la

materia y la energía. Comprender cómo y por qué ocurren los fenómenos naturales cotidianos, como

el movimiento, pero también los extraordinarios, como la evolución del Universo. Es una necesidad vital,

y a la vez, la máxima aventura a la que se ha encaminado la especie humana.

Este libro te ayudará a emprender un excitante camino vinculado a otras áreas del conocimiento,como las matemáticas, la literatura, la biología, la geografía y la historia, entre otras. ¿Cómo no avivar

con ello la llama del asombro? Desde este momento tu trabajo es muy importante, pues a medida que

realices las actividades y analices los textos e imágenes interactuando con tu maestro y compañeros,irás desarrollando diversas habilidades que conformarán tu proceso de aprendizaje, tales como efectuar

predicciones, realizar experimentos, analizar evidencias, analizar datos, elaborar, confrontar, relacionar y

compartir tus propias explicaciones de los fenómenos naturales, así como interpretar otras. A cada paso

que avances, encontrarás respuestas a varias de las interrogantes que son abordadas por la Física.

Todo lo que logres en el proceso de aprendizaje de esta ciencia formará parte de tu cultura cien-tífica durante toda tu vida; mientras más la amplíes más podrás tomar posturas fundamentadas ante

problemas que van desde lo ambiental y tecnológico, hasta lo social y cultural, por lo que podrás actuar

responsablemente ante situaciones que te afecten en lo individual, pero también a tu comunidad y a laHumanidad entera. Podrás entonces convertirte en una persona activa, en un agente positivo de cambio.Ésa es la apuesta de este libro de texto.

Querido maestro:

El afán de saber y la capacidad de asombro de los estudiantes y los docentes son precisamente la

razón de ser de este libro, y el motivo principal de su labor diaria. Es por ello que el presente texto fueconfeccionado teniendo en mente no sólo a los alumnos, sino a los maestros que conforman con ellos el

núcleo primordial del hecho pedagógico. Lo invitamos a leer con sus alumnos la sección “Conoce tu libro”

que integra esta presentación.

Enseñar Física es indudablemente un reto, pero al mismo tiempo, es una oportunidad preciosa parafomentar el desarrollo del pensamiento científico y el gusto por las ciencias. Un curso atractivo puede ser

el detonante de la vocación científica en algunos estudiantes, y la herramienta esencial para descifrar los

hechos básicos de los fenómenos naturales y la tecnología para todos ellos.

Con gran admiración por su trabajo, en CORREO DEL MAESTRO deseamos que este texto sea un referente

sólido para usted.

Los autores

Page 6: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 6/276

3 Un modelo para describir la estructura de la materia . . . . . . . . . 146

Los modelos en la ciencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

• aracer s icas e imporancia e os mo eos en a ciencia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

• Ideas en la historia acerca de la naturaleza continua y discontinua de la materia:

Demócrito, Aristóteles y Newton; aportaciones de Clausius, Maxwell y Boltzmann . . . . 154 Las id eas de Demócr ito, Ar is tó t ele s y Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Las apo rt aciones de C lau s ius , Maxwell y Bo lt zmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

• specos ásicos e mo eo cinéico e par cuas: par cuas microscópicas in iv isi es, con masa, movimieno, ineracciones y vaco enre e as . . . . . . . . . . . . . . . 158

La estructura de la materia a partir del modelo cinético de partículas . . . . . . . . . 161

• as propie a es e a maer ia : masa, voumen, ensi a y es a os eagregación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

• resión: reación uerza y área; presión en ui os. rincipio e asca . . . . . . . . . . . . . . 166

• Temperatura y sus escalas de medición . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

• aor, rans erencia e caor y procesos érmicos: ia ación y ormas epropagación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

• am ios e esa o; inerpreación e grá ica e presión-emperaura . . . . . . . . . . . . . . . 180

Energía calorífica y sus transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

• Transormación e a energa caor ica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

• qui i r io érmico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

• Transerencia e ca or: e cuerpo e mayor a e menor emperaura . . . . . . . . . . . . . 188

• rincipio e a conservación e a energa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

• mpicaciones e a o ención y aprovecamien o e a energa en asa c i v i a e s um ana s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Evaluemos lo aprendido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

P1 • ¿Cómo funcionan las máquinas de vapor ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

P2 • ¿Cómo func ionan lo s gato s h id ráu lico s ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

BLOQUE 4 Manifestaciones de la estructura interna de la materia . . . . . . 204

Explicación de los fenómenos eléctricos: el modelo atómico . . . . . . . . . . . . . . . . . . . . . . 207

• Proceso histórico del desarrollo del modelo atómico: aportaciones de

T omson, u eror y o r ; acances y imiaciones e os mo eos . . . . . . . . . . . . . . . . 208

• Características básicas del modelo atómico: núcleo con protones y neutrones,

y eec rones en ór i as. arga eéc r ica e eec rón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

• Efectos de atracción y repulsión electrostáticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

• or r iene y resis encia eéc r ica. aer iaes a isanes y conuc ores . . . . . . . . . . . . . . . . . 218

Los fenómenos electromagnéticos y su importancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

• escur imieno e a in ucción eecromagnéica : exper imen os e erse

y de Faraday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10

S1

S2

S3

S1

S2

4

Te sugerimos leer, con el apoyo de tu maestro,* las siguientes descripcionespara conocer cómo está organizado tu libro de texto.

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

El movimiento de los objetos

• Interpretarásl avelocidad comola relaciónentredesplazamientoy tiempo,y ladiferenciadelarapidez,apartirdedatosobtenidosde situacionescotidianas.

Marco de referencia y trayectoria;

diferencia entre desplazamientoy distancia recorrida.

• Interpretarástablasde datosy gráficasde posición-tiempo,enlas quedescribirásy predecirás

diferentesmovimientosa partirde datosque obtendrásenexperimentosy/ode situacionesdel entorno.

Velocidad: desplazamiento, direccióny tiempo.

• Describiráscaracterísticasdel movimientoondulatoriocon baseen elmodelo deondas: cresta,valle,nodo,amplitud, longitud,frecuenciay periodo,ydiferenciarás elmovimiento ondulatorio

transversaldel longitudinal,entérminos dela direccióndepropagación.

Interpretación y representación degráficas posición-tiempo.

• Describirás el comportamiento ondulatorio del sonido: tono, timbre,

intensidad y rapidez, a partir del modelo de ondas.

Movimiento ondulatorio, modelo deondas, y explicación de característicasdel sonido.

El trabajo de Galileo

• Identificarás las explicaciones de Aristóteles y las de Galileo respecto

al movimiento de caída libre, así como el contexto y las formas de proceder que las sustentaron.

Explicaciones de Aristóteles y Galileoacerca de la caída libre.

• Argumentarás la importancia de la aportación de Galileo en la ciencia como una nuevaforma de construir y vali dar el conocimiento científico, con base en la experimentación

y el análisis de los resultados.

Aportación de Galileo en la construccióndel conocimiento científico.

• Relacionarás la aceleración con la variación de la velocidad en situaciones del entorno

y/o actividades experimentales.

La aceleración; diferencia con lavelocidad.

•Elaborarás e interpretarás tablas de datos y gráficas de velocidad-tiempo

y aceleración-tiempo para describir y predecir características de diferentes movimientos, a partirde datos que obtendrás en experimentos y/o situaciones del entorno.

Interpretación y representaciónde gráficas: velocidad-tiempoy aceleración-tiempo.

BLOQUE 1

La descripción delmovimiento y la fuerza

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

La descripción de las fuerzas

• Describirás la fuerza como efecto de la interacción entre los objetosy la representarás con vectores. La fuerza; resultado de las interaccionespor contacto (mecánicas) y a distancia(magnéticas y electrostáticas), y representación con vectores.

• Aplicaráslos métodosgráficosdel polígonoy paralelogramoparala obtencióndela fuerzaresultantequeactúa sobreun objeto,ydescribirás elmovimiento producidoensituaciones

cotidianas.

Fuerza resultante, métodos gráficosde suma vectorial.

• Argumentarás la relación del estado de reposo de un objeto con el equilibrio de fuerzas

actuantes, con el uso de vectores, en si tuaciones cotidianas. Equilibrio de fuerzas; uso de diagramas.

PROYECTO: Imaginar, diseñar y experimentar para explicar o innovar (opciones)*Integración y aplicación

• Trabajarás colaborativamente con responsabilidad, solidaridad y respeto en la organización

y desarrollo del proyecto.

• Seleccionarás y sistematizarás la información que es relevante para la investigación planteada

en tu proyecto.

• Describirás algunos fenómenos y procesos naturales relacionados con el movimiento,

las ondas o la fuerza, a partir de gráficas, experimentos y modelos físi cos.

• Compartirás los resultados de tu proyecto mediante diversos medios (textos, modelos,

gráficos, interactivos, entre otros).

¿Cómo es el movimiento de losterremotos o los tsunamis,y de qué manera se aprovechaesta información para preveniry reducir riesgos ante estos desastresnaturales.

¿Cómo se puede medir la rapidezde personas y objetos en al gunosdeportes; por ejemplo, beisbol,atletismo y natación?

* Revisa la introducción al bloque 5 antes de trabajar con los proyectos.

a b c d f e

(a)Baile, movimiento yondas. (b) Acelera para ira mayorvelocidad. (c) Desplazamiento lento pero constante. (d)La Tierra y la fuerza magnéticadesus polos. (e)Caída libre, mientrasabreel paracaídas. (f)Movimiento, aunqueimperceptible, constante.

S1

S2

S3

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturalesdesde la perspectiva científica.

• Comprensión de los alcances y limitaciones de la cienciay del desarrollo tecnológico en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambientey la promoción de la salud orientadas a la cultura de la prevención.

Los cinco bloques que integran este libro se trabajarán a lo largo de los cinco bimestres del

calendario anual escolar. Estas “Entradas de bloque” contienen los Aprendizajes esperados

y los Contenidos que se organizan en Secuencias didácticas.

Índice de contenidos

Inicio de bloque

Incluye los contenidos de cada bloque en que se organiza el programa, para quepuedas localizarlos con facilidad.

Número y título del bloque.

Fotografías relacionadas con los contenidos

que se desarrollan en cada bloque.

Aprendizajes esperados del bloque

organizados por secuencias didácticas.

Contenidos de cada secuencia.

Pie de las fotografías que ilustran

el inicio del bloque, algunas

las encontrarás a lo largo del texto.

Bloque. Los cinco bloques, uno por cadabimestre del año escolar, se identifican conun color diferente.

El movimiento de los objetos

Leyes de movimiento

Un modelo para describir laestructura de la materiales

Manifestaciones de la estructura

interna de la materia

Conocimiento, sociedad

y tecnología

Conoce tu libro

B1

B2

B3

B4

B5

Contenidos Los contenidos de cada

bloque están organizados en secuencias

didácticas.

Puedes ver que los bloques 1 al 4 incluyentres secuencias y cada uno termina con dosproyectos que desarrollarás a lo largo de ellas.El bloque 1 con once contenidos; el bloque 2 con ocho contenidos; el bloque 3 con docecontenidos; el bloque 4 con nueve contenidosy, para terminar, el bloque 5 con una secuencia, cuatro contenidos y siete proyectos. Con estadistribución se cubren 44 contenidos.

Número de página. Para localizar

el inicio de cada bloque, secuencia y

contenido.

* Por razones de corrección política, que no de corrección lingüística, se ha extendido la costumbre de hacer explícita la alusión a ambos sexos. Se olvida en estos casos queen la lengua está prevista la posibilidad de referirse a colectivos mixtos a través del género gramatical masculino, posibilidad en la que no debe verse intención discriminatoriaalguna, sino la aplicación de la ley lingüística de la economía expresiva. Por otra parte, se ha suscitado la creación de soluciones artificiosas que contravienen las normas de lagramática como las y los ciudadanos. Véase: Diccionario panhispánico de dudas, Real Academia Española, 2005, sustento que se utiliza en este libro.

Page 7: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 7/276

S1

PROYECTO

Conoce el trabajo por proyectos

Al finalizar este bloque podrás trabajar

con tu equipo en un proyecto cuyo

tema elegirán mientras avanzan con los

contenidos del bloque. Pongan atención

para elegir el tema que más les guste.

Para iniciar este trabajo, revisa

la Introducción al bloque 5, donde se

explica cuáles son las etapas de esta

modalidad de trabajo.

14

EL 2 DE AGOSTO DE 1971 un pequeño módulo se desprendió del Apolo 15

para alunizar en nuestro satélite. Luego de que el comandante David Scott

descendió del “Halcón”, se dispuso la cámara para poder filmar lo que de-

bería ocurrir de acuerdo con las predicciones de un tal Galileo.

El comandante se colocó a cuadro. Sostenía una pluma de halcón que pesa-

ba 0.03 kg en una mano y un martillo de 1.32 kg en la otra. Dejó caer estos

objetos desde la misma altura y al observar lo sucedido exclamó: “¡Qué les

parece! ¡El señor Galileo tenía razón!”

Este memorable episodio nos remite, entre otras cosas, al valor de la expe-

rimentación para comprobar el fenómeno descrito por un hombre en el

siglo XVII que difícilmente podría haber imaginado que el ser humano saldría

jamás al espacio. La descripción y análisis del movimiento de los cuerpos

desarrollada por Galileo, junto con su metodología de trabajo, forman parte

de las habilidades esenciales para la ciencia.

B1

1515

El movimiento de los objetos

Marco de referencia y trayectoria; diferenciaentre desplazamiento y distancia recorrida.

Velocidad: desplazamiento, dirección y tiempo.

Interpretación y representación de gráficas deposición–tiempo.

Movimiento ondulatorio, modelo de ondas,y explicación de características del sonido.

El crecimiento de una planta, un parpadeo, la explosión de una estrella, elintercambio de sustancias a través de la membrana de una célula, la rotación de

los planetas sobre su eje o su traslación en torno al Sol, una nube arrastrada por elviento, una hormiga que carga su comida y todo cuanto existe en el Universo, se

relaciona con el movimiento.

• Interpretarásla velocidad

comola relaciónentre

desplazamientoytiempo, yla diferencia dela rapidez,

a partir dedatosobtenidosdesituacionescotidianas.

• Interpretarástablasdedatosygráficasde

posición–tiempo, enlasquedescribirásy

predecirásdiferentes

movimientosa partir dedatosque obtendrás

enexperimentosy/odesituacionesdelentorno.

• Describiráscaracterísticasdelmovimiento

ondulatorioconbaseenelmodelode ondas:cresta,

valle, nodo, amplitud,

longitud, frecuencia yperiodo, ydiferenciarás

elmovimientoondulatoriotransversal

dellongitudinal, en

términosde la direccióndepropagación.

• Describirásel

comportamientoondulatoriodelsonido:tono, timbre, intensidad

yrapidez, a partir delmodelode ondas.

Aprendizajes esperados

B1

S1

Marco de referencia y trayectoria;diferencia entre desplazamiento y distancia recorrida

Explora

1. Una noche descu res que la Luna se ve detrás de unos ár

oles. El contraste de los troncos y hojas con la Luna es una

escena que te gusta mucho y decides tomar una foto o hacer

un di ujo para compartirla, pero en ese instante alguien te

llama. Después de cinco minutos regresas a contemplar el

espectáculo y ves que los ár oles siguen ahí, pero la Luna yano está.

• ¿Qué sucedió?

2. Piensa en una experiencia que implique algún movimiento y

coméntala con tus compañeros.

• ¿Qué relación encuentras entre la posición y el movimiento?

3. O serva la fotografía ¿Cómo descri irías el movimiento de

los delfines? Anota tu descripción en el cuaderno.

4. Plantea una pregunta so re el movimiento y compártela con

tus compañeros.

ee lo siguiente y responde:

que cada uno tenía justo en el instante previo. La fuerza de fricción, por su parte, se

opone siempre al movimiento, lo que produce una disminución en el módulo de la

veloci dad. Dado que la ac elerac ión es l a varia ble que i ndica c ómo es el cambio e n

la velocidad, podemos decir que las fuerzas pueden producir una aceleración (positiva

o negativa) en los cuerpos. Al estar la fuerza relacionada con la aceleración, y siendo

la aceleración una magnitud también vectorial, la fuerza es asimismo una magnitud

vectoria l, con módul o, direc ción y se ntido, la c ual puede también rep resentars e me-

diante flechas, como veremos más adelante.

Cuando consideramos que las fuerzas actúan sobre cuerpos extensos, otra de las

consecuencias puede ser la deformación. Si la deformación es temporal, como en el

caso de una liga que estiramos un poco o un resorte que comprimimos suavemente,

decimos que los cuerpos son elásticos, como en la figura 59. Cuando la deformación

es permanente, como la que sucede en un c hicle cuando lo masticamos, aplicando

una fuerza de contacto con nuestros dientes, hablamos de cuerpos plásticos, y los que

no se deforman en absoluto se denominan rígidos, como señalamos en la parte del

movimiento ondulatorio. Un vaso de cristal o una hoja de papel pueden considerarse

cuerpos rígidos, pues ante una fuerza de contacto pueden llegar a romperse en vez

de deformarse.

La interacción gravitacional

Las interacciones por contacto que produjeron fuerzas de contacto entre los péndulos

no explican por qué los péndulos caen en primer lugar, así que hay otras interaccionesademás de las de contacto.

Consideremos que ambos péndulos interactuaron todo el tiempo con la Tierra: lo

notamos como una fuerza que los “jala” hacia abajo. No obstante, jamás hubo contacto

entre los péndulos y la superficie del planeta. Esto implica que en la Naturaleza se

pueden dar interacciones entre dos cuerpos sin tocarse, sin ningún contacto directo.

Cuando dos objetos se encuentran separados, pero percibimos algún tipo de cambio

en un objeto por la presencia del otro, diremos que los objetos están interactuando

a distancia. En este caso también podremos asociar siempre pares de fuerzas a cada

interacción. Las fuerzas que resultan de una interacción a distancia se llaman fuer-

zas a distancia.

Una de estas interacciones a distancia es la atracción entre todos los cuerpos por el

simple hecho de tener cantidad de materia, o masa, y se llama interacción gravita-

cional. El efecto de la interacción gravitatoria son las fuerzas de gravedad o fuerzas

gravitacionales, la cuales siempre son atractivas.

Un ejemplo de la acción de estas fuerzas es la caída de un meteorito, que expe-

rimenta una fuerza que lo jala hacia el centro de la Tierra, a la vez que el meteorito

jala a la Tierra hacia su propio centro. Por supuesto, la masa de estos cuerpos es muy

disímil, por lo que el efecto de la fuerza gravitacional de la Tierra sobre el meteorito,

que es un movimiento ac elerado, es más evidente que la acción inversa. Es importante

resaltar que ambas acciones se producen al mismo tiempo, como se representa en la

FIGURA 59. ay ocasiones en

que el mismo cuerpo (a) ante

fuerzas e poca intensia recu-

pera su forma original, tenieno

un comportamiento elástico (b),

o pue e e ormarse permanen-

temente (c) si la fuerza es e

g ran in tens ia , comportánose

plásticamente.

a

b

c

GLOSARIO

os meteoritos son rocas de diversos

amaños hasta unas pocas decenas

e metros de diámetro) que caen

acia la Tierra sin desintegrarse por

ompleto a causa de la fricción con la

tmósfera terrestre.

S3

Introducción al bloque y al proyecto Secuencia didáctica

Términos científicos resaltados en

negritas, cuyo significado se explica en el

texto sólo la primera vez que aparecen.

Inicio de secuencia. Se incluye, siempre que sea

pertinente, un texto y una actividad Explora para rescatar

ideas previas.

Título del contenido.

Desarrollo del contenido ilustrado

con imágenes referidas en el texto.

Icono que indica

el número delbloque.

Título que agrupa

los contenidos.

Número de secuenciadidáctica.

Fotografía y texto

al pie relacionados

con alguno de los

contenidos de la

secuencia.

Aprendizajes

que se espera

logres al culminarcada secuenciadidáctica.

Aviso representado

por el logo de

la abeja para

empezar a trabajar

los proyectos que elegirás ydesarrollarásdurante elbimestre, junto contus compañeros delgrupo, y con laguía de tu maestro.

Desarrollo de los contenidos

Inicio de contenido

Es importante considerar la planeación del

proyecto a lo largo del bloque, de manera que

su desarrollo se lleve a cabo durante las dos

semanas establecidas para ello.

Textointroductorio

que explica, enforma breve,

la importancia

del bloque.

Las palabras nuevas que enriquecerán tu vocabulario

están resaltadas con color y explicadas en un recuadro

de glosario en la misma página.

Contenidos de la secuencia.

* Nota al pie: Son aclaraciones o complementos de alguna explicación (poco frecuentes).

Page 8: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 8/276

Actividades

Cada tipo de actividad responde a propósitos distintos. En todas se incluye un texto que indica la intención de la

actividad: las habilidades, destrezas o actitudes científicas que desarrollarás y que integran las competenciascientíficas. Más allá de las cuatro modalidades, en todas deberás poner en práctica tus capacidades de obser-

vación, consulta, investigación, comprensión, inferencia, análisis, reflexión y comunicación.

Imágenes, cuadros y gráficas

Cuadros y gráficas. Son otros re-cursos didácticos que complementan

y enriquecen la información de los

textos y actividades.

Imágenes. Se incluyen fotografías,esquemas, dibujos, viñetas, mapas

conceptuales y geográficos, que

complementan la información del

texto, se acompañan con un pie

descriptivo y se identifican con un

número. Todas las imágenes tienen

un pie y están referidas en el texto

para que puedas comprender mejor

los contenidos. Las ilustraciones

dentro de las actividades y al

inicio de cada secuencia no están

numeradas.20 21

B1S1

Para ejemplificar esta idea, hagamos un ejercicio: pensemos que vas a la tienda

desde tu casa, que es el punto de referencia, como se ilustra en la figura 5.

Podemos representar con diferentes líneas los caminos que seguirías para llegar a

la tienda.

FIGURA 5. Croquis del barrio.

Elabora modelos

1. Dibuja el croquis en tu cuaderno y traza dosrecorridos con diferentes colores.• ¿Cuál de los recorridos sería el más largo?

2. Sigue el procedimiento:a. Utiliza un trozo de cordón o alambre

flexible y sigue con él exactamente cadauno de los recorridos dibujados.

b. Estira el cordón cada vez, mídelo y anotala longitud.

c. Compara la longitud de cada recorrido.

3. Ahora, copia en tu cuaderno el croquismodificado de la figura 6 y responde.• Si consideramos que la “manzana” del

centro del barrio es un parque por el quese puede cruzar, ¿escogerías otro caminopara llegar a la tienda?

4. Traza el nuevo camino con una línea.• Este último recorrido, ¿es más corto que

los anteriores? Explica.

FIGURA 6. Croquis del barrio con parque.

Casa

Tienda

Casa

Tienda

Si bien todos los recorridos entre la casa y la tienda parten del mismo punto y

llegan al mismo lugar, unos son más largos que otros, ya que pasan por p osiciones

diferentes (figura 6).

El camino específico que recorre un cuerpo en movimiento se llama trayectoria.

En un marco de referencia cartesiano, la trayectoria de un móvil es un conjunto de

puntos representados en este sistema cartesiano, donde estos puntos son las posicio-

nes sucesivas que dicho móvil ocupa.

Las trayectorias que dibujaste en los croquis tienen diferentes longitudes y fue

posible medirlas. En general, la longitud de la trayectoria recorrida por un móvil se

denomina distancia y se denota con la letra d .

El conocimiento de la trayectoria de un móvil es importante porque los diferentes

tipos de movimiento reciben su nombre a partir de la forma que describen. Así, por

ejemplo, si el conjunto de puntos forma una línea recta o una circunferencia, los mo -

vimientos as ociados a esta s trayectoria s se llaman m ovimiento recti líneo y movim iento

circular, respectivamente (figura 7).

FIGURA 7. Diferentes tipos de

movimiento de una partícula,

determinados a partir de la for-

ma geométrica de su trayectoria.

Los movimientos circular y

parabólico son casos particulares

del movimiento curvilíneo.

FIGURA 8. Representación matemática de un

marco de referencia cartesiano; el punto dereferencia es el origen, marcado con la letra O,

y la trayectoria (marcada como una línea roja)

es la sucesión de puntos que representan las

posiciones ocupadas por el móvil.

FIGURA 10. El movimiento de un automóvil en una carretera recta puede ser descrito en un marco de

referencia unidimensional, es decir, usando sólo un solo eje, llamado el eje x . La trayectoria que seguirá es

una línea recta, marcada en color rojo.

El número de ejes utilizados en el marco de referencia cartesiano depende de cómo

es la trayectoria: si es una línea curva que puede contenerse en un plano, necesita-

mos sólo dos ejes para representarla, como en el caso de la figura 8 que ilustra el

movimiento de un carrito de juguete. En este caso se trata de un movimiento en dos

dimensiones, lo mismo que el movimiento de la Luna en torno a la Tierra que se

aprecia en la figura 9.

Si la trayectoria es un segmento de línea recta, es suficiente con representarla en

un eje. Este movimiento ocurre en una dimensión ( figura 10), y lo llamamos movi-

miento rectilíneo.

FIGURA 9. La trayectoria elíptica

de la Luna alrededor de la

Tierra puede ser descrita en un

espacio de dos dimensiones,es decir, sólo bastan los ejes

x y y , colocando el punto de

referencia (origen) en el centro

de la Tierra.

Trayectoriaelíptica

dela Lunaalrededor

dela Tierra

y

x

Origen

x

o

Trayectoria

y

90°

Movimiento

rectilíneo

Movimiento

parabólico

Movimiento

circular

Movimiento

curvilíneo

x

o

Trayectoria rectilínea

Desplazamiento y distancia

Tanto el desplazamiento como la distancia son magnitudes físicas que se miden con

unidades de longitud, pero ¿acaso es lo mismo desplazamiento que distancia? Inda-

guemos al respecto mediante la experimentación.

Distingue la diferencia entre trayectoria y distancia.

Comunica tus avances en ciencias. Desarrollar destrezas

y habilidades como aplicar expresiones matemáticas,

graficar, dibujar, escribir, elaborar mapas conceptuales, es-

quemas, líneas del tiempo y carteles te permitirá transmitir

los resultados de tus experimentos, opiniones, ideas y, cono-

cimientos y toma de decisiones relacionados con la ciencia.

Si, además, utilizas las TIC (tecnologías de la información y

la comunicación) para tomar fotografías o videos, desarrollar

habilidades en el manejo de los programas de cómputo,investigar en internet distintos contenidos como notas pe-

riodísticas, programas de radio o ver videos, serás capaz de

aprender y comunicar mucho más.

Todas las direcciones electrónicas han sido consultadas

en noviembre de 2013.

Lee más... A lo largo del texto y al final de los poyectos seincluyen sugerencias de “Libros del Rincón”, que son parte dela Biblioteca Escolar y Biblioteca de Aula, y también de otrasfuentes impresas o electrónicas para que a la vez que amplíastu visión del mundo y tu cultura, disfrutes de la lectura.

Invitación para que integres en tu equipo a compañeros concapacidades diferentes y busques la equidad social.

Modalidades

Explora. Al iniciar la mayor parte de los contenidos

podrás aplicar tus aprendizajes y experiencias para

responder preguntas que implican una reflexión individual

o en pareja, lo que te dará la posibilidad de compartir

tus conocimientos previos y aprender de los demás. Al

finalizar una secuencia de contenidos, en la evaluación

parcial, te sugerimos volver a revisar tus respuestas para

que distingas lo que has logrado y reconozcas tu proceso

de aprendizaje.

Experimenta. Siempre organizados en un equipo, que se

sugiere sea de 3 o 4 compañeros, construirás el conoci-

miento a partir del desarrollo de esta parte fundamental

del trabajo científico. Desarrollarás las habilidades nece-

sarias para seguir procedimientos, y para utilizar distintos

instrumentos y herramientas “caseras” y de laboratorio.

Conviene que distribuyan tareas y elijan un lugar espe-

cífico para realizarlas como el laboratorio de la escuela u

otros espacios dentro de ella, sus casas, etcétera.

Elabora modelos. Usarás, en forma individual y en

equipo, diversos materiales, además de dibujos y esque-

mas, para representar y estudiar fenómenos y conceptos,

o construir dispositivos. Tu creatividad al construir

modelos te permitirá desarrollar destrezas y habilidades

científicas y vincular esta experiencia con actividades

experimentales.

6

Sé incluyente

Page 9: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 9/276

B1

Aprendizajesesperados

Para guiarte en la elección de un proyecto que sea de tu interés, te invitamosa leer con tus compañeros de equipo los dos proyectos propuestos para este

primer bloque. Si tienes interés en investigar otros temas puedes ofrecer a tuequipo los argumentos de tu elección, para luego acordar conjuntamente el

tema que investigarán en el proyecto.

PROYECTOS

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR E INNOVAR

INTEGRACIÓN Y AP L ICACIÓN

Sismos y Tsunamis

¿Cómo es el movimiento de losterremotos o tsunamis y de quémanera se aprovecha esta informaciónpara prevenir y reducir riesgos anteestos desastres naturales?

Indonesia

Mozambique

India

Somalia IslasMaldivas

SriLanka

Bangldesh

Myanmar(Birmania)

Kenia

Tanzania IslasSeychelles

Madagascar

SudáfricaOcéano Índico

Banda Aceh

FIGURA 1. lgunos países aec ados por el sunami del 2 . El epicenro esuvo sólo a km de

profundidad, y la rotura de la placa tectónica ocurrió a sólo 1 600 km de distancia de Banda Aceh.

¿ or qué el país aricano de ozambique (marcado en verde prác icamene no recibió el impacodel tsunami?

El tsunami más devastador del que tenemos noticia ocurrió el 2 de diciembre de 2004 en el océanondico, y causó aproximadamente 230 000 muertes, además de incontables personas heridas, afectas

y desp lazadas, sin co ntabili zar las enorme s pérdi das mat eriales . Este evento podría conside rarsecomo la mayor catástrofe natural ocurrida desde hace mucho tiempo, debida, en parte, a la faltade sistemas de alerta temprana en la zona. Los sistemas de alerta de tsunamis se encuentran en elPacífico Norte, pero nadie imaginó que algo así pudiese suceder en el ndico (figura 1).

os sismos son el resultado de una perturbación que se produce cuando las grandes placas queforman la corteza terrestre, llamadas p acas tectóncas , chocan o se deslizan unas debajo de otras.Estas perturbaciones producen ondas mecánicas tanto longitudinales como transversales, e inclusocombinaciones de éstas. Revisen sus libros de Geografía de México y del Mundo.

Dada la importancia que los sismos representan para la vida en general y para las actividadeshumanas, han sido objeto de estudio por disciplinas científicas como la sismología. Uno de susobj e tivos es e e r egis t ra r y me ir a in t ens i a e os s ismos , ón e y c uán o s e pr o uc en, a quéprofundidad se generaron, etcétera.

Un maremoto es un sismo que ocurre en el fondo marino, el cual genera una perturbación en elmar en forma de olas gigantes, conocidas como tsunami . El terremoto que originó el tsunami del2004 tuvo una intensidad de 9.1 grados en la escala de Richter, y es uno de los más poderosos quese han medido. En el norte de Indonesia se formó una pared de agua de 25 metros de altura, que sepropagó a partir del epicentro y penetró en la isla kilómetros desde la costa hacia tierra adentro.

P1

Proyecto

Evaluemos lo aprendido

Es otra modalidad de trabajo colectiva

que integra lo que has aprendido

en el bloque, por lo que es importante

que registres en una bitácora o cuaderno de notas

tus dudas, ideas o comentarios sobre los conteni-

dos que irás abordando a lo largo del bimestre.

El desarrollo del proyecto te dará la oportunidad

de indagar más al respecto y de aplicar lo que hasaprendido.

Para elegir el proyecto pon mucha atención

a los aspectos que se estén desarrollando;

ésta es la etapa inicial para poder planear

el trabajo. Te lo recordaremos a través de “la

abeja”. En el bloque 5 se esbozan más proyectos

que desarrollarán al final del curso.

Para evaluar en forma individual o grupal los aprendizajes alcanzados

en cada bloque; se encuentra antes de los proyectos. Las preguntas

están planteadas mediante algunas situaciones problemáticas del tipo

de las pruebas nacionales (Enlace) e internacionales (PISA).

Apéndice

Encontrarás cuatro secciones:

Unidades de medición. Cuadro que incluye las unidades básicas y

derivadas del Sistema Internacional de unidades (SI).

Bibliografía. Son recomendaciones de lectura para que realices

consultas; una parte está dirigida a ustedes, los estudiantes, y otraa los docentes. También se incluyen las referencias utilizadas y

citadas en este libro.

Autoevaluación. Te servirá

para medir cómo has avanza-

do en conocimientos, proce-

dimientos y actitudes.

Evalúo mi avance. Son

actividades que te permiten reconocer

a través de la coevaluación (con una

pareja) o en grupo lo que

has aprendido respecto a

los contenidos y cómo

lo has logrado. Conviene

que antes de iniciar la

evaluación retomes la

actividad Explora y complementes

tus notas. A partir del resultado de tu evaluación podrás

determinar si debes volver a estudiar alguna parte del

contenido para seguir adelante.

Secciones para evaluación

B1

Evaluemos lo aprendido

1. En el siguiente marco de referencia cartesiano se representa latrayectoria ABCD de un móvil.

.

.

- .

.

- .

. .

. .

. .

.

3. Se presentan a continuación cuatro explicaciones relacionadascon objetos que caen libremente desde la misma altura.

a. Un objeto diez veces más pesado que otro toca el suelo en un

tiempo diez veces menor, ya que los objetos pesados tienenuna tendencia natural a estar sobre el suel o.

b. Varios objetos de diversos tamaños y pesos tocan el suelo conuna pequeña diferencia de tiempo debido sólo a la forma, yaque algunos presentan mayor área expuesta al rozamiento con

el aire.

c. D os ob je

.

.

-

. .

.

.

.

.

.

- .

.

.

.

.

.

.

-

.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

. . . . . . .

B C

D

En losreactivosdel 1 al 6 elige elinciso que corresponda a la respuesta correcta.

Número y título propuesto para

el proyecto, hay dos proyectos

por bloque.

Título sugerido en el programa.

Aprendizajes esperados. Se busca que con el trabajo

por proyectos logres desarrollar

ciertas habilidades, conocimientos, aptitudes y actitudes hacia el

trabajo científico.

Introducción breve, seguida de

las Etapas o fases del proyecto.

l i i l i i l

i i l .

i l i l

i i i l i i .

Evalúo mi avance

i i percatan del

i i i i i i

i i i i . l i li i

l i i l i i

i i i .

i l i i . i i i i

i i .

l i l i i

i i :

i l i i i i i i

i l

l i :

i l l

4. Si l l i l

i l l

i i i l:

i

l l i i i l i i

li l

l i

l l

i l i

l i i

l

l i .

l i l

i l ill

i i l i

l .

l l l

i i i

l l l l

l l l –

i . l l l

:

| |

Autoevaluación Al completar

que corresponda a tu propia evalua

l

I l l i l l il i i l i i

l i .

Referencias de internet. Aquí se incluyen las principales direccio-

nes de internet que te sugerimos para continuar desarrollando tu

aprendizaje. Todas las consultas de las páginas que aparecen en el

libro fueron consultadas en noviembre de 2013. Si ya no encuentras

el vínculo citado puedes hacer una búsqueda en el sitio principal

utilizando palabras clave; te recomendamos que procures consultar

páginas de instituciones de reconocida calidad como universidades

e instituciones públicas.

Dosificación de contenidos. Es una tabla sencilla para que pue-

das saber qué tipo de actividades hay en una secuencia didáctica y

consigas con anticipación los materiales que necesites.

Page 10: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 10/276

Presentación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Conoce tu libro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

BLOQUE 1 La descripción del movimiento y la fuerza . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

El movimiento de los objetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

• Marco de referencia y trayectoria; diferencia entre desplazamientoy distancia recorrida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Punto de referencia y posición . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Marco de referencia y desplazamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Trayectoria y distancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Desplazamiento y distancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

• Velocidad: desplazamiento, dirección y tiempo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Movimiento rectilíneo uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

L a v e l o c i d ad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

La velocidad y la rapidez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

• Interpretación y representación de gráficas de posición-tiempo . . . . . . . . . . . . . . . . . . . . . . . . 30

Las gráficas de posición-t iempo y la velocidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

• Movimiento ondulatorio, modelo de ondas, y explicación de

características del sonido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 El movimiento ondulatorio y las ondas mecánicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Ondas longitudinales y transversales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Características de las ondas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

El sonido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

El trabajo de Galileo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

• Explicaciones de Aristóteles y Galileo acerca de la caída libre . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

El pensamiento aristotélico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

• Aportación de Galileo en la construcción del conocimiento científico . . . . . . . . . . . . . . . . . . . 52 E l en foque de Ga l i l eo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

• La aceleración; diferencia con la velocidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

Aceleración como razón de cambio de la velocidad en el tiempo . . . . . . . . . . . . . . . . . . . . . .57

Movimiento uniformemente acelerado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

• Interpretación y representación de gráficas:velocidad-tiempo y aceleración-tiempo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Representaciones gráficas de movimientos combinados .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Índice de contenido

8

S1

S2

Page 11: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 11/276

La descripción de las fuerzas en el entorno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

• La fuerza; resultado de las interacciones por contacto (mecánicas) y adistancia (magnéticas y electrostáticas), y representación con vectores . . . . . . . . . . . . . . .69

Las interacciones y las fuerzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 La interacción gravitacional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

La interacción electrostática . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Los efectos de los imanes. El magnetismo terrestre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Representac ión vec tor ia l de las fuerzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

• Fuerza resultante, métodos gráficos de suma vectorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

La dirección de la fuerza y la dirección del movimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Suma vec torial de fuerzas por métodos gráficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

• Equilibrio de fuerzas; uso de diagramas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Evaluemos lo aprendido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

P1 • ¿Cómo es el movimiento de los terremotos o tsunamis y de qué manera se aprovecha

esta información para prevenir y reducir riesgos ante estos desastres naturales? . . . . . . . . . . . .93

P2 • ¿Cómo se puede medir la rapidez de personas y objetos en algunos deportes;

por ejemplo, beisbol, atletismo y natación? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

BLOQUE 2 Leyes del movimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

La explicación del movimiento en el entorno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

• Primera ley de Newton: el estado de reposo o movimiento rectilíneo uniforme.La inercia y su relación con la masa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

• Segunda ley de Newton: relación fuerza, masa y aceleración. El newton comounidad de fuerza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

• Tercera ley de Newton: la acción y la reacción; magnitud y sentido de las fuerzas . 111

Efectos de las fuerzas en la Tierra y en el Universo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

• Gravitación. Representación gráfica de la atracción gravitacional.

Relación con caída libre y peso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

• Aportación de Newton a la ciencia: explicación del movimiento en la Tierra

y en el Universo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

La energía y el movimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

• Energía mecánica: cinética y potencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

• Transformaciones de la energía cinética y potencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

• Principio de la conservación de la energía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Evaluemos lo aprendido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

P1 • ¿Cómo se relaciona el movimiento y la fuerza con la importancia del uso

del cinturón de seguridad para quienes viajan en algunos transportes? . . . . . . . . . . . . . . . . . . . . . 142

P2 • ¿Cómo intervienen las fuerzas en la construcción de un puente colgante? .. . . . . . . . . . . . . . . . 144

S3

S1

S2

S3

Page 12: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 12/276

BLOQUE 3 Un modelo para describir la estructura de la materia . . . . . . . . . 146

Los modelos en la ciencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

• Características e importancia de los modelos en la ciencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

• Ideas en la historia acerca de la naturaleza continua y discontinua de la materia: Demócrito, Aristóteles y Newton; aportaciones de Clausius, Maxwell y Boltzmann . . . . 154

Las ideas de Demócri to , Ar istóte les y Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Las aportaciones de Clausius, Maxwell y Boltzmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

• Aspectos básicos del modelo cinético de partículas: partículas microscópicas indivisibles, con masa, movimiento, interacciones y vacío entre ellas . . . . . . . . . . . . . . . 158

La estructura de la materia a partir del modelo cinético de partículas . . . . . . . . . 161

• Las propiedades de la materia: masa, volumen, densidad y estados deagregación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

• Presión: relación fuerza y área; presión en fluidos. Principio de Pascal . . . . . . . . . . . . . . 166

• Temperatura y sus escalas de medición . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

• Calor, transferencia de calor y procesos térmicos: dilatación y formas depropagación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

• Cambios de estado; interpretación de gráfica de presión-temperatura . . . . . . . . . . . . . . . 180

Energía calorífica y sus transformaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

• Transformación de la energía calorífica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

• Equilibrio térmico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

• Transferencia del calor: del cuerpo de mayor al de menor temperatura . . . . . . . . . . . . . 188

Principio de la conservación de la energía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 • Implicaciones de la obtención y aprovechamiento de la energía en las

actividades humanas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

Evaluemos lo aprendido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

P1 • ¿Cómo funcionan las máquinas de vapor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

P2 • ¿Cómo funcionan los gatos h idráulicos? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

BLOQUE 4 Manifestaciones de la estructura interna de la materia . . . . . . 204

Explicación de los fenómenos eléctricos: el modelo atómico . . . . . . . . . . . . . . . . . . . . . . 207

• Proceso histórico del desarrollo del modelo atómico: aportaciones de Thomson, Rutherford y Bohr; alcances y limitaciones de los modelos . . . . . . . . . . . . . . . . 208

• Características básicas del modelo atómico: núcleo con protones y neutrones,

y electrones en órbitas. Carga eléctrica del electrón . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

• Efectos de atracción y repulsión electrostáticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

• Corriente y resistencia eléctrica. Materiales aislantes y conductores . . . . . . . . . . . . . . . . . 218

Los fenómenos electromagnéticos y su importancia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

• Descubrimiento de la inducción electromagnética: experimentos de Oersted

y de Faraday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10

S1

S2

S3

S1

S2

Page 13: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 13/276

• e ectroimán y ap icaciones e e ectromagnetismo . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 228

• Composici n y escomposici n e a uz anca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

• Características e espectro e ectromagn tico y espectro visi e: ve oci a ,

recuencia, ongitu e on a y su re aci n con a energía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

La naturaleza de la luz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

La luz como onda electromagnética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

El espectro electromagnético . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Las ondas electromagnéticas y la energía que transportan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Propagación de las ondas electromagnéticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

• a uz como on a y partícu a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

La energía y su aprovechamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

• ani estaciones e energía: e ectrici a y ra iaci n e ectromagn tica . . . . . . . . . . . . . 245

• tenci n y aprovec amiento e a energía. ene icios y riesgos en a natura eza

y a socie a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

• mportancia del aprovechamiento de la energía orientado al consumo

sustenta e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Evaluemos lo aprendido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

• ¿Cómo se obtiene, transporta y aprovecha la electricidad que utilizamos en casa? . . . . . . . . . 254

• ¿Qué es y cómo se orma el arcoíris? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

LOQUE onoc m ento, soc e a y tecno og a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

n verso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

• eoría e a gran exp osión ; evi encias que a sustentan, a cances y imitaciones . . . . 261

• aracterísticas e os cuerpos cósmicos: imensiones, tipos; ra iaciónelectromagnética que emiten, evolución de las estrellas; componentes

e as ga axias, entre otras. a ía ctea y e o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

• stronomía y sus procedimientos de investigación: observación, sistematizacióne atos, uso e evi encia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

• nteracción e a tecno ogía y a ciencia en e conocimiento e niverso . . . . . . . . . . . . . . 265

royectos: maginar, iseñar y experimentar para exp icar o innovar. ntegración y ap icación . . . . . . . 266

Introducción al trabajo por proyectos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266• La tecnología y la ciencia en los est ilos de vida actual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

• Física y ambiente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

• Ciencia y tecnología en el desarrollo de la sociedad .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

APÉNDICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Unidades de medición. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Bibliografía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Referencias de Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

os cac n e cont s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

r tos conogr cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 272

1

S3

P2

P3 P4

P5 P6 P7

Page 14: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 14/276

12

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

El movimiento de los objetos

• Interpretarás la velocidad como la relación entre desplazamiento y tiempo, y la diferenciade la rapidez, a partir de datos obtenidos de situaciones cotidianas.

Marco de referencia y trayectoria;diferencia entre desplazamientoy distancia recorrida.

• Interpretarás tablas de datos y gráficas de posición-tiempo, en las que describirás y predecirás

diferentes movimientos a partir de datos que obtendrás enexperimentos y/o de situaciones del entorno.

Velocidad: desplazamiento, direccióny tiempo.

• Describirás características del movimiento ondulatorio con base en el modelo de ondas: cresta,valle, nodo, amplitud, longitud, frecuencia y periodo, y diferenciarás el movimiento ondulatorio

transversal del longitudinal, en términos de la dirección de propagación.

Interpretación y representación degráficas posición-tiempo.

• Describirás el comportamiento ondulatorio del sonido: tono, timbre,

intensidad y rapidez, a partir del modelo de ondas.

Movimiento ondulatorio, modelo deondas, y explicación de característicasdel sonido.

El trabajo de Galileo

• Identificarás las explicaciones de Aristóteles y las de Galileo respecto

al movimiento de caída libre, así como el contexto y las formas de proceder que las sustentaron.

Explicaciones de Aristóteles y Galileoacerca de la caída libre.

• Argumentarás la importancia de la aportación de Galileo en la ciencia como una nuevaforma de construir y validar el conocimiento científico, con base en la experimentación

y el análisis de los resultados.

Aportación de Galileo en la construccióndel conocimiento científico.

• Relacionarás la aceleración con la variación de la velocidad en situaciones del entorno

y/o actividades experimentales.

La aceleración; diferencia con lavelocidad.

• Elaborarás e interpretarás tablas de datos y gráficas de velocidad-tiempo

y aceleración-tiempo para describir y predecir características de diferentes movimientos, a partir

de datos que obtendrás en experimentos y/o situaciones del entorno.

Interpretación y representaciónde gráficas: velocidad-tiempo

y aceleración-tiempo.

BLOQUE 1

La descripción delmovimiento y la fuerza

a b c

S1

S2

Page 15: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 15/276

1

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

La descripción de las fuerzas

• Describirás la fuerza como efecto de la interacción entre los objetosy la representarás con vectores.

La fuerza; resultado de las interaccionespor contacto (mecánicas) y a distancia(magnéticas y electrostáticas), y representación con vectores.

• Aplicarás los métodos gráficos del polígono y paralelogramo para la obtención de la fuerzaresultante que actúa sobre un objeto, y describirás el movimiento producido en situaciones

cotidianas.

Fuerza resultante, métodos gráficosde suma vectorial.

• Argumentarás la relación del estado de reposo de un objeto con el equilibrio de fuerzas

actuantes, con el uso de vectores, en situaciones cotidianas. Equilibrio de fuerzas; uso de diagramas.

PROYECTO: Imaginar, diseñar y experimentar para explicar o innovar (opciones)*Integración y aplicación

• Trabajarás colaborativamente con responsabilidad, sol idaridad y respeto en la organización

y desarrollo del proyecto.

• Seleccionarás y sistematizarás la información que es relevante para la investigación planteada

en tu proyecto.

• Describirás algunos fenómenos y procesos naturales relacionados con el movimiento,

las ondas o la fuerza, a partir de gráficas, experimentos y modelos físicos.

• Compartirás los resultados de tu proyecto mediante diversos medios (textos, modelos,

gráficos, interactivos, entre otros).

¿Cómo es el movimiento de losterremotos o los tsunamis,y de qué manera se aprovechaesta información para preveniry reducir riesgos ante estos desastresnaturales.

¿Cómo se puede medir la rapidezde personas y objetos en algunosdeportes; por ejemplo, beisbol,atletismo y natación?

* Revisa la introducción al bloque 5 antes de trabajar con los proyectos.

d f e

(a) Baile, movimiento y ondas. (b) Acelera para ir a mayor velocidad. (c) Desplazamiento lento pero constante. (d) La Tierra y la fuerza magnéticade sus polos. (e) Caída libre, mientras abre el paracaídas. (f) Movimiento, aunque imperceptible, constante.

S3

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturalesdesde la perspectiva científica.

Comprensión de los alcances y limitaciones de la ciencia

y del desarrollo tecnológico en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambientey la promoción de la salud orientadas a la cultura de la prevención.

Page 16: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 16/276

S1

PROYECTO

Conoce el trabajo por proyectos

Al finalizar este bloque podrás trabajar

con tu equipo en un proyecto cuyo

tema elegirán mientras avanzan con los

contenidos del bloque. Pon atenciónpara elegir el tema que más les guste.

Para iniciar este trabajo, revisa

la Introducción al bloque 5, donde se

explica cuáles son las etapas de esta

modalidad de trabajo.

14

EL 2 DE AGOSTO DE 1971 un pequeño módulo se desprendió del Apolo 15

para alunizar en nuestro satélite. Luego de que el comandante David Scott

descendió del “Halcón”, se dispuso la cámara para poder filmar lo que de-

bería ocurrir de acuerdo con las predicciones de un tal Galileo.

El comandante se colocó a cuadro. Sostenía una pluma de halcón que pesa-

ba 0.03 kg en una mano y un martillo de 1.32 kg en la otra. Dejó caer estos

objetos desde la misma altura y al observar lo sucedido exclamó: “¡Qué les

parece! ¡El señor Galileo tenía razón!”

Este memorable episodio nos remite, entre otras cosas, al valor de la expe-

rimentación para comprobar el fenómeno descrito por un hombre en el

siglo XVII que difícilmente podría haber imaginado que el ser humano saldría

jamás al espacio. La descripción y análisis del movimiento de los cuerpos

desarrollada por Galileo, junto con su metodología de trabajo, forman parte

de las habilidades esenciales para la ciencia.

B1

Page 17: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 17/276

1515

El movimiento de los objetos

Marco de referencia y trayectoria; diferenciaentre desplazamiento y distancia recorrida.

Velocidad: desplazamiento, dirección y tiempo.

Interpretación y representación de gráficas deposición–tiempo.

Movimiento ondulatorio, modelo de ondas,y explicación de características del sonido.

El crecimiento de una planta, un parpadeo, la explosión de una estrella, elintercambio de sustancias a través de la membrana de una célula, la rotación de

los planetas sobre su eje o su traslación en torno al Sol, una nube arrastrada por elviento, una hormiga que carga su comida y todo cuanto existe en el Universo, se

relaciona con el movimiento.

• Interpretarás la velocidadcomo la relación entre

desplazamiento y tiempo, y

la diferencia de la rapidez,

a partir de datos obtenidos

de situaciones cotidianas.

• Interpretarás tablas

de datos y gráficas de

posición–tiempo, en

las que describirás y

predecirás diferentes

movimientos a partir dedatos que obtendrás

en experimentos y/o de

situaciones del entorno.

• Describirás características

del movimiento

ondulatorio con base en el

modelo de ondas: cresta,

valle, nodo, amplitud,

longitud, frecuencia y

periodo, y diferenciarás

el movimientoondulatorio transversal

del longitudinal, en

términos de la dirección de

propagación.

• Describirás el

comportamiento

ondulatorio del sonido:

tono, timbre, intensidad

y rapidez, a partir del

modelo de ondas.

Aprendizajes esperados

B1

S1

Page 18: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 18/276

16

S1

•Marco de referencia y trayectoria;diferencia entre desplazamiento y distancia recorrida

El movimiento es un fenómeno universal . Los delfinesson muy ágiles al moverse; su nado y sus saltos sonespectaculares.

Explora

1. Una noche descubres que la Luna se ve detrás de unos ár-boles. El contraste de los troncos y hojas con la Luna es unaescena que te gusta mucho y decides tomar una foto o hacerun dibujo para compartirla, pero en ese instante alguien tellama. Después de cinco minutos regresas a contemplar elespectáculo y ves que los árboles siguen ahí, pero la Luna yano está.

• ¿Qué sucedió?

2. Piensa en una experiencia que implique algún movimiento ycoméntala con tus compañeros.

• ¿Qué relación encuentras entre la posición y el movimiento?

3. Observa la fotografía ¿Cómo describirías el movimiento delos delfines? Anota tu descripción en el cuaderno.

4. Plantea una pregunta sobre el movimiento y compártela contus compañeros.

¿Cómo sabes que la Luna cambió de lugar?

Lee lo siguiente y responde:

Cualquier cambio que notemos en la Naturaleza está asociado a algún tipo de movi-

miento. Esto es importante, porque entendiendo cómo y por qué se mueven las cosas,

comprenderemos una gran cantidad de fenómenos que se presentan en ella.

Por un instante, siéntate y quédate inmóvil. Cierra tus ojos. Durante ese instante, ¿te

moviste? Esta pregunta, aparentemente sencilla, puede despertar algunas preguntas.

Por ejemplo, hay partes de tu cuerpo que se mueven de manera involuntaria, como

tus pulmones al intercambiar gases con la atmósfera o tu corazón al bombear la sangre

que circula por el organismo.

Page 19: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 19/276

17

B1

1. Realiza esta actividad con todo el grupo en el patio de laescuela o en un lugar amplio y sin obstáculos.

Material

• Una gorra u otro objeto que identifique al conductor de untren.

Procedimiento

a. Formen dos equipos: A y B.

b. El equipo A formará una fila. Todos sus integrantes miraránen la misma dirección y cada uno apoyará sus manos en loshombros del que esté delante de él. Se desplazarán todos

juntos en línea, como lo hace un tren. El primer integrante

de la fila será la locomotora y llevará la gorra. La locomoto-ra elegirá una dirección determinada y avanzará con pasouniforme, es decir, procurando que cada paso tenga lamisma longitud que el anterior y dure el mismo tiempo, detal manera que caminen a un ritmo constante. Los demás loseguirán sin soltarse.

c. El equipo B, por su parte, distribuirá a sus integrantes endiferentes puntos del área por donde pasará “el tren”.Todos permanecerán quietos en su posición y observaránel movimiento del equipo A.

d. Observen el movimiento de la locomotora, sin perderla devista durante el recorrido.

Resultados

1. Cada integrante del equipo elaborará una descripción delmovimiento del “tren”.

2. Compartan y comparen sus descripciones, después elijan laque, según su criterio, represente mejor el movimiento de lalocomotora.

3. Anoten su descripción, por equipo, en una tabla como la quese muestra:

Análisis de resultados

• ¿En qué coinciden y en qué se diferencian las descripcionesA y B?

• ¿Cuál de las descripciones es correcta? ¿Por qué?

• ¿Puede haber más de una descripción correcta del mismomovimiento? ¿En qué condiciones? Expliquen su respuesta.

Conclusión

1. Respondan en su cuaderno:

• ¿Cuál consideran que es el propósito de esta actividad?

2. Después, en grupo y con el apoyo del maestro comenten surespuesta.

Elabora modelos

Describe el movimiento de un tren.

La locomotora mueve al tren.

Equipo Descripción del movimiento

A

B

Si ignoramos estos movimientos internos, aún podemos preguntar: ¿te moviste? Pa-

rece que en este momento la respuesta puede ser contundente: “No me moví durante

ese lapso”. Desde luego, no te moviste respecto a la silla o la habitación en la que

te encuentras. Sin embargo, si este mismo ejercicio lo haces a bordo de un vehículo,

¿tu respuesta sería distinta?

Veamos este planteamiento más de cerca.

En la actividad anterior pudiste apreciar que las descripciones del movimiento pue-

den variar si se eligen diferentes puntos fijos como referencia. Ahora vamos a definir

algunos conceptos para hacer descripciones más precisas.

Page 20: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 20/276

18

S1

Punto de referencia y posición

¿Cómo ubicamos exactamente el lugar que ocupa un objeto en cada momento? Como

notaste en la actividad del tren, es necesario definir un punto de referencia que nos

ayude a describir el movimiento e indique respecto a qué lugar de origen se localiza

en cada momento. No existe, sin embargo, un punto de referencia privilegiado o úni -co, como se desprende también de la misma actividad. Cada observador puede elegir

el punto de referencia que considere conveniente, siempre y cuando no lo cambie. Si

necesitas saber dónde estás, o reconocer que te has movido, ¿sería adecuado cambiar

constantemente el punto de referencia? ¿Qué consecuencias tendría este cambio de

referencia en la descripción del movimiento?

En general, el punto de referencia es el lugar que fijamos para describir un movi-

miento, y la posición de un objeto es el lugar que ocupa éste en el espacio respecto

a un punto de referencia.

Nosotros elegimos el punto de referencia en todos los casos, con la única condición

de que se mantenga fijo. Desde este punto localizamos el lugar donde se encuentranlos objetos, es decir, les asignamos una posición inicial y una final. Podemos afirmar

que un objeto se ha movido si su posición cambia con respecto a un punto de refe-

rencia. De lo contrario, decimos que el objeto permaneció en reposo. El movimiento,

entonces, se define como el cambio de posición de un objeto respecto a un punto de

referencia cuando transcurre el tiempo.

Marco de referencia y desplazamiento

Podemos representar el punto de referencia que elegimos para hacer la descripción

de un movimiento en el espacio en el cual está contenido, y localizar los objetos enmovimiento mediante números o coordenadas en dicho espacio. En conjunto, el punto

de referencia y el espacio en el cual está contenido constituyen un marco de refe-

rencia. La descripción de un marco de referencia fue propuesta, mediante un modelo

matemático, por el filósofo y matemático francés René Descartes, razón por la que se

le suele llamar “marco de referencia cartesiano” o “sistema cartesiano”.

En el caso más general para describir el movimiento, se requieren tres ejes per-

pendiculares entre sí, que indican las tres posibles direcciones en el espacio hacia

las que puede moverse un cuerpo. Por ejemplo, si inflamos un globo y lo soltamos,

el globo se moverá, respecto de un punto, hacia adelante, hacia atrás, hacia arriba,

hacia abajo y hacia la izquierda y la derecha. La dirección adelante-atrás se representa

en uno de los ejes, la dirección arriba-abajo en otro eje perpendicular al primero y

la dirección izquierda-derecha en un tercer eje perpendicular a los dos anteriores,

como se muestra en la figura 1. En un sistema cartesiano es usual referirse al punto

de referencia como “origen”.

En el estudio del movimiento es común referirse a todo objeto que se mueve como

móvil , independientemente de su forma, consistencia o volumen. Así, un ser vivo, un

coche o un astro son considerados móviles cuando cambian de posición. Por lo general

fijamos la atención en un solo punto del móvil para describir el movimiento de todo

el objeto.

FIGURA 1. Esta representaciónmediante tres rectas numéricasperpendiculares entre sí, llama-das ejes coordenados, se llamaespacio cartesiano, o marcode referencia cartesiano tridi-mensional. Los ejes se suelenidentificar con las letras x , y y z ,y su punto de intersección es el

origen, en este caso el O.

z

y

1 2 3 4

–4 –3 –2 –1

–1

–2

–3

4

3

2

1

x

–1–2

–3

–4

1

2

3

O

Page 21: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 21/276

19

B1

En un marco de referencia, la posición se representa como una flecha que va desde

el origen o punto de referencia a la ubicación del móvil, como en la figura 2. Esta fle-

cha se denomina vector de posición. Todo vector tiene ciertos atributos, por ejemplo

su dirección, que se define como el ángulo que forma con el eje x la línea recta que

contiene al vector; su sentido, que es el extremo del vector o hacia dónde apunta, y su

longitud, que es proporcional a la separación entre el punto de referencia y la posición

del cuerpo. La longitud de un vector suele llamarse módulo del mismo, aunque a veces

se le denomina magnitud o intensidad.

Cuando queremos hacer énfasis en que una magnitud es vectorial, es común poner-

le una flechita sobre la letra que la representa. Así, la posición puede denotarse con →r .

Si consideramos una rana ubicada en una hoja de un charco que salta hacia una

piedra en la orilla, podemos llamar→

r i al vector de posición incial y→

r f a su posición

final, como se muestra en la figura 3. Llamamos desplazamiento al cambio de po-

sición entre la posición final y la posición inicial. El desplazamiento es también un

vector representado por la flecha que une directamente la posic ión inicial con la final.Podemos denotarlo como→

D y el modelo matemático para determinarlo es→

D =→

r f –→

r i .

Cuando ocurre que tanto el punto de referencia como las posiciones inicial y final

quedan en una misma recta, es suficiente usar una recta numérica para representarlos,

lo mismo que el vector de desplazamiento. El vector de posición suele denotarse, en

este caso, como → x . Fíjate en la figura 4.

El módulo del vector desplazamiento se calcula como el valor absoluto del valor

de la posición final menos el de la inicial. En este caso D = | x f – x i | = |9 m – 4 m|

= |5 m| = 5 m.

Nota que en este caso no ponemos f lechas de vector porque estamos calculando el

módulo del vector desplazamiento. Si el móvil se desplaza hacia la derecha, lo indi-

camos con un signo positivo (como en este ejemplo), y si lo hace hacia la izquierda,

asignamos un signo negativo al módulo del desplazamiento.

Trayectoria y distancia

No todos los movimientos en la Naturaleza se dan a lo largo de una línea recta: vemos

acróbatas haciendo piruetas, clavadistas describiendo curvas en su trayecto del tram-

polín al agua, o al balón que pateamos realizando rotaciones y curvas complicadas en

el aire. Para describir un movimiento como éstos se requiere especificar la dirección

y el sentido del movimiento en cada punto de su recorrido.

FIGURA 2. El vector de posiciónpuede denotarse con cualquierletra con una pequeña flechaarriba; en este caso el vector→r ubica la posición en las coor-denadas ( x , y , z ) en un marcode referencia cartesiano. Ladirección y el sentido del vector→r se pueden definir midiendo el

ángulo que dicho vector formacon el eje x . El extremo delvector de posición es justamen-te la ubicación de un cuerpo enun momento determinado.

FIGURA 3. El desplazamiento dela rana se representa medianteel vector que conecta laposición inicial

r i con la posiciónfinal →r f . En esta figura, la flecharoja representa el vectorde posición inicial, la flechaverde el vector de posición

final y la negra el vector dedesplazamiento.

Posición final

Posición inicial

r i

r f

Punto de referencia

z

y

x

r

0 1 2 3 4 5 6 7 8 9 10

x x i x f Origen

D

FIGURA 4. Representación del vector de posición inicial (en color verde, y denotado con → x i y del de posición

final (en color rojo, y denotado con → x f ) de un móvil en un marco de referencia que es una recta numérica,

donde cada unidad corresponde a un metro. Nota que en este caso la posición inicial no coincide conel origen. El vector del desplazamiento entre estas posiciones está en color azul y se denotó con

D. Porclaridad se ha colocado arriba de la recta numérica, pero su lugar correcto es sobre la misma, al igual quelos vectores de posición.

GLOSARIOEl valor absoluto de un número es

dicho número sin el signo; por ejemplo

|3| = 3, y |–3| = 3.

Page 22: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 22/276

20

S1

Para ejemplificar esta idea, hagamos un ejercicio: pensemos que vas a la tienda

desde tu casa, que es el punto de referencia, como se ilustra en la figura 5.

Podemos representar con diferentes líneas los caminos que seguirías para llegar a

la tienda.

FIGURA 5. Croquis del barrio.

Elabora modelos

1. Dibuja el croquis en tu cuaderno y traza dosrecorridos con diferentes colores.• ¿Cuál de los recorridos sería el más largo?

2. Sigue el procedimiento:a. Utiliza un trozo de cordón o alambre

flexible y sigue con él exactamente cadauno de los recorridos dibujados.

b. Estira el cordón cada vez, mídelo y anotala longitud.

c. Compara la longitud de cada recorrido.

3. Ahora, copia en tu cuaderno el croquismodificado de la figura 6 y responde.• Si consideramos que la “manzana” del

centro del barrio es un parque por el quese puede cruzar, ¿escogerías otro caminopara llegar a la tienda?

4. Traza el nuevo camino con una línea.• Este último recorrido, ¿es más corto que

los anteriores? Explica.

FIGURA 6. Croquis del barrio con parque.

Casa

Tienda

Casa

Tienda

Si bien todos los recorridos entre la casa y la tienda parten del mismo punto y

llegan al mismo lugar, unos son más largos que otros, ya que pasan por posiciones

diferentes (figura 6).

El camino específico que recorre un cuerpo en movimiento se llama trayectoria.

En un marco de referencia cartesiano, la trayectoria de un móvil es un conjunto de

puntos representados en este sistema cartesiano, donde estos puntos son las posicio-

nes sucesivas que dicho móvil ocupa.

Las trayectorias que dibujaste en los croquis tienen diferentes longitudes y fue

posible medirlas. En general, la longitud de la trayectoria recorrida por un móvil se

denomina distancia y se denota con la letra d .

El conocimiento de la trayectoria de un móvil es importante porque los diferentes

tipos de movimiento reciben su nombre a partir de la forma que describen. Así, por

ejemplo, si el conjunto de puntos forma una línea recta o una circunferencia, los mo-

vimientos asociados a estas trayectorias se llaman movimiento rectilíneo y movimiento

circular, respectivamente (figura 7).

FIGURA 7. Diferentes tipos demovimiento de una partícula,determinados a partir de la for-ma geométrica de su trayectoria.Los movimientos circular yparabólico son casos particulares

del movimiento curvilíneo.

Movimiento

rectilíneo

Movimiento

parabólico

Movimientocircular

Movimiento

curvilíneo

Distingue la diferencia entre trayectoria y distancia.

Page 23: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 23/276

21

B1

FIGURA 8. Representación matemática de unmarco de referencia cartesiano; el punto dereferencia es el origen, marcado con la letra O,y la trayectoria (marcada como una línea roja)es la sucesión de puntos que representan las

posiciones ocupadas por el móvil.

FIGURA 10. El movimiento de un automóvil en una carretera recta puede ser descrito en un marco dereferencia unidimensional, es decir, usando sólo un solo eje, llamado el eje x . La trayectoria que seguirá esuna línea recta, marcada en color rojo.

El número de ejes utilizados en el marco de referencia cartesiano depende de cómo

es la trayectoria: si es una línea curva que puede contenerse en un plano, necesita-

mos sólo dos ejes para representarla, como en el caso de la figura 8 que ilustra el

movimiento de un carrito de juguete. En este caso se trata de un movimiento en dos

dimensiones, lo mismo que el movimiento de la Luna en torno a la Tierra que se

aprecia en la figura 9.

Si la trayectoria es un segmento de línea recta, es suficiente con representarla en

un eje. Este movimiento ocurre en una dimensión (figura 10), y lo llamamos movi-miento rectilíneo.

FIGURA 9. La trayectoria elípticade la Luna alrededor de laTierra puede ser descrita en unespacio de dos dimensiones,es decir, sólo bastan los ejes

x y y , colocando el punto dereferencia (origen) en el centrode la Tierra.

200

190

180

170

160150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Edad en años

E s t a t u r a ( c m )

x

o

Trayectoria

y

90°

x

o

Trayectoria rectilínea

Desplazamiento y distancia

Tanto el desplazamiento como la distancia son magnitudes físicas que se miden con

unidades de longitud, pero ¿acaso es lo mismo desplazamiento que distancia? Inda-

guemos al respecto mediante la experimentación.

Page 24: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 24/276

22

S1

Material

• Lápiz y papel

Procedimiento

a. Formen equipos y realicen esta actividad en el patio de laescuela o en un lugar amplio.

b. En cada equipo fijen un punto de partida y uno de llega-da. El punto de partida, o posición inicial, será también elorigen de su marco de referencia.

c. Cada integrante del equipo irá del punto de partida alpunto de llegada (meta) caminando en una trayectoriadistinta, con pasos de “gallo-gallina”. Su pie será entoncesla unidad de longitud, y cada quién debe contar los pasosde “gallo-gallina” que tuvo que dar para llegar del punto

de partida a la meta.d. Acuerden grupalmente una estrategia para lograr que

el patrón de medida sea siempre el mismo en todas lastrayectorias.

e. Acuerden qué integrante del equipo realizará el recorridodirecto en línea recta entre el origen y la meta. Éste cami-nará de la misma manera que todos los demás (con pasode “gallo-gallina”) y también contará sus pasos.

Mide desplazamientos y distancias.

Experimenta

Para dar los pasosde “gallo-gallina”hay que colocar eltalón de un pie enel punto de partiday a continuación eltalón del otro pie

justo en la puntadel primer pie, yasí sucesivamente.

Nombre del integranteDistancia recorrida (longitudde la trayectoria) en “pasos”

Tipo de trayectoria

Rectilínea

Curvilínea

Curvilínea

Curvilínea

2. Representen en una recta numérica el punto de referencia(origen), la posición inicial que coincide con el origen, y la

posición final o meta.3. Tracen el vector desplazamiento como la flecha que conecta

la posición inicial con la final.

4. Midan la longitud del vector desplazamiento con base en lasunidades de la recta numérica sobre la que está representa-do el movimiento.

Análisis de resultados

• ¿Cuál de las trayectorias tiene la menor longitud?

• ¿Puede haber otra trayectoria con menor longitud que la dela respuesta anterior? ¿Por qué?

• ¿Cuál de los integrantes recorrió la menor distancia entre elorigen y la meta? Expliquen su respuesta.

1. Calculen el módulo del desplazamiento total como la dife-rencia entre las posiciones final e inicial (en pasos) para cadaparticipante. Por ejemplo, el módulo del desplazamientoilustrado en la figura anterior sería:

Posición final – posición inicial = 6 pasos – 0 pasos = 6 pasos.

• ¿En cuál de las trayectorias coincide el módulo del despla-zamiento con la distancia recorrida?

• La longitud del vector desplazamiento o módulo, ¿es elmismo para todos los integrantes del equipo? ¿Por qué?

• ¿Es el módulo del desplazamiento independiente de latrayectoria? Justifiquen su respuesta.

• ¿Es la distancia recorrida independiente de la trayectoria? Justifiquen su respuesta.

Conclusión

1. Expliquen con sus palabras cuál es la diferencia entre distan-cia y módulo del desplazamiento.

2. Compartan sus reflexiones con su maestro y los demás com-pañeros.

Resultados

1. En una tabla como la siguiente, cada integrante del equipoanotará la longitud de su trayectoria en “pasos”. Coloquen

un asterisco en el dato que indique la longitud de la trayec-toria que ocurrió en línea recta.

Page 25: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 25/276

23

B1

Trayectoria Desplazamiento

Nos da información relacionadacon el movimiento.

Semejanzas

Nos da información relacionada con elmovimiento.

Requiere un punto de referenciapara su descripción.

Requiere un punto de referencia para sudescripción.

Puede representarse en un sistemade referencia cartesiano.

Puede representarse en un sistema dereferencia cartesiano.

Nos da información detallada sobreun movimiento, pero no siempre es fácil

medir o calcular su longitud.

Diferencias

Sólo nos indica el cambio neto de posición,pero es muy fácil medirlo o calcularlo.

Es el conjunto de puntos formado por lasposiciones sucesivas que ocupa un móvil.

Es el vector que conecta únicamente laposición final con la posición inicial, eindica cuál fue el cambio de posición.

Pueden existir infinidad de trayectoriasposibles entre dos posiciones dadas.

El desplazamiento entre dosposiciones dadas es siempre el mismo,independiemente de la trayectoria.

Puede ser rectilínea o curvilíneay no es un vector.

El desplazamiento es un vector, y losvectores se representan mediante flechas,que son segmentos de recta con una puntaque indica el sentido.

Su longitud es la distancia recorrida. Esta distanciaes siempre un número positivo, y depende dela trayectoria seguida, pero da lo mismo si la

trayectoria se recorre de ida o de vuelta.

Su longitud es el módulodel desplazamiento.

Evalúo mi avance

1. Si dos observadores se percatan del mismo movimiento conreferencias diferentes, sus descripciones no coincidirán. Estono le quita validez a ninguna de las descripciones; en otraspalabras, un movimiento puede ser descrito de distintas

maneras.• Proporciona otro ejemplo de un objeto en movimiento.

• Describe ese movimiento desde dos puntos de referenciadistintos.

2. Reflexiona antes de contestar en tu cuaderno el siguientecuestionamiento:

• ¿Es posible describir un movimiento sin considerar referen-cia alguna?

3. Observa la figura y contesta:

• ¿Se ha movido la rana? ¿Cómo lo sabes?

4. Si la rana salta hacia la pie-dra y luego regresa al puntoinicial:

• ¿Cómo sabrías que se hamovido?

• ¿Cuál es la posición final?

• ¿Cuántos movimientosrealizó la rana?

• ¿Cuál fue su trayectoria encada uno?

• ¿Cuál fue su desplaza-miento total considerandolos dos movimientoscomo uno solo?

5. Comenta tus conclusiones con tus compañeros.

Una rana se encuentra en unahoja de un charco y salta haciala piedra en la orilla . En unsegundo movimiento, regresade la piedra a la hoja.

A part ir de lo que han discut ido sobre trayectoria, desplazamiento, distancia y

módulo del desplazamiento, podemos construir un organizador gráfico con las seme-

janzas y diferencias:

Como te habrás dado cuenta, la longitud de una trayectoria es la mínima posible

sólo cuando es rectilínea.

Page 26: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 26/276

24

S1

Experimenta

Material

• 1 balín o canica ligeramente engrasado

• 1 riel o canaleta de aluminio de 1.5 m de largo

• 2 reglas de 30 cm de madera o plástico, pegadas entre sí alo largo, de manera que formen un ángulo recto.

• 1 flexómetro o cinta métrica con el cual se pueda medir unalongitud de 1 mm como mínimo y 3 m como máximo.

• 1 cronómetro con el que se pueda medir un intervalo detiempo de 0.1 s como mínimo. Muchos relojes digitales yteléfonos celulares incluyen la función de cronómetro.

Procedimiento

a. Coloquen el riel sobre una mesa o el piso, de tal forma quequede horizontal (es recomendable engrasarlo ligeramente).

b. Pongan una marca en uno de los extremos del riel, y a

partir de ésta, hagan otras cinco marcas cada 30 cm, de talforma que la última marca quede justo en el otro extremo.

c. Coloquen las reglas pegadas entre sí en uno de los extre-mos del riel a modo de rampa. La idea es que el balín ocanica ruede a lo largo de las reglas y luego sobre el riel,hasta llegar al extremo que tiene una marca.

d. Realicen pruebas iniciales para cerciorarse de que el balínsí recorre todo el riel, inclinando las reglas sólo lo mínimopara que el balín ruede por todo el riel sin necesidad deempujarlo. Cuando consigan esta inclinación mínima, fijenla rampa al extremo del riel.

e. Especifiquen un recorrido desde la posición 0 cm (el ori-

gen) hasta la posición 30 cm, suelten el balín desde laparte superior de la rampa y tomen el tiempo desde queempieza a rodar sobre el riel hasta que llega a la posiciónde 30 cm.

f. Repitan lo anterior para la posición de 60 cm y así sucesi-vamente, hasta cubrir la longitud del riel. Obtendrán cincomediciones.

Registro de datos

Denoten la posición con x y el tiempo con la letra t y organicenlos datos en una tabla como la siguiente:

t (s) x (cm)

0 0

30

60

90

120

150

Análisis de resultados• ¿Qué tipo de movimiento describió el balín según su

trayectoria? (Considerando sólo el movimiento del balínsobre el riel).

1. En su cuaderno, completen una tabla como la siguiente apartir de sus mediciones.

En la tabla se han calculado los cambios o incrementosen posición, denotados esta vez con ∆ x y que correspondenal módulo de los desplazamientos parciales, como ladiferencia entre dos posiciones sucesivas.

Describe un movimiento rectilíneo midiendo la posición y el tiempo de un móvil.

Así queda armado el riel con la rampa. Recuerden que nodeben arrancar el cronómetro hasta que el balín hayaempezado a bajar por la rampa y pase por la posición inicial.

> Continúa en la página siguiente

•Velocidad: desplazamiento, dirección y tiempo

Para describir un movimiento no es suficiente saber cuál fue su desplazamiento, cuál

fue la distancia recorrida y cómo fue la trayectoria. Es importante también conocer el

tiempo que transcurrió durante el mismo, ya que no es igual, por ejemplo, llegar de tu

casa a la escuela en diez minutos que en una hora, aunque tomes la misma ruta. ¿Quémagnitud física relaciona el desplazamiento con el tiempo? Para explorar al respecto,

realiza el siguiente experimento.

Page 27: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 27/276

25

B1

»

2. Ahora calculen los intervalos de tiempo que correspondena cada desplazamiento parcial, denotados con ∆t . Para ello,resten el valor del tiempo inicial (t 1) al valor del tiempo

final (t 2) de cada desplazamiento parcial del valor inicial delmismo, como se muestra en la tabla.

t (s) ∆t = t f – t (s) x (cm) ∆ x = x 2 – x 1 (cm)

0 -------- 0 -------

30 30 – 0 = 30

60 60 – 30 = 30

90 90 – 60 = 30

120 120 – 90 = 30

150 150 – 120 = 30

Conclusiones

1. Contesten a partir del análisis de la tabla:

¿Qué significa su respuesta anterior en relación con el mo-vimiento del balín en tramos de 30 cm? Elijan la respuestaque consideren más apropiada:

a. Se desplazó en intervalos de tiempo idénticos.

b. Se desplazó en intervalos de tiempo muy similares.

c. Se desplazó en intervalos de tiempo muy diferentes.

• ¿Cómo llamarían al tipo de movimiento del balín deacuerdo con su trayectoria y con la relación entrelos intervalos de tiempo y los desplazamientos parciales?

2. Compartan sus resultados con su maestro y los compañerosde otros equipos.

Movimiento rectilíneo uniforme

De acuerdo con lo que observamos en la actividad, decimos que el movimiento fue

uniforme, es decir, se produjeron desplazamientos iguales en tiempos iguales. Por

ejemplo, suponiendo que el balín recorrió 30 cm en un segundo, entonces en dos

segundos avanzará 60 cm, en tres 90 cm, y así sucesivamente. Lo anterior significa

que conforme el tiempo transcurre, el módulo del desplazamiento también aumentaen la misma proporción.

Si reunimos en una sola frase las características del movimiento del balín (figura 11),

en cuanto a que su trayectoria fue rectilínea y se efectuó de manera uniforme, di-

remos que el balín tuvo un movimiento rectilíneo uniforme. Analizar este tipo de

movimiento favorece considerablemente la comprensión profunda del fenómeno del

movimiento en sí.

FIGURA 11. Ejemplo de movimiento rectilíneo uniforme. En el primer segundo, el balín se desplaza30 centímetros, pues pasa de la posición 0 cm a la posición 30 cm. Durante el siguiente segundo,pasa de la posición 30 cm a la posición 60 cm, lo que nos permite predecir cómo será su movimiento.

¿En qué posición se encontrará en el segundo 3?

Distancia(centímetros)

0 10 20 30 40 50 60

0 1 2 4

Tiempo(segundos)

Vector de desplazamiento

Page 28: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 28/276

26

S1

La velocidad

Como hemos visto, en cualquier movimiento el desplazamiento de un móvil y el

tiempo están relacionados. Existe una magnitud física para denominar esta relación,

llamada velocidad , que nos indica qué tanto se desplazó un móvil en un intervalo de

tiempo determinado. Intuitivamente, sabemos que si un móvil tiene un gran desplaza-miento en un tiempo breve, su velocidad es “grande”, y viceversa. Por ejemplo, si una

hormiga avanza a lo largo de un sendero recto durante 15 minutos a ritmo constante

y sin detenerse, es pos ible que se desplace unos 250 metros. ¿Cómo calculamos su

velocidad?

Representemos ese desplazamiento sobre un eje (figura 12).

A pa rt ir de la repr esen taci ón an te rior sabemos que la posi ci ón fina l x f está

250 metros a la derecha de la posición inicial x i por lo que el desplazamiento total

es el cambio en la posición, denotado con ∆ x . En general, el cambio en el valor de

una variable se denota algebraicamente con la letra griega “delta” mayúscula, que se

escribe precisamente como ∆. Así, si escribimos ∆ t , nos referimos al cambio en la

variable “tiempo”, o si ponemos ∆ l nos referiríamos al cambio en la variable l , que

puede representar la longitud del lado de una figura geométrica, etcétera. El caso es

que para calcular el cambio en cualquier variable, sólo tenemos que restar un valor

final o posterior a un valor inicial o anterior. Como el desplazamiento es justamenteel cambio en la posición, y el desplazamiento total el cambio entre la posición inicial

y la final, podemos calcular su módulo así :

∆ x |x f x i |

En nuestro ejemplo, entonces,

∆ x |250 m 0 m| 250 m (le asignamos signo positivo porque va hacia la dere-

cha en la dirección horizontal o del eje x ).

Igualmente, el intervalo de tiempo viene dado por:

∆ t

t f

t i

Es decir,

∆ t 15 min – 0 min = 15 min.

Observa que siempre incluimos las unidades de medida en los cálculos.

El desplazamiento se relaciona con el intervalo de tiempo mediante la velocidad,

que indica qué tanto se desplaza un móvil en un intervalo de tiempo. En términos

algebraicos, esta relación se expresa como:

∆→ x

→v ——

∆t

220 240 260 280 300

x f

0 20 40 60 80 100 120 140 160 180 200

x i Desplazamiento (en metros)

–20

x

FIGURA 12. Esquema del vectorde desplazamiento de un móvilque se mueve en línea rectapartiendo del origen.

Page 29: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 29/276

27

B1

La velocidad es también un vector, pues el desplazamiento lo es, por lo que se

trata de otra magnitud que necesita definirse no sólo con un valor numérico; hay que

especificar, también, la dirección y el sentido. De hecho, el vector velocidad tiene la

misma dirección y sentido que el vector desplazamiento.

Calculemos entonces el módulo de la velocidad en el ejemplo descrito:

∆ x 250 mv —— ———— 16.66 m/min

∆t 15 min

Por lo tanto, diremos que la velocidad media fue de 16.66 m/s, en línea recta hacia la

derecha. Observa que las unidades de la velocidad son unidades de desplazamiento

(longitud) entre unidades de tiempo.*

Es usual referirnos a la velocidad calculada como el desplazamiento total entre el

intervalo total de tiempo como velocidad media. Si la calculamos considerando des-

plazamientos e intervalos parciales, le llamamos simplemente velocidad.

Es momento de retomar la actividad anterior.

* N. del E.: Consulta el cuadro sobre unidades de medición que se encuentra al final del libro, en el Apéndice.

1. Calcula el módulo de la velocidad en cada segmento de 30 cm. Esto es muy sencillo, pues yacuentas con los cambios en la posición y los intervalos de tiempo. Completa la tabla de sucuaderno añadiéndole la columna sombreada:

t (s) ∆t = t f – t i (s) x (cm) ∆ x = x 2 – x 1 (cm) v = ∆ x —

∆t (cm/s)

0 -------- 0 -------

30 30 – 0 = 30

60 60 – 30 = 30

90 90 – 60 = 30

120 120 – 90 = 30

150 150 – 120 = 30

2. Con base en tus cálculos, contesta en tu cuaderno:

• ¿Es muy semejante el valor de la velocidad en cada segmento?

• ¿A qué consideran que se deben las pequeñas diferencias?

• ¿Puede aproximarse el movimiento del balín a un movimiento rectilíneo uniforme?¿Por qué?

3. Calculen la velocidad media del balín como:∆ x x f – x i

v = —— = ———— ∆t t f – t i

, donde ∆ x es en esta ocasión

el módulo del desplazamiento total, es decir, la diferencia entre la posición final y la posición

inicial: ∆ x | x f x i | = |150 cm – 0 cm| = 150 cm hacia la derecha, por lo que asignamos

signo positivo, y ∆ t es el intervalo total de tiempo t f t

i .

4. Comenten en cada equipo qué tan diferente o semejante es este valor de la velocidad mediadel balín respecto de los valores de las velocidades en cada segmento de 30 cm.

Calcula la velocidad.

Elabora modelos y comunica tus avances en ciencias

Page 30: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 30/276

28

S1

La velocidad y la rapidez

En la vida cotidiana es frecuente que utilicemos términos que se refieren al movimien-

to como sinónimos; así, como hemos comentado antes, “desplazamiento” se consi-

dera sinónimo de “distancia”, si bien en el marco de la física no son lo mismo. Algo

semejante sucede con los términos “velocidad” y “rapidez”. En apariencia significanlo mismo, pero no es así.

De la misma manera en que la velocidad se define como el desplazamiento con

respecto al tiempo en que se efectúa, la rapidez media se define como la longitud de

la trayectoria, o distancia que recorre un móvil con respecto al tiempo que dura este

recorrido. Por ejemplo, la rapidez del balín si éste recorre una distancia de 150 cm en

un tiempo de 5 s, es de 30 cm/s. Podemos formular matemáticamente el concepto de

rapidez media con ayuda de la ecuación:

s =d

—t

Donde s es la rapidez media, d la distancia y t el tiempo.

Como la rapidez media es el cociente entre dos magnitudes que tienen sólo valor

numérico, llamadas magnitudes escalares (distancia y tiempo), es en sí misma tam-

bién una magnitud escalar, que sólo nos da una idea de qué tan “rápido” o “lento”

avanza un móvil, pero no nos dice si el móvil se acerca o se aleja del origen o punto

de referencia.

Supongamos que medimos dos tiempos y dos distancias para el balín:

t (s) d (cm)

0.5 30.0

0.8 40.0

¿Cuál es su rapidez entre los 0.5 s y los 0.8 s?

Los datos nos dicen que cuando ha transcurrido un tiempo de 0.5 s, el balín ha

recorrido 30 cm a partir del punto de referencia (el borde izquierdo del riel), y al cabo

0.8 s ha cubierto una distancia de 40 cm.

Para determinar la duración de este movimiento, restamos el tiempo inicial del

tiempo final:

t 0.8 s 0.5 s 0.3 s.

De manera similar, calculamos la distancia recorrida por el balín en este intervalo

de tiempo restando la distancia inicial de la distancia final:

d 40 cm 30 cm 10 cm.

Por lo tanto, la rapidez media en ese tramo es:

d 10 cms — ——— 33.3 cm/s

t 0.3 s

Page 31: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 31/276

29

B1

Notemos que la rapidez no es un vector, sino sólo es un valor numérico cuyas

unidades son de longitud entre tiempo.

La rapidez media de un móvil depende de la trayectoria. Esto se hace evidente si

consideramos un movimiento que ocurre en el mismo intervalo de tiempo a lo largo

de dos trayectorias, una curvilínea y otra rectilínea. Si los puntos iniciales y finales

de las trayectorias coinciden, la trayectoria curvilínea tiene mayor longitud que la

rectilínea, por lo que la distancia recorrida es diferente, lo que se traduce en un valor

diferente de la rapidez. Observa la figura 13.

Trayectoria

Desplazamiento

FIGURA 13. Cuando la trayectoriade un móvil es curva, tenemosuno de los casos en que lalongitud de la trayectoria o

distancia es diferente delmódulo o magnitud deldesplazamiento.

Realiza cálculos a partir de los datos que obtuviste en la actividad anterior.

1. Calcula la rapidez media del balín en el intervalo definido por los dos primeros valoresdel tiempo.

2. Calcula la rapidez media del balín en el intervalo definido por los dos últimos valores del

tiempo.

3. Compara estos resultados; si la diferencia entre ellos es menor que 1 cm/s puedesconsiderar que su movimiento fue aproximadamente uniforme, es decir, conrapidez constante.

• ¿Fue uniforme el movimiento del balín para tu caso? Explica tu respuesta.

• ¿En qué tipo de movimiento la rapidez media coincide con el módulo de la velocidadmedia? Argumenta cuidadosamente tu respuesta.

• ¿Qué magnitud se mide en las carreras que se efectúan en un estadio, velocidad orapidez? ¿Por qué?

Comunica tus avances en ciencias

Para complementar losconceptos de distancia ydesplazamiento, así como

de velocidad y rapidez,trabaja con los recursosinteractivos siguientes:

www.educaplus.org/movi/2_4distancia.html

www.educaplus.org/movi/2_5velocidad.html

Page 32: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 32/276

30

S1

• Interpretación y representaciónde gráficas de posición-tiempo

En la descripción del movimiento consideramos sólo las características esenciales que

nos ayudan a explicarlo. No es indispensable saber, por ejemplo, si el móvil es de

color rojo, si hace calor o si una calle está asfaltada o pavimenta-

da. Cuando hacemos descripciones de un fenómeno natural ele-

gimos las variables en las que debemos centrar nuestra atención,

así como las relaciones entre éstas, y si son o no proporcionales.

Esto significa que elaboramos modelos, que son representa-

ciones del fenómeno donde sólo consideramos las características

esenciales. Una clase muy utilizada de modelos son las gráficas,

que nos permiten visualizar la relación entre las variables invo-

lucradas en un fenómeno. Observa el ejemplo de la gráfica de la

figura 14.

FIGURA 14. En el fenómeno del crecimiento durante la infancia y adolescencia, laestatura depende de la edad. La edad es entonces la variable independiente y laestatura la dependiente. Las gráficas nos permiten apreciar la relación entre lasvariables independiente y dependiente de una manera clara y sencilla.

1. A partir de datos obtenidos en la activi-dad del balín o la canica, elaboren unagráfica de posición-tiempo en papelcuadriculado o milimétrico. Para ello:

a. Tracen dos ejes perpendicularesentre sí. Nombren al eje horizontalcomo t (s) y al vertical como x (cm).

b. Grafiquen en el eje vertical los valo-res de la posición, y en el horizontallos intervalos de tiempo correspon-

dientes. Para ello, tomen cada parejade valores (t , x ) de tal manera queel primer valor sea un tiempo y elsegundo sea la posición correspon-diente a ese tiempo. Localicen elvalor del tiempo sobre el eje hori-zontal y tracen una recta vertical quepase por ese punto. Luego, localicenel valor correspondiente a la posiciónen el eje vertical, y tracen una rectahorizontal que pase por ese punto.El punto de coordenadas (t , x ) estará

en el plano, justo donde estas rectasse intersecan.

Sugerencias

u En el eje vertical usen una escala en laque 1 cm en el papel equivalga a 10cm de desplazamiento real; así podránrepresentar valores de hasta 150 cm.

u En el eje horizontal usen una escalaen la que 1 cm del papel equivalga a0. 25 s de tiempo; así podrán graficarvalores de tiempo de hasta 5 s. Si losintervalos de tiempo son más largos,será necesario redefinir la escala.

2. Contesten a partir de la gráfica:

• ¿Dónde ubicaron el punto de referenciapara describir el movimiento del balín?

• Al unir los puntos de la gráfica, dondea cada uno corresponde un valor detiempo y un valor de posición, ¿quéforma tiene la gráfica?

• ¿Qué significa esta línea en términosde cómo fue el movimiento?

• ¿Los valores de tiempo son proporcio-nales a los de la posición? Justifiquensu respuesta.

Elabora modelos y comunica tus avances en ciencias

Elabora gráficas de posición-tiempo.

p o s i c i ó n ( c m )

t (s)0

Ejemplo de gráfica posición contratiempo. El origen se encuentradonde se intersecan los ejes;corresponde a la posición cero y altiempo cero.

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Edad en años

E s t a t u r a ( c m )

Page 33: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 33/276

31

B1

Las gráficas de posición-tiempo y la velocidad

Representemos ahora el movimiento de la hormiga antes descrito en una gráfica de

posición-tiempo (figura 15). La posición es la variable que depende del tiempo, por

lo que sus valores se representan en el eje vertical, y el tiempo, al ser la variable

independiente, se representa en el eje horizontal. El origen es el punto de referencia,donde la posición y el tiempo valen cero.

300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

P o s

i c i ó n ( m e t r o s )

A = (0, 0)

B = (15, 250)

Supongamos ahora que tú haces este mismo recorrido caminando a paso lento, de

tal suerte que empleas 5 minutos para recorrer 250 metros. La figura 16 se vería de

la siguiente manera, analízala:

C = (5, 250)300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

A = (0, 0)

P o s i c i ó n ( m e t r o s )

FIGURA 16. Esta Gráfica 2 representa un movimiento muysemejante al de la hormiga,donde el desplazamiento es elmismo (250 m), pero algo cam-bió. Por ejemplo, una vez que

han transcurrido 3 minutos, tuya te encuentras a 150 metrosdel origen. Si comparamos lasgráficas 1 y 2, ¿qué cambió?

FIGURA 15. La Gráfica 1 representa muestra el desplaza-miento de la hormiga respectoal tiempo desde el punto A, quecoincide con el origen y cuyascoordenadas son (0 min, 0 m),y el punto B, con coordenadas(15 min, 250 m). A partir de la

gráfica, podemos determinar laposición en otro valor de tiem-po; por ejemplo, a los 3 minutosla posición es 50 metros a partirdel origen. ¿En qué posición sehallaría la hormiga después detranscurridos 12 minutos?

Calculemos el módulo de la velocidad de esta nueva situación representada en la

Gráfica 2 de la figura 17. Nota que asignamos signo positivo al desplazamiento por-

que ocurre hacia la derecha del punto de referencia u origen.

∆ x | x f – x i | |250 m – 0 m| 250 mv —— ———— ———————— ———— = 50 m/min

∆t t f – t i 5 min – 0 min 5 min

Page 34: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 34/276

32

S1

El módulo de tu velocidad media es evidentemente mayor que la de la hormiga; en

el primer caso ésta requirió 15 minutos para desplazarse 250 metros, mientras que en

el segundo caso, tú sólo empleaste 5 minutos para hacer el mismo desplazamiento.

Analiza una tercera suposición: una tortuga terrestre camina durante 15 minutos

pero sólo llegama a la posición final de 150 metros respecto a la referencia. ¿Cómo

se vería la gráfica de este movimiento? ¿La velocidad sería mayor o menor que en los

casos anteriores? Veamos ahora la figura 17:

FIGURA 17. En esta Gráfica 3 lavelocidad es menor, ya que enel intervalo de 15 minutos latortuga sólo se ha desplazado

150 metros desde el origen.¿Qué característica de la rectaque aparece en la gráficademuestra que es una velocidadmedia menor que la representa-da en la Gráfica 2?

300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

D = (15, 150)

A = (0, 0)

P o s i c i ó n ( m e t r o s )

Si calculamos la velocidad en esta tercera suposición, tenemos que:

Aquí, como esperábamos, la velocidad es menor que en los dos casos anteriores.Pero, ¿cómo se refleja esto en las respectivas gráficas de posición-tiempo?

Observa con atención las tres rectas en el mismo plano cartesiano (figura 18). ¿Cuál

de las rectas tiene mayor inclinación?

En todas las situaciones anteriores, el movimiento es rectilíneo uniforme, puesto que

el módulo del desplazamiento es proporcional a los intervalos de tiempo. El movimiento

rectilíneo uniforme se ve como un segmento de recta en una gráfica de posición-tiempo.

Nota que el módulo de la velocidad depende de la inclinación de dicho segmento de recta.

FIGURA 18. Si observamoslas gráficas 1, 2 y 3 juntas,notaremos que la inclinaciónde cada recta tiene que vercon la velocidad: conforme lavelocidad es menor, también loes la inclinación de la recta enuna gráfica de posición-tiempo,pues en un intervalo de tiempodado, se consigue un menor

desplazamiento, y viceversa.

GLOSARIO

La inclinación de una recta recta

representada en un plano cartesiano

es el ángulo que forma con el eje

horizontal, medido en contra de las

manecillas del reloj.

C = (5, 250)

Gráfica 2

300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

D = (15, 150)

Gráfica 3

B = (15, 250)Gráfica 1

P o s i c i ó n ( m e t r o s )

∆ x | x f – x i | |150 m – 0 m| 150 mv —— ———— ———————— ———— = 10 m/min

∆t t f – t i 50 min – 0 min 15 min

Page 35: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 35/276

33

B1

Exploremos otra situación: supongamos que la hormiga de la Gráfica 1 va de

regreso desde la posición de 250 m hacia el origen. Su vector de desplazamiento

se representaría como la figura 19. El módulo de este vector desplazamiento sería

∆ x = | x f – x i | = |0 m – 250 m| = |–250 m| = 250 m. Esto significa que se desplazó

250 m, pero como lo hizo hacia la izquierda, le asignamos signo negativo.

FIGURA 19. Representación delvector de desplazamiento, elmóvil parte de los 250 m yregresa al origen

FIGURA 20. En esta figura seañade la Gráfica 5, la cualrepresenta el movimiento deregreso, y tiene una característi-ca interesante: su inclinación es

mayor que 90°.

De lo expuesto se desprende que hay una correlación muy estrecha entre la in-

clinación de una recta en la gráfica de posición-tiempo con la velocidad. Cuando la

inclinación de una recta es menor que 90°, como en el caso de las gráficas 1, 2 y 3,

decimos que la recta tiene inclinación positiva, y esto representa la relación entre el

desplazamiento y el tiempo de un móvil que se aleja del origen. Entre más cerca de 90°

sea la inclinación de la recta, mayor será el módulo de la velocidad. Cuando es mayor

que 90° se dice que la inclinación es negativa, y la velocidad es también negativa. La

idea de “velocidad negativa” puede parecernos extraña, pero en términos físicos sólo

indica que el móvil se acerca al origen.

El módulo de la velocidad, en este caso, sería:

En este caso debemos asignar un signo negativo al desplazamiento, ya que la hormiga

avanzó en dirección horizontal pero hacia la izquierda, acercándose al origen. Entonces,

–250 m mv = ———— = –16.16 ——

15 min min

Esto significa que si un móvil se acerca al origen, su velocidad será negativa. Pero,

¿cómo se refleja esto en la gráfica del movimiento? Agreguemos a esta nueva gráfica

representada en la figura 20, las anteriores:

220 240 260 280 300

x i

0 20 40 60 80 100 120 140 160 180 200

x f Desplazamiento (metros)

-20

x

∆ x | x f – x i | |0 m – 250 m| |–250 m|v —— ———— ———————— ———–—

∆t |t f – t

i | 15 min – 0 min 15 min

Gráfica 2

300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

D = (15, 150)Gráfica 3

Gráfica 4

B = (15, 250)Gráfica 1

A = (0, 0)

E = (0, 250)

F = (15, 0)

C = (5, 250)

P o s i c i ó n ( m e t r o s )

Gráfica 5

Si en tu equipo hay un com-

pañero con discapacidad vi-

sual, pueden elaborar juntos

una gráfica empleando el

tablero de un geoplano o

con alguna rejilla. Fijen los

ejes de coordenadas con

estambre, y el cuadriculado

facilitará que asignen va-

lores a la escala y localicenlos puntos de intersección

mediante el tacto. El maes-

tro puede apoyarles en caso

necesario.

Sé incluyente

Page 36: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 36/276

34

S1

FIGURA 21. La Gráfica 5 repre-senta un móvil en reposo en laposición 50 metros durante15 minutos, mientras que laGráfica 6 indica que el móvilocupa todas las posiciones entre50 m y 250 m en el instantet = 3 minutos. Si bien algunosde nosotros quisiésemos aveces estar en dos o más sitios

a la vez, no podemos hacerlo,al menos no en el mundo quepercibimos a través de nuestrossentidos.

300

250

200

150

100

50

0 1 32 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Tiempo (minutos)

C = (3, 250)

(3, 0)

Gráfica 6

Gráfica 5(0, 50) B = (15, 50) D e s p l a z a m i e n t o ( m e t r o s )

Por supuesto, podríamos también pensar en el caso de que la inclinación de la recta

fuese exactamente 90º, como en la Gráfica 6. ¿Qué significaría físicamente esta situación?

Recordemos que cada punto del segmento de recta de una gráfica indica una cierta po-

sición en un determinado instante de tiempo. Una recta vertical querría decir que en un

instante t el móvil ocupa varias posiciones; de hecho, ¡un número infinito de posiciones

simultáneamente! Aunque matemáticamente esta recta puede existir, no representa unmovimiento físicamente posible, es decir, jamás obtendremos una gráfica posición-

tiempo así al representar un movimiento.

1. De manera similar a la actividad anterior,

elaboren una segunda gráfica donde re-presenten la velocidad media del balín, esdecir, sólo un segmento de recta que unelos puntos cuyas coordenadas son el tiem-po y la posición iniciales, y el tiempo y laposición finales. Con base en esta segundagráfica, respondan:

• ¿Cómo es la inclinación del segmento derecta obtenido, positiva o negativa?

• ¿Qué significa lo anterior en términos delmovimiento del balín? ¿Este se alejó delorigen o se acercó? Expliquen su respuesta.

• ¿Cómo sería la gráfica si el balín se mo-

viera de la posición final a la inicial?• ¿Y si el balín estuviese detenido por

5 segundos en la posición de 90 cm?

2. Supongan que el balín avanza con veloci-dad constante desde el origen hasta la po-sición de 60 cm en un intervalo de tiempode 1.6 s, que permanece en esa posiciónpor 1.8 s y que regresa al origen en 1.2 s.

Elaboren la gráfica de posición contra tiempopara este caso, y calculen la velocidad paracada parte del movimiento.

Comunica tus avances en ciencias y elabora modelos

Relaciona la velocidad con la gráfica de posición-tiempo.

¿Qué significa en términos físicos que una recta tenga inclinación cero, es decir, que

sea una recta horizontal? En ese caso, el desplazamiento es cero, y no hay cambio de

posición, pero el tiempo transcurre. Esta situación corresponde al reposo o inmovilidad.

Al calcular la velocidad, obtendríamos el valor de cero. Observa la figura 21 en la que

se traza la gráfica correspondiente al reposo, la Gráfica 5.

Page 37: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 37/276

35

B1

Para elaborar gráficasy trazar vectores te re-

comendamos utilizar elprograma Geogebra, unaútil aplicación para Físicay Matemáticas. Es un pro-grama gratuito que puedesdescargar de:

www.geogebra.org

Busca información en li-bros o en internet sobre la“locomoción en los anima-les”. Compara la rapidezpromedio de tres de ellos.

Comparte la informacióncon tus compañeros y,

juntos, elaboren las gráf i-cas que permitan compararestos datos.

Comunica tus avances en ciencias

1. En sus cuadernos, completen por equipos el siguiente organizador gráfico con las semejanzasy diferencias entre la velocidad media y la rapidez media. Pueden añadir otras semejanzas ydiferencias si lo consideran pertinente. Luego preséntenlo a los demás equipos, y con elapoyo de su maestro, elaboren un organizador gráfico de común acuerdo en una cartulina uhoja de rotafolios, para consulta con todo el grupo.

Recapitulemos las diferencias entre velocidad y rapidez.

RAPIDEZ MEDIA VELOCIDAD MEDIA

Es una variable relacionadacon el movimiento.

SemejanzasRequiere un punto de referencia

para su descripción.Requiere un punto de referencia para sudescripción.

Es la relación asociada a la distanciarecorrida con respecto al tiempo.

Es la relación asociada al cambio deposición con respecto al tiempo.

Es el cociente entre la distanciarecorrida por un móvil dividida entre el

tiempo que tarda en recorrerla.

Diferencias

Su módulo es cociente entre el módulodel _____________ de un móvildividido entre el intervalo tiempo enque ocurre.

Su módulo depende de la distancia,y el valor de ésta depende a su vez

de la trayectoria.

Su módulo depende del _____________, y el valor de éstedepende sólo de la _____________inicial y la _____________ final.

Sus unidades de medición son unidadesde longitud entre unidades de tiempo.

Las unidades de medición de sumódulo son unidades de longitud entreunidades de tiempo.

Es una magnitud vectorial que se puederepresentar mediante una flecha, y

tiene módulo, dirección y sentido.

Nos da información acerca de qué tanrápida o lentamente un móvil recorre

determinada trayectoria.

Evalúo mi avance

1. Calcula el módulo de la velocidad media en cada caso:

Posicióninicial: x

i

x (km)

Posiciónfinal: x

f

0 10 20 30 40 50 60 70 80 90 100

0–10–20–30–40–50–60

(metros)

b. Ubicas a un repartidor de jícamas con limón que va empu- jando su carrito; en tu marco de referencia efectúa un des-plazamiento de 35 m hacia la derecha en 1 minuto. Expresael módulo de la velocidad media de esa persona en m/min.Comparte tus resultados con otros compañeros e intentenexpresar este valor en km/h. Presten atención al signo deldesplazamiento.

a. Un automóvil se mueve en línea recta desde unaposición inicial x i = 50 km hasta una posición final x f = 100 km en 0.5 horas. Expresa la velocidad mediadel automóvil en km/h.

• ¿Cuál es el signo del desplazamiento en este caso?

Page 38: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 38/276

36

S1

FIGURA 22. La vibración de una cuerda de guitarraes un movimiento periódico.

1. Reflexiona en forma individual y luego conuna pareja.

2. Responde lo siguiente y luego comentacon tus compañeros

• ¿Cómo se mueven las olas? Haz un dibujo.

• ¿Qué tipo de movimiento tienen las olasdel mar?

• ¿Existirá alguna relación entre el tamañode las olas con el sonido que producen?Explica.

3. ¿Encontraron semejanzas en sus descripcio-nes y en sus respuestas? ¿Cuáles?

4. ¿Encontraron diferencias? ¿Por qué?

El mar, básicamente el mismo siempre, es siempre distinto. Su incesante movimiento es uno de susatractivos.

• Movimiento ondulatorio, modelo deondas, y explicación de característicasdel sonido

Muchos de los movimientos que percibimos en la vida diaria no son

precisamente rectilíneos. Al mirar a tu alrededor quizás puedas obser-

var un coche que da vuelta en una esquina, una campana que suena

en una torre, una niña que se mece en un columpio, una lámpara

que se balancea del techo, un perro que mueve su cola, escuchar un

vidrio que resuena junto a una bocina, una cuerda de guitarra que vi-

bra (figura 22), y ver a un par de niños que juegan en el sube-y- baja.

Algunos de estos movimientos pueden ocurrir una sola vez y otros de

forma repetitiva. Exploraremos algunos de estos movimientos.

Explora

El mar siempre ha fascinado al serhumano; cuando estamos frente a él en laplaya vemos cómo las olas se desplazanhacia ella y rompen produciendo un sonido

a veces suave y a veces estruendoso.

Page 39: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 39/276

37

B1

FIGURA 23. Al sacudir unasábana o una falda, diferentespartes de ésta tienen un movi-miento distinto en un instantedeterminado, algunas se handesplazado hacia arriba y otrashacia abajo.

1. Reflexiona un poco sobre la explicación anteriory responde en tu cuaderno:

a. ¿Cómo llamarías a un movimiento como el de lasábana?

b. Realiza un movimiento semejante contu cuerpo.

c. Plantea tu propia explicación y luegocoméntala con tus compañeros.

2. Elabora una pregunta sobre el movimiento

ondulatorio que quisieras contestar al final de estecontenido.

Comunica tus avances en ciencias

Describe un movimiento ondulatorio.

El movimiento ondulatorio y las ondas mecánicas

¿Qué ocurre cuando tomas una sábana por uno de sus bordes y la sacudes de arriba

hacia abajo? La sábana en conjunto no se desplaza, pues permanece entre tus manos,

pero al moverlas, éstas transmiten “olas” u “ondas” por toda la tela: hay partes de la

sábana que se desplazan hacia arriba o hacia abajo respecto a otras partes de la mismasábana, como se aprecia en la figura 23.

Es evidente que la descripción física del movimiento de cada parte de la sábana

al ser sacudida puede hacerse utilizando las variables que hemos revisado antes:

posición, desplazamiento, velocidad y rapidez. No obstante, podemos hacer una pri-

mera aproximación a la descripción del movimiento de la sábana en su conjunto a

partir de lo que percibimos a través de nuestros sentidos. Seguramente has percibido

movimientos parecidos a ése a tu alrededor; veamos un ejemplo al explorar con la

siguiente actividad.

Escribe tu pregunta aquí.

Las ondas sonoras pueden

percibirse también si se tieneuna discapacidad auditiva.

Por ejemplo, al hacer vibrar

un diapasón y colocar uno de

sus extremos en la superficie

de una hoja de papel soste-

nida con los dedos, o bien en

la superficie del agua de una

cubeta. Cualquiera de estos

materiales vibrará, y este mo-

vimiento podrá apreciarse

visualmente. ¡Haz la prueba!

Sé incluyente

Page 40: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 40/276

38

S1

Experimenta

Material

1 barquito de papel y una tina con agua• 1 reloj con segundero

Procedimiento

a. Coloquen con cuidado el barquito en la parte central de la tina y esperen a queel agua esté completamente en calma.

b. Uno de ustedes introducirá su mano en una de las orillas de la tina y luego lamantendrá inmóvil. Observen lo que sucede en el agua.

c. Observen también el movimiento del barquito.

d. Elaboren predicciones:

• ¿Cómo será el movimiento del barquito cuando lo coloquen sobre el aguaen calma?

• Si provocan una ola grande, ¿se moverá el barquito?, ¿cómo lo hará?Expliquen por qué.

• Si soplan sobre el barquito, ¿se moverá? Expliquen cómo y por qué.

e. Ahora, uno de ustedes golpeará el agua cada 10 segundos durante un minuto,y todos contarán el número de veces que el barquito sube y baja.

Registro de observaciones

1. En sus cuadernos, describan los movimientos que observaron y elaboren un dibu- jo de las trayectorias. Pueden hacer una tabla como la que se muestra:

Movimientos Descripción Dibujo de la trayectoria

De la superficie del agua alintroducir la mano

Del barquito tras introducir la manoen el agua

Del barquito al produciruna ola grande

Del barquito al soplarle

Número de veces que el barquitosube y baja

Análisis de resultados

• ¿Es posible dibujar la trayectoria de toda la superficie del agua? ¿Por qué?

• ¿El desplazamiento de un punto de la superficie del agua es diferente al de otro punto?

• ¿Puede considerarse el movimiento del barquito como repetitivo en todos los casos? Expliquen su respuesta.

• ¿Cómo se relaciona el número de veces que se golpeó el agua con las veces que el barquito subió y bajó?

Comenten en grupo y con el apoyo de su maestro

• ¿Por qué se mueve el barquito cuando alteran una parte de la superficie del agua donde no está dicho barquito?

• ¿Cómo explican el movimiento del barquito al soplarle?

Describe algunas características de las ondas.

¿Es necesario tocar directamente al barquitopara que se mueva?

Page 41: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 41/276

39

B1

Probablemente has observado un objeto pequeño como una hojita o rami-

ta que flota en el agua de un charco o una cubeta (figura 24); si provocamos

una ola, ya sea tocando, golpeando o arrojando una piedrita en una parte

de la superficie del agua, el objeto se moverá de arriba hacia abajo como

ocurrió con el barquito en la actividad. En realidad, el objeto que flota es

la evidencia de cómo se mueve la superficie del agua en que se encuentra.

En secciones anteriores hemos analizado el movimiento de diversos ob-

jetos y observado sus cambios de posición en el tiempo. En el fondo, no

hemos considerado que los móviles tienen tamaños específicos, esto es,

no son sólo un punto. Para evitar este problema, establecimos que todos

los móviles eran cuerpos rígidos, lo que significa que todas las pequeñas

partes que los componen –llamadas genéricamente partículas – se mueven

siempre juntas, al mismo tiempo y de la misma manera. En esos casos,

basta con describir el movimiento de una de las partículas del móvil para

describir adecuadamente el movimiento de todo el cuerpo. Esta suposiciónformó parte del modelo que construimos para describir el movimiento,

pues esto permite mayor simplicidad.

Sin embargo, en los ejemplos que acabamos de explorar no podemos

considerar al agua o al aire en el que se mueve la sábana, ni a la sábana

misma, como cuerpos rígidos, pues sus partículas sí se llegan a desplazar

unas respecto de las otras si, por ejemplo, algunas partículas del cuerpo

sufren una perturbación, como es un golpe o agitación (figura 25). Cuan-

do las partículas se desplazan entre sí, hablamos de cuerpos elásticos,

capaces de cambiar de forma.

En términos generales podemos designar a estos cuerpos como un mediomaterial, que es cualquier sustancia, ya sea un sólido, un líquido o un gas.

Ejemplos de medios materiales pueden ser el aire en una habitación, el agua

contenida en un recipiente, un resorte, una cuerda, etcétera. Las olas de mar

son un ejemplo de la manifestación de ondas mecánicas. Las ondas de este

tipo son una perturbación que se origina en un punto y se propaga a través

de un medio material. Así, cuando golpeamos ligeramente una parte de la

superficie del agua, notamos el paso de una onda mecánica sobre toda la superficie, y

la percibimos al observar círculos concéntricos alrededor de la perturbación.

Si tocamos una cuerda tensa, provocamos el movimiento de las partículas de la

cuerda que están cerca de nuestra mano que se propaga al resto de la cuerda, como se

aprecia en la figura 26. Cada perturbación, llamada pulso, genera una onda mecánica

que se propaga por ese medio material. Si la tocamos o sacudimos varias veces, se

generan varias ondas mecánicas sucesivas, una por cada pulso.

FIGURA 24. La rama se desplaza hacia arriba yhacia abajo debido a las ondas que también sedesplazan en el agua.

FIGURA 25. Una forma de perturbar a la liga esdándole un jalón y enseguida observarás comovibra. Sus partículas se desplazan, pero elobjeto completo permanece en tu mano.

FIGURA 26. El movimientode arriba hacia abajo queimprimimos inicialmente a untrozo de la cuerda genera unpulso que se transfiere al restode ella, produciendo en ella un

movimiento ondulatorio.

Page 42: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 42/276

40

S1

Existen otros tipos de ondas que estudiaremos con más detalle en bloques poste-

riores y que no necesitan un medio material para propagarse, ya que pueden viajar

en el vacío (como el que existe en el espacio interestelar). Por ahora abordaremos

sólo las ondas mecánicas.

El resultado de la propagación de una onda mecánica a través de un medio ma-

terial da lugar al movimiento ondulatorio de ese material. Además de los ejemplos

mencionados, ¿qué otros casos de movimiento ondulatorio podrías dar?

No todas las ondas se propagan de la misma manera. Realiza la siguiente actividad

para indagar al respecto.

GLOSARIO

El vacío es una región del espacio

que no contiene partículas.

Experimenta

Material

• 1 resorte blando de juguete

• 1 cinta adhesiva

• 1 lápiz

Procedimiento

a. Peguen un pedacito de cinta adhesiva sobre la “vuelta” o espiraque se encuentra a la mitad del resorte.

b. Sostengan el resorte en un extremo de la mesa y el otro sujé-tenlo con la mano y el lápiz, como se observa en la fotografía.

c. Observen el movimiento de la parte del resorte señalada con lacinta adhesiva en cada caso.

Caso 1

d. Uno de ustedes adelante el lápiz 3 espiras y, sin soltar el resorte,tire de él hacia sí mismo, ayudándose con el lápiz.

e. Elaboren una predicción: ¿qué movimiento observarán en la cintaadhesiva al estirar, con el lápiz, el resorte hacia alguno de uste-des como se muestra en la figura a?

f. Suelten el lápiz sin quitar la mano de esa posición.

g. Observen y midan el tiempo, en segundos, que tarda la ondaen propagarse de ida y vuelta. Realicen algunas pruebas previaspara sincronizar el momento en que sueltan el lápiz con la acti-vación del cronómetro.

Caso 2

h. Ahora uno de ustedes estire el resorte con el lápiz hacia suizquierda o hacia su derecha desde la tercera espira.

i. Predigan si al soltarlo se generará una onda distinta a la delCaso 1.

j. Suelta el lápiz, manteniendo fijo el extremo que sostienes contu mano, como en la figura b.

Para ambos casos:

k. Repitan la experiencia 1 y 2 estirando un poco más el resorte queen los casos anteriores.

Describe cómo se propagan ondas originadas con perturbaciones diferentes.

El lápiz te sirve para estirar el resorte en un punto específico.(a) En el paso d estirarás el resorte hacia ti, en la mismadirección del resorte. (b) En el paso h lo harás en una direc-ción perpendicular al resorte.

Caso 1

Caso 2

> Continúa en la página siguiente

b

a

Page 43: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 43/276

41

B1

»

Registro de datos

1. Elaboren en sus cuadernos una tabla como la siguiente para anotar susobservaciones y cálculos:

Estiramientodel resorte

Tipo de ondaDescripción del movimiento de la cinta

adhesiva y de la propagación de la onda

Menor

Caso 1

Caso 2

Mayor

Caso 1

Caso 2

2. Confronten las descripciones y completenuna sola tabla para analizar los resultados.

Análisis de resultados

• ¿Se verificaron sus predicciones? Expliquen.

1. Expliquen cuál es la función de la cinta adhe-siva en este experimento.

• ¿Qué diferencias notaron según qué tantoestiraron el resorte?

• Si en lugar del resorte hubieran utilizado untubo, ¿cómo apreciarían que se transmitióuna perturbación de un extremo a otro deltubo?

2. Diseñen una actividad para demostrar su

respuesta anterior.

Ondas longitudinales y transversales

Las olas que generaste en el agua de la tina son un ejemplo de ondas me-

cánicas. Lo mismo ocurre con las generadas en el resorte. Cuando sacudiste

un extremo del resorte de derecha a izquierda, se generó un pulso que se

propagó como se muestra en la figura 27. La dirección de propagación de

la onda generada así es perpendicular a la dirección del movimiento de la

mano que la produce. Decimos entonces que se trata de una onda mecánicade tipo transversal .

Cuando la onda sigue la misma dirección de la perturbación se llama onda

longitudinal . Volviendo al ejemplo del resorte, si lo comprimimos por un ex-

tremo, estando fijo el otro extremo, esta perturbación (o compresión) viajará

a lo largo del resorte en la misma dirección en la que se produjo, y la onda

mecánica será longitudinal, como puedes observar en la figura 28.

FIGURA 27. En una onda transversal, ladirección de la perturbación es perpendiculara la dirección de la propagación.

1. Retomando la actividad anterior, contestaen tu cuaderno:

• ¿Qué tipo de onda es la del Caso 1, longi-tudinal o transversal? ¿Por qué?

• ¿Y la del Caso 2? Argumenta tu respuesta.

En el experimento del barquito, pudisteapreciar cómo al introducir tu mano en el

agua provocaste una perturbación que llegóal barquito haciendo que éste sólo subiera ybajara, pero permaneció prácticamente en lamisma posición respecto al plano horizontal.Por otra parte, la descripción del movimientode las olas que provocaste en la tina seaproxima a la de la propagación simultáneade ondas transversales y ondas longitudinales.Algo semejante ocurre en un temblor.

Comunica tus avances en ciencias

Describe las características de una onda.

FIGURA 28. Las ondas longitu-dinales en los resortes de este

juguete (a) se propagan en lamisma dirección de la perturba-ción, que en este caso se llama

compresión (b).

a

b

Page 44: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 44/276

42

S1

FIGURA 29. El movimiento de la mano que perturba el resorte es unaespecie de “latigazo” dirigido primero sobre la vertical hacia abajo y

que termina subiendo en la misma dirección a su posición inicial. Estemovimiento sólo se efectúa una vez, sin embargo, el pulso que segenera a partir de la perturbación avanza a lo largo de todo el resorte.

FIGURA 30. La flecha roja es el vector de desplazamiento de la crestaproducido en un intervalo de tiempo T . El módulo del desplazamientoes λ, así que la velocidad de la cresta (y del pulso completo) esv = λ/T . La velocidad media tiene la dirección y sentido en el queavanza la onda.

Dirección demovimiento de la mano

Dirección de propagaciónparalela al eje x en elsentido positivo de éste

Pulsoy (m)

t = 0 t = T

x (m)o

y (m) Pulso

x (m)

t = 0Dirección demovimientode la mano

O

Características de las ondas

Además de las var iables usuales para describir un mo-

vimiento, * para caracterizar las ondas se usan otras va-

riables exclusivas.

En la figura 29 dibujamos una curva sobre el resorte

que se adapta a la forma del pulso. Esta curva se des-

plaza conforme transcurre el tiempo.

Podemos elegir un punto sobre el pulso del resor-

te que nos sirva de referencia para seguirlo; en esta

ocasión elegiremos el punto más alto y lo llamaremos

cresta. A este punto le podemos asignar un vector de

posición en cada instante. Para dos instantes diferen-

tes tendremos una situación como la que se muestra

en la figura 30. Supongamos que activamos nuestrocronómetro en el momento preciso en que se ha for-

mado el pulso completo. Al pasar cierto tiempo nos

damos cuenta de que el pulso se repite. Este instante,

denotado con T es el periodo de la onda, y correspon-

de al intervalo de tiempo en que un pulso se repite.

Para determinar el desplazamiento del pulso nos

fijamos en el vector de posición inicial de la cresta

en el tiempo t = 0 , y después, en el vector de posición

final de la cresta en t = T . El desplazamiento se indica

en color rojo. El módulo de este vector es la distanciaentre la cresta en el tiempo cero y la cresta en el tiempo

T . A esta distancia se le llama longitud de onda y se

denota con la letra griega lambda minúscula λ.

Como el desplazamiento de la cresta se produjo en

un intervalo de tiempo T , el módulo de la velocidad

media es v = λ / T , que de ahora en adelante llamaremos

velocidad de propagación de la onda. La dirección y

el sentido de este vector definen la dirección y sentido

de propagación de la onda, como se aprecia en la figura 31. El punto más alejado de

la línea de equilibrio –el conjunto de posiciones de una partícula que no ha sido

perturbada– con respecto a la dirección vertical, y que pertenece a un pulso, recibe

el nombre de cresta . Por el contrario, el punto simétrico, más alejado por debajo de

la línea de equilibrio y que pertenece a un pulso se llama valle. Los puntos donde la

onda cruza la línea de equilibrio se denominan nodos.

Hay muchas situaciones en las que es muy importante conocer la velocidad de

propagación de una onda mecánica, por ejemplo cuando se generan las olas gigantes

llamadas tsunamis en alguna parte del océano (las cuales pueden alcanzar una rapi-

dez de más de 200 m/s), u ondas sísmicas, que generan temblores o terremotos y se

transmiten por el suelo, muchas veces a grandes distancias.

* Como posición, desplazamiento, velo-

cidad, distancia, rapidez y tiempo.

Page 45: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 45/276

43

B1

FIGURA 31. Onda propagándoseen el sentido negativo del eje x a través de una cuerda tensaperturbada con un movimientohacia arriba y abajo en direcciónvertical. Como la dirección de

propagación es perpendicular ala dirección de la perturbación laonda es transversal. Cuandola cuerda no es perturbadapermanece horizontal sobre eleje x , y por esta razón este ejedesempeña el papel de unalínea de equilibrio. La longitudde onda puede verse como ladistancia entre dos crestas o dosvalles consecutivos, o tres nodosconsecutivos.

Velocidad de propagación

Cresta

Valle Valle

Cresta

Dirección de la perturbación

y (m)

x (m)

AB

Por otra parte, la rapidez de propagación se define como la distancia recorrida

por un pulso con respecto a un intervalo de tiempo determinado, aunque éste no

corresponda precisamente al periodo. Por ejemplo, si nos dicen que una ola marina

se propaga a 30 m/s, podríamos estimar en cuánto tiempo llegaría una ola a la playasi conocemos la distancia desde la que se originó.

Cuando se completa el proceso de que pase un pulso completo por un punto

determinado decimos que se ha completado un ciclo. A partir de este concepto po-

demos definir también la frecuencia como el número de ciclos completados en un

segundo; su unidad de medida es el ciclo por segundo (o ciclo/s). Esta unidad recibe

el nombre de Hertz (Hz). Podemos por ejemplo contar los ciclos en una onda que

se propaga en forma de olas marinas observando cómo una boya sube, baja y vuelve

a subir (figura 32). Cada vez que se repita este movimiento se habrá completado

un ciclo. Si contamos cinco ciclos en un tiempo de diez segundos, la frecuencia se

calcula entonces como:

5 ciclos ciclos f ———— 0.5 ———— 0.5 Hz

10 s s

Esto significa que se ha completado medio ciclo en un segundo respecto de un

punto de referencia, o que ha pasado la mitad de un pulso en un segundo.

FIGURA 32. En el ejemploanterior, podemos inferirque si ha pasado mediopulso en un segundo, endos segundos pasará unciclo completo. ¿Cómoinferirías la frecuencia delas olas con base en el

movimiento de las boyas?

Page 46: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 46/276

44

S1

CrestaLongitud de onda

Valle

Amplitud

(+)

(--)

Dirección depropagación

Procedimiento

a. A partir de los datos que obtuvieron en la actividad delbarquito, estima la frecuencia de la onda que se propagópor el agua de la tina. Para ello, divide el número de vecesque el barquito subió y bajo en diez segundos, entre elintervalo de tiempo de diez segundos.

b. Reporta en tu cuaderno, al final de esa actividad, tu esti-mación de la frecuencia en Hz.

c. Compara tu resultados con el de tus compañeros:

• ¿Encontraste diferencias en los resultados? Si es así,comenta a qué se debieron.

• ¿Qué habría que hacer para obtener ondas con unafreuencia mayor en la tina?

• ¿Y para que tuviesen una frecuencia menor?

• ¿Cómo estimarías el periodo de estas ondas?

Comunica tus avances en ciencias

Estima la frecuencia.

Es importante establecer que la frecuencia es el recíproco aritmético del periodo,

de tal forma que la relación entre el periodo y la frecuencia puede expresarse como: f

1 —T

Por otra parte, la relación entre la velocidad de propagación de una onda y su

frecuencia es:

v = f .

La ecuación anterior explica que la velocidad de propagación de una onda es direc-

tamente proporcional a su longitud de onda y su frecuencia. Este hecho es de suma

importancia para el estudio de otros tipos de ondas diferentes a las ondas mecánicas,

ya que es de carácter general, es decir, se apl ica para todos los tipos de ondas. Para

mostrarlo resolvamos el siguiente problema.Supongamos, por ejemplo, que una onda se propaga a través del aire en la direc-

ción positiva del eje x con una velocidad de propagación de 344 m/s. Se determina

que la onda tiene una frecuencia de 25 Hz. ¿Cuál es su longitud de onda?

El módulo de la velocidad de propagación está determinado por la ecuación v = f .

Si despejamos la longitud de onda dividiendo la ecuación entre la frecuencia f ,

obtenemos:

v

— f

Al sust ituir los valores conocidos, v = 344 m/s y f = 25 Hz = 25 (1/s), tenemos que:

344 m/s ——–—— 13.76 m

25 (1/s)

Existe otra magnitud importante y carac-

terística de las ondas, llamada amplitud de

onda, que corresponde a la distancia máxima

en dirección vertical entre la línea de equili-

brio y una cresta o valle, como se ilustra en

la figura 33.

FIGURA33. La amplitud de una onda es la medida de qué tanto se desplaza una

partícula del medio material respecto a su posición de equilibrio.

Page 47: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 47/276

45

B1

Para complementar tuaprendizaje sobre lasondas longitudinales ytransversales, así comolas características de unaonda; longitud de onda,frecuencia y velocidad depropagación, consulta elrecurso interactivo “Ondaslongitudinales y transver-

sales”, disponibles en:

www.educaplus.org/play-127-Ondas-longitudinales-y-transversales.html

Elabora modelos

1. Dibuja en tu cuaderno dos pares de ondas con las siguientes características:

a. De la misma amplitud, pero con longitud de onda diferente.

b. De la misma longitud de onda, pero de amplitud de onda distinta.

2. Indica en tus representaciones los nodos, los valles, las crestas, la línea de equilibrio,la longitud y la amplitud de la onda.

Representa ondas.

La amplitud está asociada con la intensidad de la perturbación que origina la onda.

Para darnos una idea de la importancia de la amplitud de una onda pensemos en las

ondas sísmicas, que se originan cuando las placas en las que está fragmentada la cor-

teza terrestre, llamadas placas tectónicas, se rozan, chocan o se desplazan una debajo

de otra placa contigua, produciendo perturbaciones que se transmiten como ondas

mecánicas del suelo. Entre más intensa sea la perturbación, mayor será la amplitud

de las ondas sísmicas, y mayor será la magnitud del sismo.

El sonido

Hay ondas mecánicas de diferente tipo que percibimos con nuestra vista, como

las olas marinas desde la playa, o que sentimos con todo el cuerpo, como las mismas

olas cuando nadamos en la playa, o las ondas sísmicas, pero, ¿hay ondas mecánicas quepodemos escuchar? ¿Cómo se llaman? Las llamamos sonido.

¿Cómo se produce un sonido? Al aplaudir, por ejemplo, producimos una perturba-

ción en el aire que se traduce en una onda mecánica que se propaga en este medio.

Decimos entonces que el aire vibra.

En términos físicos, el sonido es una onda

mecánica longitudinal que se propaga a través

de cualquier medio material, sea gas, sólido o

líquido. Es longitudinal porque se propaga en

la misma dirección de la perturbación.

El oído humano es sensible a las ondas

sonoras comprendidas en el intervalo de

frecuencias de 20 a 20 000 Hz. Al llegar a

la membrana de nuestro oído, que se lla-

ma tímpano , las ondas sonoras transmiten

la perturbación de tal suerte que el tímpano

vibra. Luego, algunas estructuras del oído in-

terno transforman esta vibración en impulsos

nerviosos que son interpretados por nuestro

cerebro, como se aprecia en la figura 34.

Cartílago

Conducto auditivoexterno

MartilloYunque

Estribo

Conductossemicirculares

Nervioauditivo

TímpanoVentana

oval

Utrículo

Sáculo

Pelos

Cerumen

Glándulaceruminosa

FIGURA 34. Las ondas sonoras se propagan por un medio material hasta nuestro oído.

Page 48: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 48/276

46

S1

Material

• 1 hoja de papel lisa (de preferencia reciclada)

• 1 reloj con segundero o cronómetro

Procedimientoa. Por parejas, tomen la hoja y uno de ustedes debe soste-

nerla frente a su boca. Emitan los sonidos que se indicandurante tres segundos, y perciban cómo es la vibración dela hoja. Para ello, el otro compañero ha de colocar la yemade sus dedos sobre la cara opuesta de la hoja, pero a lamisma altura, en la zona de la boca.

b. Emitan el sonido correspondiente a la vocal a lo más débilmen-te que puedan.

c. Emitan el sonido correspondiente a la vocal a lo más fuer-temente que puedan, sin gritar.

d. Emitan el sonido correspondiente a la vocal u con una

intensidad normal, pero lo más agudo que puedan.e. Emitan el sonido correspondiente a la vocal u con una

intensidad normal, pero lo más grave que puedan.

Registro de datos

1. En su cuaderno, describan cómo percibieron la vibración de lahoja en cada caso. Representen sus observaciones en una tabla.

Análisis de resultados

• ¿En qué casos la vibración de la hoja les produjo un “golpe-teo” más intenso o “fuerte” en la yema de sus dedos, en elcaso b o en el c? Expliquen su respuesta en términos de laamplitud de las ondas sonoras generadas.

• ¿En qué casos la vibración de la hoja les produjo un “golpe-teo” más frecuente o “rápido” en la yema de sus dedos, enel caso d o en el e?

Expliquen su respuesta en términos de la frecuencia de las

ondas sonoras generadas.• ¿Como cuál estructura de nuestro aparato auditivo se com-

porta la hoja de papel cuando recibe ondas sonoras?

Conclusiones

1. Comenten entre equipos las siguientes cuestiones y elaborenun texto o esquema con sus conclusiones:

• ¿Cómo se sienten cuando perciben sonidos de gran intensidad?

• ¿Qué malestar les provocan los sonidos extremadamentegraves o extremadamente agudos?

• ¿Qué consecuencias puede traer a nuestra salud y bienestarexponernos a sonidos extremos ya sea por su intensidad osu tono?

• ¿Es conveniente usar audífonos por tiempos muy prolonga-dos y con volumen muy alto? ¿Por qué? Expliquen.

• ¿Cómo definirían el ruido en términos de las característicasde las ondas?

• ¿Pueden considerarse los sonidos extremos como una fuentede contaminación? ¿Por qué?

• ¿Qué podemos hacer para respetar el “espacio auditivo” delos demás?

2. Compartan sus resultados con su maestro y con el resto delgrupo. Si existe algún compañero con discapacidad auditiva,no lo excluyan de la actividad, ya que puede percibir lasvibraciones con sus dedos.

Experimenta y comunica tus avances en ciencias

Identifica cualidades del sonido como la intensidad y el tono.

Las características físicas de una onda sonora tienen una relación directa con nues-

tra percepción del sonido. Cuanto mayor sea la amplitud de la onda sonora mayor

será el volumen o la intensidad sonora del sonido percibido. Una onda sonora de

amplitud pequeña es percibida como débil o poco intensa, y viceversa.

La frecuencia de una onda sonora es el factor principal que determina el tono de

un sonido; es lo que nos permite clasificarlo como agudo o grave. Cuánto más alta

sea la frecuencia dentro de la gama audible, más agudo será el tono percibido y vice-

versa. Un sonido de tono agudo puede ser e l rechinido de la bisagra de una puerta,

y un sonido de tono grave puede ser el de un trueno. A veces, llamamos “altos” a los

sonidos agudos y “bajos” a los graves.

La rapidez de propagación de las ondas sonoras depende de varios factores, entre

ellos el medio material y la temperatura a la que se encuentra. A una temperatura de

0 °C, por ejemplo, las ondas sonoras se propagan en el aire atmosférico a 332 m/s

aproximadamente, mientras que a 20 °C su rapidez aumenta a 343 m/s.

En el agua pura o destilada , a 20 °C se propaga a 1 487 m/s, mientras que en el vidrio ala misma temperatura lo hace a 5 250 m/s, y en el aluminio a 20 °C alcanza hasta 6 400 m/s.

GLOSARIO

La destilación es un proceso de

separación de mezclas en el que se

recuperan sustancias puras al calentar

la mezcla (por ejemplo, el agua

de la llave) hasta evaporarla, y luego

se condensa en vapor. Los seres vivos

no debemos consumir agua destilada

para beber; esta agua pura tiene usosindustriales únicamente.

Page 49: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 49/276

47

B1

Los medios materiales favorecen en mayor o menor medida la transmisión de ondas

sonoras; en general en los sólidos se transmiten más rápido que en los líquidos y en

éstos, a su vez, más rápido que en los gases.

Hasta ahora hemos considerado al sonido como una onda mecánica única produci-

da por una perturbación específica. Sin embargo, en la realidad rara vez escuchamossonidos compuestos por una sola onda; lo más común es que se produzcan varias

ondas a la vez, y cada una puede tener amplitud y longitud de onda distintas. En esta

situación decimos que hay una superposición de ondas. Esto produce una forma de

pulso particular, como se muestra en la figura 35.

Este fenómeno da lugar a otra cualidad de las ondas sonoras, llamada timbre , el

cual se define como la combinación específica de las ondas sobrepuestas para cada

sonido.

¿Has notado que puedes distinguir la voz de diferentes personas porque suenan

diferente? Sucede justamente que cada persona tiene un timbre de voz único. Lo

mismo pasa con los instrumentos musicales: una nota ‘Do’ tocada en un piano nosuena igual que el mismo ‘Do’ en una flauta, por ejemplo. El timbre de la voz de una

persona o de un instrumento de música en particular se debe a cuántas ondas se han

combinado, y cuáles son sus características individuales.

Por último, lo que llamamos “ruido” corresponde a ondas sonoras que no tienen un

patrón de repetición basado en un pulso específico, y que pueden tener variaciones

bruscas en su amplitud y longitud de onda, como en la figura 36.

a

b

c

FIGURA 35. La superposición delas ondas a y b da como resul-tado la onda c, la cual tiene unaforma particular.

FIGURA 36. Representacióngráfica de un ruido. ¡Comienzaahora mismo a cuidar tusoídos!, la pérdida de audiciónse manifiesta a edades cadavez más tempranas debido ala exposición indiscriminada aruidos ambientales y a la cos-tumbre entre muchos jóvenesde escuchar música con unaintensidad exagerada.

1. Utilizando la noción de ondas mecánicas, explica por qué nose podría escuchar el sonido producido por un golpe en laLuna.

2. ¿Cómo varía la frecuencia de una onda cuando su longitud deonda disminuye? ¿Y cuando aumenta?

3. Explica en cada situación de esta secuencia qué es lo quedetermina:

a. que podamos percibir una onda,

b. que un sonido sea agudo o grave,

c. que una persona oiga una conversación estando en otrahabitación.

4. Explica: ¿cuál de las actividades te ayudó a aprender mássobre el movimiento ondulatorio?

5. Elabora un mapa de conceptos relacionando lo que hasaprendido en este contenido.

Evalúo mi avance

Page 50: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 50/276

4848

El trabajo de Galileo

Explicaciones de Aristóteles y Galileo acercade la caída libre.

Aportación de Galileo en la construcción delconocimiento científico.

La aceleración; diferencia con la velocidad.

Interpretación y representación de gráficas:velocidad-tiempo y aceleración-tiempo.

Cualquier objeto puede caer si pierde su apoyo o es empujado.Eso ocurrió con este vaso que estaba en la orilla de una mesa,cuando alguien le pegó de manera accidental. Cuando hemos vivido

experiencias semejantes nos quedamos paralizados mientras elobjeto cae sin remedio quebrándose en pedazos.

S2

Aprendizajes esperados

S2

• Identificarás lasexplicaciones de

Aristóteles y las de Galileo

respecto al movimiento

de caída libre, así como

el contexto y las formas

de proceder que las

sustentaron.

• Argumentarás la

importancia de la

aportación de Galileo

en la ciencia como unanueva forma de construir

y validar el conocimiento

científico, con base en

la experimentación y el

análisis de los resultados.

• Relacionarás la aceleración

con la variación de la

velocidad en situaciones

del entorno y/o actividades

experimentales.

• Elaborarás e interpretarástablas de datos y gráficas

de velocidad-tiempo

y aceleración-tiempo

para describir y predecir

características de

diferentes movimientos,

a partir de datos que

obtendrás en experimentos

y/o situaciones del

entorno.

Page 51: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 51/276

49

B1

•Explicaciones de Aristóteles y Galileo acercade la caída libre

1. Reflexiona y responde en tu cuaderno.

• ¿Qué entiendes por caída libre?

2. Piensa en una experiencia de caída de algún cuerpo, escríbe-la y coméntala con tus compañeros.

• ¿Cómo funciona un paracaídas? Explica.

3. Haz una predicción sobre la siguiente situación: Si dejas caeral mismo instante y desde la misma altura una piedra y unahoja de papel extendida:

• ¿Cuál de estos cuerpos tocará primero el suelo?

4. Realiza la experiencia y anota el resultado en tu cuaderno;después comenta con el grupo estos cuestionamientos:

• ¿Qué característica de los objetos que cayeron determinóque uno de ellos llegara primero al suelo?

• ¿Hay alguna manera en que al dejar caer la piedra y elpapel, desde la misma altura y al mismo tiempo, toquensuelo al mismo tiempo? ¿Planteen cómo lo lograrían?

• Pongan en práctica su idea y revisen su respuesta a laprimera pregunta. ¿Qué cambió?

Podemos experimentar la caída libre de diversas maneras…y, desde luego, tenemos que tomarlas debidas precauciones,como tendrá que hacerlo este paracaidista.

Explora

Aunque parezca sorprendente, el estudio del movimiento de los objetos que caen

comenzó hace veinticuatro siglos en la antigua Grecia, pero su descripción experi-

mental y matemática no se logró sino hasta el siglo XVI , época en que floreció el

Renacimiento en Europa occidental.

La caída libre de los cuerpos, fenómeno conocido por los seres humanos desde

siempre, fue objeto de un análisis detallado por el filósofo griego Aristóteles de Estagi-

ra (384- 322 a.n.e.). Al observar y reflexionar sobre la caída libre, Aristóteles concluyó

que los cuerpos tienden a regresar a su “lugar natural”, que es el suelo, y que los

más pesados lo tocan antes que los más ligeros cuando caen desde la misma altura.

Esta explicación resultó, además de sencilla, convincente y adecuada durante los

dos milenios posteriores, pues concuerda con la mayoría de nuestras observaciones en

torno a la caída libre, y formó parte de la Filosofía Natural , disciplina que abordaba

justamente el estudio de los fenómenos naturales con base en el razonamiento lógico.

Alrededor del año 1632, un astrónomo, fi lósofo, matemático y físico italiano llamado

Galileo Galilei (1564-1642) puso en duda la explicación de Aristóteles. ¿Qué llevó a

Galileo a cuestionarse sobre la descripción y la explicación de la caída libre? Veamos

este asunto más de cerca; comparemos para ello las descripciones del movimiento de

algunos objetos que caen.

Page 52: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 52/276

50

Material

6 objetos sólidos: una piedra, un trozo de madera, unacanica, una hoja de papel estirada, una hoja de papel hechabolita, una goma y un trozo de gis.

• 2 cronómetros.

Procedimiento

a. Formen equipos y realicen esta actividad bajo la supervi-sión de su maestro.

b. En todo momento, tengan mucho cuidado para evitar acci-dentes.

c. Formulen una predicción sobre cuál de los objetos tardarámenos tiempo en tocar el suelo.

d. Elijan un lugar más o menos alto pero seguro, como elescalón superior de una escalera o un balcón, etcétera. Unode ustedes extenderá los brazos hacia arriba y dejará caerdos de los objetos desde la misma altura, y los demás re-gistrarán el tiempo que tarda cada objeto en tocar el suelodesde el instante en que es soltado. Registren susobservaciones

e. Practiquen con los instrumentos. Consideren los erroresexperimentales. Por ejemplo, el tiempo mínimo que utilizauna persona para presionar en dos ocasiones consecutivasel botón de un cronómetro es de aproximadamente dosdécimas de segundo (0.2 s). Si sus medidas de tiempo sediferencian en unas cinco décimas de segundo (0.5 s) omenos, pueden considerarse iguales.

f. Repitan el paso d haciendo otras combinaciones de objetos,dejándolos caer simultáneamente desde la misma alturade dos en dos. Asegúrense que una de sus combinacionesincluya las hojas de papel.

Resultados

1. Registren los resultados en sus cuadernos. Pueden usar unatabla como la que se muestra.

T i e m p o d e c a í d a

d e s d e l a m i s m a a l t u r a ( s e g u n d o s )

Objeto:

Piedra Madera Canica

Hojaextendida

Hojahechabolita

Goma

Análisis de resultados

1. Contrasten la predicción que hicieron en el paso c con losucedido.

• ¿Caen más rápido los objetos más pesados, como la piedra?Expliquen con base en sus resultados.

2. Si las dos hojas de papel pesan igual, ¿cómo explican la dife-rencia en sus tiempos de caída?

3. Si doblasen a la mitad la hoja extendida, ¿caería más rápida-mente que si no lo hubieran hecho? ¿Por qué? ¿Y si la siguie-sen doblando, que pasaría?

• ¿Qué pasaría si hicieran bolita la hoja extendida y dejarancaer simultáneamente las dos hojas así comprimidas?

Conclusión

1. Respondan en su cuaderno y, después de comparar losresultados entre equipos, comenten en grupo guiados porsu maestro.

• ¿Qué factores influyen en la rapidez de caída de los objetos?

Ex perimenta y comunica tus avances en ciencias

Describe el movimiento de caída libre.

Sigan todas las indicaciones de seguridad de su maestro alrealizar la actividad.

S2

Page 53: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 53/276

51

B1

FIGURA 37. Las ideas deAristóteles han tenido unimpacto fundamental ennuestra manera de razonar,sobre todo porque utilizabasistemáticamente la lógica,forma de pensar con la quetratamos de establecer la validezde una conclusión a partir de laestructura de los argumentosque conducen a ésta.Foto: Jastrous Ludovisi Collection.

El pensamiento aristotélico

Hace más de dos milenios algunos pensadores griegos ya considera-

ban que la Tierra era esférica y que los objetos caen hacia su centro.

Suponían que algo extraordinario y maravilloso se hallaba en el centro

de la Tierra. Para Aristóteles (figura 37), la Tierra era el centro mis-mo del cosmos, y por ello, como buen filósofo que quería ser lógico,

aseguraba que la caída libre era el movimiento natural de cualquier

objeto. Aristóteles teorizó que todo lo que ocupa un lugar en el espacio

(la materia) estaba constituido por cuatro elementos: tierra, agua, aire

y fuego. Cada uno de estos elementos tenía su lugar en el Universo,

y hacia ese lugar intentaban moverse. Por ejemplo, una roca estaba

constituida fundamentalmente de tierra, y así caía de manera natural

hacia el centro de la Tierra. Según esto, como el fuego residía sobre

la superficie lunar, era lógico que las llamas y el humo tendieran a

subir intentando alcanzar la Luna. Por otra parte, todo aquello que seencontrara más allá de su Universo visible estaría constituido de un

quinto elemento: el éter.

Aristóteles fue el primero en establecer la correspondencia entre el movimiento de un

objeto con el medio material en torno al mismo. Él afirmaba que el “peso” de un obje-

to, entendido como la materia atraída hacia su lugar en el Universo, lo hacía caer con

una rapidez proporcional a su peso. Por ejemplo, decía que una piedra debía caer más

rápido que una mota de polvo porque la primera es más pesada. Infirió por otro lado

que el medio material en el que cae un cuerpo se relaciona con su rapidez de caída,

ya que el medio presenta resistencia al movimiento de caída. Por lo tanto, en ausencia

de un medio material que ofreciera resistencia al movimiento, es decir, en el vacío, los

cuerpos caerían con la misma rapidez, independientemente de su peso. Sin embargo,

desechó esta idea porque consideraba que el vacío simplemente no podía existir.

Las ideas de Aristóteles prevalecieron entre los eruditos durante muchos siglos en

Europa sin que ninguno de ellos se atreviera a refutarlas, hasta que en el siglo XVII Galileo

encontró una razón poderosa para dudar de las afirmaciones del filósofo griego.

1. Al inicio de esta secuencia experimentaste con la caída libre de diversos objetos. ¿Qué puedesconcluir a partir de esta experiencia? Selecciona una opción.

a. La caída libre de los objetos sólo puede ocurrir en el vacío.

b. El tiempo de caída de los cuerpos que caen no depende de su peso, sino de su forma.

c. Si dos objetos se dejan caer desde la misma altura, el más pesado tocará primero el suelo.

d. El movimiento de los cuerpos que caen es rectilíneo uniforme.

2. ¿Por qué la teoría de los cuatro elementos que sostenía Aristóteles no puede explicarque el agua suba cuando se evapora y luego caiga cuando llueve?

3. Aristóteles sospechó que el rozamiento del aire podía influir en la caída de los cuerpos.¿Por qué abandonó esta idea?

Evalúo mi avance

Page 54: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 54/276

52

1. Reúnete con un compañero y expliquencómo consideran que se construye el cono-cimiento científico.

2. Debatan en plenaria con el apoyo delmaestro.

Explora

•Aportación de Galileo en la construccióndel conocimiento científico

Galileo hizo muchas observaciones de diversos fenómenos físicos, pero, a diferen-

cia de Aristóteles, no sólo relacionaba causas y efectos a través de un razonamiento

lógico, sino que concebía y realizaba experimentos en los cuales pudiese reproducir

ciertos eventos, en condiciones controladas, con la finalidad de hacer mediciones y

establecer relaciones entre las variables involucradas.Entre otras investigaciones, Galileo (figura 38) diseñó experimentos para regis-

trar datos de la caída libre con rapidez más lenta, pues los objetos en caída libre se

mueven demasiado rápido como para registrar el tiempo con los instrumentos de

medición disponibles en su época. Consideremos que en ese entonces no existían los

cronómetros y mucho menos las videograbadoras que se utilizan actualmente y que

nos permiten ver las escenas en cámara lenta.

Galileo resolvió esto con gran ingenio: midió el tiempo t ranscurrido mediante el

volumen de agua que goteaba hacia una bandeja desde una vas ija horadada. Montó

unos planos inclinados y marcó diferentes posiciones sobre ellos, como se muestra

en la figura 39. Después, dejó rodar esferas de diferente peso, cerciorándose de queestuviesen muy bien pulidas para evitar, en lo posible, el rozamiento o fricción. Para

disminuir más este efecto, untó con aceite tanto los planos inclinados

como las esferas. Observó que cuando la inclinación del pla-

no se iba acercando a los 90°, las esferas que se movían

sobre él adquirían mayor rapidez y, por tanto, lle-

gaban más lejos sobre el piso. Observó también

algo muy importante: dada cierta inclinación,

¡las esferas se tardaban el mismo tiempo

en llegar a los puntos marcados por

Galileo en el piso, aunque tuvieran

diferente peso!

FIGURA 38. Galileo Galilei(1564-1642) se distinguió desus predecesores por someter aprueba sus conjeturas, iniciandoasí la era de las ciencias experi-

mentales.

FIGURA 39. Galileo marcó lasmismas posiciones en cadaplano inclinado, que utilizó parahacer posible medir los tiempos

de caída de distintos cuerpos.

S2

Page 55: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 55/276

53

B1

FIGURA 40. Nicolás Copérnico (1473-1543)

propuso un modelo diferente del de Aris-tóteles para explicar el movimiento de losplanetas observables a simple vista, llamadomodelo heliocéntrico, contribuyendo asíde manera fundamental a lo que algunoshistoriadores llaman la primera revolucióncientífica.

FIGURA 41. El tiempo que tardaun péndulo en completar unaoscilación se llama periodo, yla amplitud de dicha oscilacióncorresponde a la máxima dis-tancia que se aleja de la vertical

hacia uno u otro lado.

Galileo concluyó que todos los cuerpos tardan el mismo tiempo en caer desde la

misma altura cuando hay muy poca fricción. Demostró además, con evidencias expe-

rimentales y modelos de gráficas de posición-tiempo, que en ese movimiento había

una relación entre la velocidad y el tiempo.

El enfoque de Galileo

La metodología y los descubrimientos de

Galileo marcaron el nacimiento de lo que

ahora conocemos como ciencias experimen-

tales, entre ellas la Física. Más aún, persona-

jes como el astrónomo y matemático polaco

Nicolás Copérnico (figura 40), así como el

propio Galileo, impulsaron una nueva pers-

pectiva en la investigación de los fenómenosnaturales basada en la experimentación y el

registro sistemático de resultados, buscan-

do las respuestas en la propia naturaleza y

construyendo modelos acordes a lo que se

evidenciaba en los experimentos, y no al re-

vés: que era pensar en un modelo y justificar

luego por qué las cosas se comportan según

una idea preconcebida.

Aún hoy es dif íci l medir el tiempo en que

un objeto cae libremente desde alturas pe-queñas. Sin embargo, como lo hizo Galileo,

nosotros también podemos aproximar el

movimiento de caída libre haciendo uso de

un péndulo. La cuerda que sostiene al obje-

to que cuelga retarda su caída lo suficiente

como para medir el tiempo que tarda en ir

y regresar, es decir, en completar una osci-

lación (figura 41).

Puedes visitar este sitiopara presenciar un diálogoficticio entre Aristóteles yGalileo en torno a la caída

libre:

www.sined.mx/sined/aprendiendo/objeto-72.htm

Page 56: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 56/276

54

Material

1 carrete de cuerda (hilo de seda o cáñamo)• 1 soporte universal con arillo

• 1 cronómetro

• 2 pesas diferentes, por ejemplo una de 1 kg y otra de 100 g

• Tijeras

• 1 hoja cuadriculada o milimétrica

Procedimiento

a. Construyan dos péndulos cuyas cuerdas sean de 50 cmde longitud con pesas diferentes. Aten las cuerdas por un

extremo al arillo o brazo del soporte y el otro a cada unade las pesas, como se muestra en la fotografía.

b. Coloquen el soporte sobre uno de los extremos de la mesacuidando que los péndulos queden paralelos entre sí.

c. Elaboren una predicción sobre lo que creen que sucederáal soltar los péndulos simultáneamente desde la mismaaltura.

• ¿Alguno de los péndulos oscilará más rápido que el otro?

d. Jalen los péndulos hacia ustedes y suéltenlossimultáneamente desde la misma altura, procurando queel péndulo oscile con poca amplitud. Para ello, hagan

varias pruebas de alturas desde las cuales los sueltan paraque la amplitud de oscilación de los péndulos no excedalos 15 cm.

e. Describan en su cuaderno el movimiento de cadapéndulo. Si les sirve, utilicen el formato de la tablaque se muestra en la parte de registro de observacionesy datos.

f. Repitan el experimento, midiendo ahora el periodo de os-cilación del péndulo. El periodo de oscilación es el tiempoque tarda el péndulo en ir y volver al punto de partida.

Registro de observaciones

Péndulo 1 Péndulo 2

Descripción delmovimiento

Periodo de oscilación (s)

Análisis de resultados

1. ¿Fueron acertadas sus predicciones? Expliquen.

2. ¿Difieren significativamente los periodos de oscilación de lospéndulos?

3. ¿A qué se debe la coincidencia o la diferencia?4. De acuerdo con sus observaciones y mediciones, ¿el periodo

de oscilación de un péndulo (con amplitudes de oscilaciónpequeñas) depende del peso del objeto que cuelga?

Conclusiones

1. Respondan en su cuaderno y después comenten en grupo:

• ¿Con cuál de las explicaciones concuerda su respuesta a lapregunta anterior, la de Aristóteles o la de Galileo? ¿Por qué?

• ¿Qué pasaría si colgaran un objeto diez veces más pesadoen uno de los péndulos que construyeron? ¿Habría variación en

el periodo de oscilación respecto a lo que obtuvieron antes?2. Coloquen en el suelo mochilas, suéteres o cartones para crear

una zona de amortiguamiento. Suelten las pesas simultánea-mente y desde la misma altura sobre esta zona. Comentenen grupo:

• ¿Es verdad que la pesa de mayor peso cae más rápidamen-te que la de menor peso? Expliquen.

3. Compartan sus resultados con los demás equipos, y busquenel apoyo de su maestro.

Es importante que la longitud de la cuerda de los péndulos seaexactamente la misma, que los objetos que cuelgan sean de pesosdiferentes, y que los péndulos oscilen con pequeñas amplitudes.

Experimenta con la caída mediante el péndulo.

S2

Experimenta

Page 57: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 57/276

55

B1

1. Uno de los argumentos empleados por Galileo para refutar aAristóteles consistía en un planteamiento como el siguiente;léelo con atención y reflexiona:

“…si dos piedras atadas caen al mismo tiempo que una solade esas piedras, ¿cómo se explica entonces que el peso de

cada objeto determine la velocidad de su caída?”

2. Utilizando alguna de las actividades experimentales que rea-lizaste, demuestra la falsedad en la explicación de Aristótelesque fue detectada por Galileo.

3. ¿Por qué Galileo decidió utilizar objetos de la misma forma yde distinto peso en su experimento con los planos inclinados?

4. Explica cuál fue el papel de cada uno de los siguientes aspec-tos en el razonamiento de Galileo:

a. La experimentación.

b. El registro de datos.

c. El análisis de resultados.

5. Cuando dejaste caer desde la misma altura y al mismo tiem-po una hoja de papel y una piedra:

• ¿Qué sucedió?

¿Contradice el resultado obtenido la conclusión de Galileo?Argumenta tu respuesta.

6. Usando los resultados obtenidos en el último experimento,puedes llegar a conclusiones semejantes a las que obtuvoGalileo:

• ¿Cómo depende el periodo de oscilación de la masa delpéndulo?

• ¿Cómo se relaciona la oscilación con la caída libre?

7. Explica: ¿por qué es más sencillo medir el periodo de oscila-ción de un péndulo que el tiempo de caída libre vertical deun objeto?

Evalúo mi avance

FIGURA 42. En una cámara de vacío se comprueba que dos objetos de pesodiferente, como una piedra y una pluma de ave, caen al mismo tiempo. Estedispositivo no existía en tiempos de Galileo, pero ahora, gracias a la tecno-logía, se ha corroborado que estaba en lo correcto al afirmar que el tiempode caída no depende del peso cuando no hay fricción con un medio material.En estas cámaras no se logra un vacío perfecto, pero sí es posible constatar

experimentalmente la validez de la explicación de Galileo.

En conclusión, nuestra experiencia cotidiana

suele coincidir con la explicación de Aristóte-

les, pero ésta no explica por qué dos cuerpos

con el mismo peso, como las hojas de papel

que utilizaste en la actividad, caen en tiempos

muy diferentes dependiendo de si están com-

pactadas como una pelotita o planas y lisas.

En ese caso, la resistencia que opone el aire

al movimiento desempaña un papel importan-

te, pues cuando la hoja tiene una forma plana

y delgada, hay más ai re en contacto con el la

que cuando está hecha bolita. Esta resistencia

se debe al rozamiento con el aire, y se llama

fricción. Al arrugar y hacer bolita ambas hojas,

caerán prácticamente al mismo tiempo. En cam-bio, al soltar dos pesas de peso distinto, éstas

tocan el suelo prácticamente al mismo tiempo,

pues la fricción con el aire es similar para am-

bas. Es la forma de los objetos que caen lo que

influye en su rapidez de caída, no su peso.

En ausencia de un medio material que oponga

resistencia a la caída, esto es, en el vacío, los

objetos de pesos y formas distintos caen en el

mismo tiempo si lo hacen desde la misma altu-

ra, como se ilustra en la figura 42.

Bomba de vacío Bomba de vacío

Page 58: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 58/276

56

•La aceleración; diferencia con la velocidad

Buena parte de los movimientos que suceden en nuestro entorno, y en todo el Univer-

so, no transcurren a velocidad constante. Observa la fotografía del auto en la figura 43.

FIGURA 43. El conductor de este auto debe lograr correr sobre la pista siguiendotrayectorias específicas sin provocar accidentes, para lo cual está entrenado.

1. Analiza la fotografía de la figura 43 y res-ponde:

• ¿Consideras que el fotógrafo que se en-cuentra detrás de la barrera afirmaría queel auto tiene un movimiento rectilíneouniforme? ¿Por qué?

• ¿Qué significa para ti la palabra “acelerar”?

2. Relata a tus compañeros algún evento enel que consideres que tuviste un movi-miento acelerado.

3. ¿Es lo mismo moverse a “gran velocidad”(con un módulo de velocidad grande) queacelerar? ¿Por qué? Anota tu explicación entu cuaderno.

4. Comenta con otros compañeros y despuésen grupo debatan si consideran que es im-portante, por ejemplo, que los conductoresde cualquier vehículo sepan algo de física.

Explora

Ya hemos estudiado caracterís ticas de movimientos cuya velocidad es constante.

Este conocimiento es muy útil para comprender movimientos más complejos y que

forman parte de nuestra vida cotidiana, en los que la velocidad constante pocas veces

está presente.

Considera que estás participando en una carrera en la cual recorrerás cien metros

en línea recta. Antes de que se indique la salida de los corredores estás en posición

para empezar a correr, pero inmóvil, es decir, tu velocidad es cero. En cuanto se indica

la salida empiezas a moverte para alcanzar la mayor velocidad posible. Sin embargo,

este es un proceso que lleva cierto tiempo, ya que es imposible que, a partir del re-

poso, adquieras instantáneamente determinada velocidad. Más bien, el módulo de tu

velocidad se va incrementando poco a poco. Esto lo sabes porque haces un esfuerzo

para correr cada vez más rápido, hasta que corres todo lo rápidamente que puedes.

S2

Page 59: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 59/276

57

B1

FIGURA 45. Montaña Rusa en el Bosque de Chapultepec de la Ciudadde México. ¿Cómo cambiaría el módulo de tu velocidad, y la direc-

ción y el sentido de la misma, en diferentes partes del recorrido?

Si bien tu movimiento se produce en una trayectoria rectilínea, el módulo de tu

velocidad no es constante. Observa atentamente el diagrama de la figura 44 y re-

flexiona: ¿el módulo de la velocidad de la corredora es constante? ¿Por qué?

FIGURA 44. Este diagrama muestra las posiciones sucesivas que una persona que corre va ocupando cadasegundo, durante un intervalo corto.

Distancia

10 2 4 5 6 73

Aceleración como razón de cambio de la velocidad en el tiempo

¿Te has subido a una Montaña Rusa? Observa la figura 45. Apenas un instante después

de que el carrito alcanza la parte más alta de este juego mecánico, las emociones y

sensaciones que puedes experimentar son realmente vertiginosas. Percibes de ma-

nera muy evidente los efectos que producen en tu cuerpo los bruscos cambios en la

velocidad del movimiento. Desde luego, tu movimiento ha

sido muy distinto de un movimiento rectilíneo uniforme: has

experimentado un movimiento acelerado.Cuando un objeto se desplaza hacia abajo por una super-

ficie inclinada, observamos que el módulo de su velocidad

se incrementa conforme transcurre el tiempo, es decir, su

movimiento tiene una velocidad variable. En este caso, se

trata de un movimiento con un módulo de velocidad que no

es constante, sino que aumenta en cada intervalo de tiempo.

Algo semejante ocurre cuando un objeto cae libremente. En

el instante de soltar un objeto suspendido, su módulo de

velocidad es cero. Conforme aquél cae, éste va aumentan-

do uniformemente al pasar el tiempo, alcanzando su valor

máximo un instante antes de llegar al suelo. Pero en el caso

de la Montaña Rusa, la trayectoria que sigue no es rectilínea;

hay muchas vueltas y curvas. Esto significa que no sólo

cambiaría el módulo de la velocidad de tu movimiento;

ocurrirían, además, cambios en la dirección y el sentido.

Cuando alguna (o todas) las características del vector velo-

cidad cambian en el tiempo, hablamos de un movimiento

acelerado, en el que la variable que indica qué tanto cam-

bia la velocidad en el tiempo se llama aceleración.

Page 60: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 60/276

58

Considerando por el momento sólo los cambios en el módulo de la

velocidad, tenemos que siempre que éste aumente o disminuya existirá

una aceleración. Si aumenta, la aceleración es positiva. Si disminuye,

tiene un valor negativo. En el lenguaje cotidiano nos referimos a la

disminución en el módulo de la velocidad diciendo que el cuerpo “des-

aceleró”, o frenó, pero en todos los casos se trata de un movimiento

acelerado.

Como comentamos antes, la aceleración no sólo puede deberse a

cambios en el módulo de la velocidad de un móvil. Observa con de-

tenimiento la figura 46.

La traslación de los planetas es otro ejemplo de movimiento acelera-

do, pues en cada punto de la órbita que recorren cambia la dirección

de su movimiento y, en consecuencia, cambian las características de

su vector de velocidad.

FIGURA 46. Este caracol se desplaza cinco centíme-tros cada minuto, pero su trayectoria no es unalínea recta. ¿Será correcto decir que su movimientoes acelerado?

S2

Procedimiento

1 Bajo la supervisión estrecha y constante de su maestro, reali-cen las dos experiencias de esta Actividad.

Experiencia Aa. Todos los integrantes del equipo se tomarán de las manos,

uno seguido del otro.

b. El integrante que está en un extremo avanzará en línearecta jalando a los demás, yendo a veces más rápida o máslentamente, deteniéndose y reiniciando el movimiento.

c. Todos los integrantes se dejarán jalar y estarán atentos asus percepciones cuando haya cambios en la velocidad desu movimiento.

d. Describan cómo sienten en su cuerpo los cambios en larapidez del movimiento.

Experiencia Be. De nuevo, los integrantes se tomarán de las manos, uno

seguido del otro.

f. El integrante que está en un extremo avanzará con un ritmoconstante, pero cambiando frecuentemente de dirección.

g. Todos los integrantes estarán atentos a sus percepcionescuando haya cambios en la dirección de su movimiento.

h. Describa cada uno cómo siente su cuerpo con los cambiosen la dirección del movimiento.

Análisis de resultados

1. Comenten entre ustedes.• ¿Qué cambió en la Experiencia A?

• Y en la Experiencia B, ¿qué cambió?

• ¿Qué tan similares son las percepciones en ambos casos?

• ¿Qué puede concluirse a partir de la respuesta a la preguntaanterior?

Conclusión

1. En equipo, lleguen a un acuerdo sobre las siguientes cuestiones:• ¿Qué magnitud física cambia al transcurrir el tiempo en un

movimiento acelerado?

• ¿Consideran que la aceleración es una magnitud escalar ovectorial? ¿Por qué?

• ¿Cómo explicarían la diferencia entre aceleración yvelocidad?

2. Compartan sus resultados con el grupo y con el maestro.

Aceleración y cambios en la velocidad.

Basta con que haya un cambio en la dirección delmovimiento para que aparezca una aceleración.

Experimenta

Page 61: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 61/276

59

B1

FIGURA 47. Este avión rompe labarrera del sonido, de ahí sunombre: “supersónico”. ¿Sabescuál es la velocidad del sonido?

Dado que la velocidad es un vector (recordemos que es el cambio de otra magnitud

vectorial, el desplazamiento, en el tiempo), la aceleración es también una magnitud vec-

torial. Por otro lado, al igual que podemos calcular el módulo de la velocidad media

considerando las posiciones y tiempos iniciales y finales, el módulo de la aceleración

media a se define como:

∆v |v f – v i |a —— ———— ∆t t f – t i En el lenguaje cotidiano es común escuchar afirmaciones como: “El vehículo iba

muy acelerado”, cuando en realidad lo que se quiere decir es que iba con un módulo

de velocidad alto. La aceleración nos indica qué tanto cambia la velocidad , y no si un

móvil tiene o no una gran velocidad.

Consideremos por ejemplo un avión llamado “supersónico” (figura 47), que pue-

de desarrollar una velocidad mayor que la del sonido en el aire, que vuela en línea

recta y con un valor constante del módulo de velocidad de 1 400 km/h durante dos

horas. ¿Cuánto vale su aceleración una vez alcanzada esta velocidad? De acuerdo conla definición anterior, tenemos que:

El avión supersónico es un móvil que indudablemente se mueve muy rápido, pero

como mantuvo su velocidad constante en el intervalo de tiempo de dos horas, su

aceleración es nula. De hecho, la aceleración de cualquier móvil cuyo movimiento

sea rectilíneo uniforme es cero.

Aprovechemos el ejemplo anterior para observar que las unidades de aceleración

son una unidad de longitud entre una unidad de tiempo elevada al cuadrado. Porejemplo, si la velocidad de un auto o de un avión se mide en km/h y el tiempo en h,

la aceleración se expresa en km/h2. En el Sistema Internacional de Unidades, el mó-

dulo de la aceleración se mide en m/s2 . Por ejemplo, en nuestro planeta, el módulo

de la aceleración de los cuerpos en caída libre, sin considerar la fricción, tiene un

valor constante de 9.81 m/s2.

Pensemos ahora en un automóvil que arranca desde el reposo y alcanza 90 km/h

en seis minutos, y calculemos el módulo de su aceleración. Antes de sustituir los va-

lores en la ecuación, consideremos que si una hora tiene sesenta minutos, entonces

un minuto es la sesentava parte de una hora, y seis minutos son 6 — 60

de una hora, esto

es, 6 min = 0.1 h.Entonces:

Dado que el móvil aumentó el valor de su velocidad, asignamos un signo positivo

a su acelercación. En una situación inversa, es decir, si un auto tiene una velocidad

inicial de 90 km/h y queda totalmente detenido en 6 minutos, el módulo de su ace -

leración sería:

km km km |1400 —— 1400 ——| |0 ——| ∆v v f – v i h h h km

a —— ———— ————————————— ———— 0 —— ∆t t f – t i 2 h – 0 h 2 h h2

km km km 90 —— 0 —— 90 —— ∆v v f – v i h h h kma —— ———— ———–——————— —–——–— 900 —— ∆t t f – t i 0.1 h – 0 h 0.1 h h2

| | | |

Page 62: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 62/276

60

ProcedimientoExperiencia A

a. Midan tramos de 30 cm en el riel, y márquenlos con trocitos de la cinta adhesiva.b. Apoyen uno de los extremos del riel en la pila de libros. Asegúrense de que quede bien fijo.c. Coloquen la canica en la parte superior del riel y déjenla rodar cuesta abajo.d. Midan con el cronómetro o el reloj con segundero el tiempo que tarda la canica en alcanzar

la primera marca. Repitan el lanzamiento y midan el tiempo en que el móvil llega a la se-gunda marca y así hasta medir los tiempos para las seis marcas. Esto equivale a una serie deseis lanzamientos.

e. Antes de comenzar, elaboren una predicción sobre si los tiempos en cada tramo del riel serániguales o no.

f. Registren los tiempos en sus cuadernos; pue-

den usar una tabla semejante a la que semuestra abajo.

g. Repitan un mínimo de tres veces la serie delanzamientos anterior.

h. Calculen los promedios de los valores que obtu-vieron en cada serie de lanzamientos para cadamarca de posición y anótenlos en su tabla.

i. Calculen el intervalo de tiempo transcurridoentre las marcas sucesivas. Para ello, resten deltiempo de cada marca el tiempo de la marcaanterior; por ejemplo, si a los 60 cm obtuvieron5.2 s y a los 90 cm, 6.3 s, el intervalo de tiempoentre estas marcas es de 6.3 s – 5.2 s = 1.1 s.

Experimenta y comunica tus avances en ciencias

Describe un movimiento acelerado.

> Continúa en la página siguiente

Suelten cada vez la canica o el balíndesde la misma posición en el bordesuperior del riel.

Datos de la Experiencia A

Posición 0 cm 30 cm 60 cm 90 cm 120 cm 150 cm 180 cm

Tiempos para loslanzamientos 1 0 s

Tiempos para loslanzamientos 2 0 s

Tiempos para loslanzamientos 3 0 s

Promedio 0 s

Intervalo de tiempoen cada tramo --------

0 a 30 cm 30 a 60 cm 60 a 90 cm 90 a 120 cm 120 a 150 cm 150 a 180 cm

• 1 canica o balín

• 1 riel de 1.8 m de largo, en el que una canicapueda rodar sin caerse a los lados.

Nota: Si no dispones de un riel, puedes usar una ca-naleta de cualquier material que sea recta y rígida,como la utilizada en la secuencia anterior.

• 1 flexómetro o regla de 30 cm

• 1 cronómetro o reloj con segundero

• Cinta adhesiva

• Algunos libros o libretas apilados, de talmanera que consigan una altura total de unos10 a 15 cm

Material

S2

km km km 0 —— 90 —— – 90 —— ∆v v f – v i h h h kma —— ———— —————————— ————–— –900 —— ∆t t f – t i 0.1 h – 0 h 0.1 h h2

Como el móvil frena, debemos asignar un signo negativo a la aceleración, es es:

a = –900 km/h

2

.

| | | |

Page 63: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 63/276

61

B1

»

a. Coloquen el riel en posición horizontal. Asegúrense de que quede bien fijo.

b. Un integrante impulsará muy suavemente la canica desde el comienzo del riel paraponerla en movimiento, de tal manera que ruede a lo largo del riel y quede detenida

justo al final del mismo. Cuando haya conseguido este movimiento, lo repetirá tres vecespara tomar las mediciones de tiempo; sólo considerarán aquellas mediciones en las quela canica quede detenida al final del riel; si se pasa o no llega a ese punto, descarten lamedición.

c. Repitan los pasos del inciso d al h de la Experiencia A.

d. Registren las mediciones en una tabla semejante a la que se muestra abajo.

Experiencia B

Registro de datos

1. Completen las tablas en sus cuadernos.

Análisis de resultados

1. Con base en sus mediciones, calculen el módulo de la velocidad para cada Experiencia deesta Actividad. Para ello pueden completar en sus cuadernos una tabla como la que se sugierepara cada parte.

Cálculo del módulo de la velocidad para la Experiencia A

Posición inicial

x i (cm)

Posición final

x f (cm)

Desplazamiento

∆ x = | x f – x i | (cm)

Tiempo total

transcurrido (s)

Intervalo de tiempo

∆ t t f t i (s)

Aceleración

a t f t i (s)

0 30 30 – 0 = 30

30 60 60 – 30 = 30

60 90 90 – 60 = 30

90 120 120 – 90 = 30

120 150 150 – 120 = 30

150 180 180 – 150 = 30

2. Calculen ahora, para cada experiencia, el módulo de la aceleración en cada tramo utilizandoen su cuaderno tablas como las que se muestran en la página siguiente:

Datos de la Experiencia B

Posición 0 cm 30 cm 60 cm 90 cm 120 cm 150 cm 180 cm

Tiempos para loslanzamientos 1 0 sTiempos para loslanzamientos 2

0 s

Tiempos para loslanzamientos 3

0 s

Promedio 0 s

Intervalo detiempoen cada tramo

--------0 a 30 cm 30 a 60 cm 60 a 90 cm 90 a 120 cm 120 a 150 cm 150 a 180 cm

> Continúa en la página siguiente

Page 64: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 64/276

62

»

Cálculo del módulo de aceleración para la Experiencia B

Velocidad

inicial v i (cm/s)

Velocidad

final v f (cm/s)

Cambio en la velocidad

∆v

v f

v i (cm/s)

Tiempo total

transcurrido(s)

Intervalo

de tiempo∆t t f t i (s)

Aceleración

a

∆v

— ∆t (cm/s2

)

0 30 30 – 0 = 30

30 60 60 – 30 = 30

60 90 90 – 60 = 30

90 120 120 – 90 = 30

120 150 150 – 120 = 30

150 180 180 – 150 = 30

3. Verifiquen sus procedimientos, comparen los resultados de cada equipo y reflexionen sobrelo siguiente.

Experiencia A

• ¿Cuál es el módulo de la velocidad al inicio del movimiento de la canica?

• ¿Cómo cambiaron los tiempos netos en cada tramo? ¿Por qué?

• ¿Qué puede inferirse sobre el módulo de la velocidad en el desplazamiento total?

• Si el riel tuviese una longitud de 210 cm, ¿el intervalo de tiempo que emplea el balínen desplazarse de la posición de 180 cm a la posición de 210 cm sería igual, mayor omenor que el tiempo empleado en desplazarse de la posición de 150 cm a la de 180 cm?Argumenten su predicción.

• ¿Es igual o muy parecido el valor de la aceleración en cada tramo del riel?

• ¿Qué significa en términos físicos que el valor del módulo de la aceleración sea positivo?

• ¿Qué pasaría con las magnitudes medidas si inclinasen más el riel?

Experiencia B

• ¿Cuál es el módulo de la velocidad de la canica al final del movimiento?

• ¿Cómo cambiaron los intervalos de tiempo en cada tramo? ¿Por qué?

• ¿Qué puede inferirse acerca del módulo de la velocidad en el desplazamiento total?

• ¿Es igual o muy parecido el valor de la aceleración en cada tramo del riel?

• ¿Qué significa en términos físicos que el valor del módulo de la aceleración sea negativo?

Conclusiones

Respondan en su cuaderno y después comenten en grupo. Consulten a su maestro si tienencualquier duda.

1. Expliquen las diferencias y semejanzas entre las Experiencias A y B.

• ¿Es el movimiento del balín en la Experiencia A un movimiento de caída? Expliquen.

2. Describan en pocas palabras cuáles son las características del movimiento del balín entérminos de la relación entre los intervalos de tiempo y los desplazamientos parcialesen cada Experiencia.

• ¿El movimiento del balín es rectilíneo? ¿Por qué?

• ¿Puede considerarse el movimiento del balín como rectilíneo uniforme en cada Experiencia?Argumenten su respuesta.

• ¿Puede considerarse el movimiento del balín como acelerado en ambos casos? Justifiquensu respuesta.

S2

Page 65: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 65/276

63

B1

Movimiento uniformemente acelerado

En la actividad anterior se constataron algunos hechos, como que el cambio en el

módulo de la velocidad se relaciona con el intervalo de tiempo en que ocurre, ya

que su valor absoluto es proporcional a éste. Dicho de otra forma, en cada intervalo

de tiempo, el módulo de la velocidad cambia en la misma proporción. Cuando estosucede, decimos que se trata de un movimiento uniformemente acelerado. Por

ejemplo, si cada dos segundos un móvil aumenta el módulo de su velocidad en 3 m/s,

decimos que el móvil aceleró uniformemente. Lo mismo diríamos de un móvil cuyo

módulo de velocidad disminuye 2 m/s cada segundo. El valor absoluto del cambio en

el módulo de la velocidad es constante en intervalos de tiempo de un segundo. En

suma, el movimiento uniformemente acelerado es aquel cuya aceleración es constante.

La caída libre que analizamos antes es un caso de movimiento uniformemente ace-

lerado, siempre y cuando ésta se produzca en ausencia de un medio material que

produzca rozamiento. En la caída de un cuerpo en un medio material, como sucede en

nuestro entorno (figura 48), existe fricción o rozamiento, por lo cual la aceleración dela caída no es constante, y en casos donde la fricción del aire es muy grande (como

cuando dejamos caer una hoja de papel extendida o si dejamos caer una pluma de

ave), la aceleración de la caída se ve afectada por una aceleración negativa que puede

incluso llegar a frenar considerablemente dicha caída.

En la Experiencia A de la actividad anterior hubo relativamente poca fricción, por

lo que la aceleración que obtuviste por cada tramo fue aproximadamente constante.

Como hemos comentado, un experimento similar ayudó a Galileo a establecer que la

caída de los cuerpos es un movimiento uniformemente acelerado, cuya aceleración

no depende en lo esencial del peso de los cuerpos que caen.

FIGURA 48. Todos los días vemosel efecto de la fricción en lacaída libre de los objetos.¿Puedes identificar casos en tuvida cotidiana?

1. Si te subes en un carrusel, ¿tu movimiento es acelerado? ¿Por qué?

2. ¿Qué velocidad final alcanzarías en un vehículo si, a partir delreposo, aceleras uniformemente a 2.6 m/s2 durante 30 s? Sise parte del reposo, el valor de la velocidad final es el pro-ducto de la aceleración por el tiempo transcurrido.

3. ¿Cuál es la aceleración de un tren que va a 90 km/h y frenauniformemente durante doce minutos hasta quedar detenidoen el andén? Te sugerimos convertir los minutos a fraccionesde hora.

4. Explica la diferencia entre aceleración y velocidad.

5. Regresa a la actividad Explora, página 56, de este contenido yanaliza tu respuesta a la pregunta: ¿Es lo mismo moverse con“gran velocidad” que acelerar? ¿Por qué? Escribe qué cambiosharías ahora a tu respuesta.

6. Cuando se propaga en el vacío, la luz va en línea recta a lasorprendente velocidad constante de casi 300 000 km/s, loque permite que la luz reflejada por la Luna tarde un poquitomás de un segundo en llegar a nosotros, a la Tierra, y que laluz proveniente del Sol tarda tan sólo poco más de ochominutos. Pero…, ¿cuánto vale la aceleración de la luz? Explica.

7. Si un ciclista transita por una carretera recta con una velo-cidad inicial de 10 m/s, y frena de manera uniforme hastadetenerse en un lapso de 5 s:• ¿Cuánto vale el módulo de su aceleración?• ¿Cómo se comporta el módulo de su velocidad en tiempo?• ¿Qué significa en términos físicos una aceleración negativa?

8. Considera un tren de carga que parte de la estación A y llegaa la estación por una vía recta en tres etapas: la vía que unelas estaciones es una línea recta. Podemos dividir este movi-miento en tres etapas:a. Primera: A partir del reposo en la estación A, acelera hasta

alcanzar un módulo de velocidad de 60 km/h.b. Segunda: Se desplaza con ese módulo de velocidad en un

tramo de 2 km.c. Tercera: Al acercarse a la estación B, disminuye su veloci-

dad hasta detenerse en el andén.• ¿Cómo cambia el módulo de su velocidad en cada una de

las etapas? Justifica tu respuesta.• ¿Cómo es su aceleración en cada etapa: positiva, negativa o

nula? Argumenta.

Evalúo mi avance

Page 66: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 66/276

64

1. ¿Cómo representarías gráficamente la relación de la velocidad y de la aceleración con eltiempo? Anota tus ideas en tu cuaderno.

2. A medida que revises los contenidos, compara tus notas con tus aprendizajes.

Explora

• Interpretación y representación de gráficas:velocidad–tiempo y aceleración–tiempo

Al igual que representamos la pos ición respecto al tiempo en gráficas de posic ión–

tiempo, es conveniente representar gráficamente la velocidad y la aceleración respec-

to al tiempo para describir mejor los movimientos; el uso de estos modelos gráficos

resulta fundamental, por ejemplo, para los fabricantes de automóviles, aviones y de

muchos productos tecnológicos, incluso en la ciencia del deporte. Las gráficas de velocidad–t iempo nos dan información acerca de cómo cambia (si es que lo hace) el

módulo de la velocidad al transcurrir el tiempo. Las gráficas de aceleración–tiempo

nos indican si el módulo de la aceleración es constante o no en el tiempo, y si su

valor es positivo o negativo.

Exploremos acerca de dos nuevos tipos de gráficas.

Elabora modelos y comunica tus avances en ciencias

Elabora gráficas de velocidad–tiempo y de aceleración–tiempo.

1. Observa con atención la siguiente tabla, así como las dos gráficas:

Velocidad inicial

v i (m/s)

Velocidad final

v f (m/s)

Cambio en la velocidad

∆v v f v i (m/s)

Tiempo total

transcurrido (s)

Intervalo de tiempo

∆t t f t i (s)

Aceleración

a ∆v —

∆t (m/s2)

0 1 1 – 0 = 1 2 2 0.5

1 2 2 – 1 = 1 4 2 0.5

2 3 3 – 2 = 1 6 2 0.5

3 4 4 – 3 = 1 8 2 0.5

4 5 5 – 4 = 1 10 2 0.5

2. Elabora en tu cuaderno dos gráficas a partir de los datos dela tabla, una que indique cómo cambia la velocidad res-

pecto al tiempo (gráfica de velocidad-tiempo), y otra querepresente el valor de la aceleración encada intervalo detiempo (gráfica de aceleración-tiempo).Toma en cuenta losejemplos de cómo se representan las magnitudes en cadagráfica.1 2 3 4 5 6 7 8 9 100

0.25

0.50.75

v (m/s)

t (s)

Ejemplo para elaborar gráfica de velocidad–tiempo

1 2 3 4 5 6 7 8 9 100

0.25

0.5

0.75

a (m/s2)

t (s)

Ejemplo para elaborar gráfica de aceleración–tiempo

En las gráficas de este tipo, el tiempo es siempre lavariable independiente, por lo que se representa en el ejehorizontal.

> Continúa en la página siguiente

S2

Page 67: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 67/276

65

B1

»

3. A partir de los datos de la tabla, contesta:

• ¿Cuánto cambió el módulo de la velocidad en cada interva-lo de dos segundos?

• ¿Partió el móvil del reposo?• ¿Cómo es la aceleración en todo el movimiento?

• ¿Qué valor tendría el módulo de la velocidad después deotros dos segundos más?

• ¿Cómo se calculó el valor del módulo de la aceleración encada lapso de tiempo?

• ¿En qué unidades se calculó la aceleración en este caso?

4. Contesta a partir de la gráfica de velocidad–tiempo:

• ¿Qué indica la gráfica en cuanto al cambio de la velocidadrespecto al tiempo?

• ¿Qué pasa con el valor de la velocidad cuando transcurre el

tiempo?

5. Responde lo siguiente con base en la gráfica de aceleración-tiempo:

• ¿Cómo es la aceleración en esta gráfica, positiva o negativa?

• ¿Hay un cambio en la aceleración?

• ¿Se trata de un movimiento uniformemente acelerado? Justifica tu respuesta.

6. Reunidos en parejas comenten en el grupo con la mediaciónde su maestro.

• ¿Cómo es la gráfica de velocidad-tiempo para un movi-miento uniformemente acelerado?

• La inclinación de la recta en la gráfica anterior, ¿es positivao negativa?

• ¿Qué significa en términos del cambio en el módulode la velocidad la inclinación positiva o negativa de lagráfica?

• ¿Cómo es la gráfica de aceleración-tiempo para un movi-miento uniformemente acelerado?

• ¿Cómo se vería la gráfica de aceleración-tiempo de unmovimiento uniformemente acelerado con un valornegativo de la aceleración?

• ¿Cómo se vería la gráfica de aceleración-tiempo en unmovimiento rectilíneo uniforme?

Si el móvil va cada vez más rápido, y el incre-

mento del módulo de su velocidad ocurre a un ritmo

constante, la recta de la gráfica de velocidad–tiempo

que representa la aceleración tendrá una inclinaciónpositiva, como en el caso de la gráfica que obtuviste

en la actividad anterior. Si el móvil, por el contrario,

va di sminuyendo el módu lo de su velo cidad a ri t-

mo constante, la gráfica será también una línea recta,

pero con inclinación negativa, como se aprecia en la

figura 49.

Si al trazar la gráfica de aceleración–tiempo resulta

una recta horizontal, el módulo de la aceleración tiene

un valor constante, es decir, la velocidad cambia a un

ritmo constante, y es un movimiento uniformemente

acelerado, como el del ciclista de la figura 50, durante

un corto lapso de tiempo. Es una gráfica semejante a

la que obtuviste antes. Si el valor constante de la ace-

leración es positivo (es decir, si la velocidad aumenta

uniformemente), la línea horizontal estará encima del

eje horizontal t , y si disminuye uniformemente, estará

debajo del mismo eje, como se ilustra en la figura 51,

y se t ratará también de un movimiento uniformemente

acelerado, pero con aceleración negativa.

FIGURA 49. Esta gráfica ilustra el comportamiento de la velocidadrespecto al tiempo para un móvil que frena uniformemente desdeuna velocidad inicial de 5 m/s hasta detenerse totalmente en untiempo de 10 segundos.

t (s)

v (m/s)

FIGURA 50. El ciclista transita durante pocos minutos por una carreterarecta y plana, pero va incrementando uniformemente el módulo desu velocidad. Su movimiento es entonces uniformemente acelerado

en ese intervalo de tiempo.

Page 68: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 68/276

66

–210

t

(s)

a (m/s2)

FIGURA 51. Esta gráfica ilustra el comportamiento de la aceleraciónrespecto al tiempo en el caso de un móvil cuya velocidad decreceuniformemente 2 m/s cada segundo, esto es, tiene una aceleraciónde 2 m/s2 durante un tiempo de 10 segundos.

Como sabes, las gráficas en cinemática son una herra-

mienta muy útil para representar las características de los

movimientos. Una gráfica nos permite ver, por ejemplo,

si un camión de pasajeros se ha detenido, avanza con

velocidad constante o acelera.

Hasta ahora, hemos visto tres tipos de gráficas de:

posición-tiempo, velocidad-tiempo y aceleración-tiempo.

El mismo movimiento puede representarse en estos tres

tipos de gráficas. Veamos las figuras 52 y 53 que con-

tienen los esquemas de las gráficas correspondientes

al movimiento rectilíneo uniforme y al movimiento uni-

formemente acelerado.

GLOSARIO

La cinemática es una subdivisión de

la mecánica, una rama de la Física

que estudia las características del

movimiento, es decir, su descripción,

sin ocuparse de las causas que lo

producen

x

t t t

v a

Movimiento rectilíneo uniforme

t t t

x v a

Movimiento uniformemente acelerado

FIGURA 52. Estas gráficas representan un movimiento rectilíneo uniforme. La primera nos indica cómo secomporta la posición con respecto al tiempo: conforme el tiempo transcurrido aumenta, el desplazamientolo hace en la misma proporción, por ello es una línea recta. La segunda gráfica representa la variación de

la velocidad respecto al tiempo; como el móvil experimenta desplazamientos iguales en tiempos iguales,su velocidad es constante y por lo tanto tiene el mismo valor todo el tiempo, por ello se ve como unarecta horizontal. Por último, la gráfica de aceleración contra tiempo muestra que el valor de la aceleraciónes cero todo el tiempo, lo que no nos sorprende, pues la velocidad no varía. Las tres gráficas representanel mismo movimiento.

FIGURA 53. Estas gráficas representan un movimiento uniformemente acelerado. La primera nos indicacómo se comporta la posición en relación con el tiempo: cuando el tiempo transcurrido aumenta, eldesplazamiento aumenta cada vez más; esta vez la gráfica es una curva. La segunda gráfica representa lavariación de la velocidad respecto al tiempo; conforme el tiempo transcurre, la velocidad aumenta en lamisma proporción, lo que produce una recta con cierta inclinación. Finalmente, la gráfica de aceleracióncontra tiempo muestra que el valor de la aceleración es constante todo el tiempo, pues la velocidadaumenta a un ritmo constante. Esta gráfica es entonces una línea horizontal. De nuevo, estas tres gráficas

representan el mismo movimiento.

Para completar tu apren-dizaje sobre las gráficasde cinemática asociadasal movimiento rectilíneouniforme o al movimientouniformemente acelera-do, realiza las actividadesque se proponen en el re-curso interactivo http://conteni2.educarex.es/mats/14346/contenido/.

S2

Page 69: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 69/276

67

B1

Representaciones gráficas de movimientos combinados

En muchas ocasiones, el movimiento de un cuerpo no se limita a un sólo tipo. Por

ejemplo, un camión de pasajeros que avanza en línea recta puede acelerar unifor-

memente durante un tramo, luego proseguir con velocidad uniforme otro tramo, y

finalmente frenar hasta quedar detenido. ¿Cómo se vería la gráfica de velocidad-tiempoen este caso? Observa cuidadosamente la figura 54.

FIGURA 54. Esta gráficarepresenta el comportamientode la velocidad respecto altiempo en el caso de un móvilque aumenta su velocidaduniformemente desde el reposo(velocidad cero) hasta alcanzaruna velocidad de 3 m/s durante5 segundos. En el in tervalo de

tiempo de 5 a 10 segundos, elcamión avanza con velocidadconstante de 3 m/s. Del segun-do 10 al segundo 15, disminuyeuniformemente su velocidaddesde 3 m/s hasta quedardetenido (velocidad cero).

0 1 2 3 4 5 6 7 8 9 10 11 12

3

t (s)

v (m/s)

13 14 15

Gráfica de velocidad - tiempo

FIGURA 55. Esta gráfica repre-senta el comportamiento de lavelocidad contra el tiempo parael mismo móvil de la figura 54.

Nos indica que acelera unifor-memente durante 5 segundos,donde la aceleración tiene unvalor positivo de 0.6 m/s2.Entre los 5 y los 10 segundos,su aceleración es cero (lo quecorresponde a una velocidadconstante). Del segundo 10al segundo 15, desacelerauniformemente, y el valor de laaceleración es -0.6 m/s2.

0.6

–0.6 t (s)

a (m/s2)

Gráfica de aceleración-tiempo

1. Un trenecito se mueve en un parque con velocidad constante de 5 m/s durante 10 segundos.Después, durante los siguientes 10 segundos, frena uniformemente hasta quedar detenido.

a. Calcula el módulo de la aceleración del trenecito en los intervalos de tiempo entre los 0s y los 10 s, y en el intervalo entre los 10 s y los 20 s. Presta atención al signo que debelevar la aceleración.

b. ¿Cómo es la trayectoria del trenecito? ¿Cómo lo sabes?

c. Elabora las gráficas de velocidad–tiempo y aceleración-tiempo de este movimientocombinado.

Evalúo mi avance

El mismo movimiento puede representarse en una gráfica de aceleración-tiempo,

como se aprecia en la figura 55.

Page 70: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 70/276

La fuerza; resultado de las interacciones porcontacto (mecánicas) y a distancia (magnéticasy electrostáticas), y representación con vectores.

Fuerza resultante, métodos gráficos de sumavectorial.

Equilibrio de fuerzas; uso de diagramas.

Cuando dos bolas de billar chocan entre sí, se nota un cambio en la formaen la que éstas se mueven después del choque, por ejemplo, se modifica su velocidad,

en la dirección, el sentido y el módulo.

La descripción de las fuerzas

en el entorno

68

S3

Aprendizajes esperados

S3

• Describirás la fuerza como

efecto de la interacción

entre los objetos

y la representarás con

vectores.

• Aplicarás los métodos

gráficos del polígono y

paralelogramo para la

obtención de la fuerza

resultante que actúa sobre

un objeto, y describirás el

movimiento producido ensituaciones cotidianas.

• Argumentarás la relación

del estado de reposo de

un objeto con el equilibrio

de fuerzas actuantes, con

el uso de vectores, en

situaciones cotidianas.

Page 71: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 71/276

69

B1

•La fuerza; resultado de las interaccionespor contacto (mecánicas) y a distancia (magnéticasy electrostáticas), y representación con vectores

La palabra “fuerza” se utiliza con frecuencia en el habla cotidiana, pero, al igual que

otros términos como “distancia”, velocidad”, “rapidez” y “aceleración”, tiene un signi-

ficado preciso y acotado en el contexto de las ciencias. Para comenzar la exploración

en torno a esta noción, observa la figura 56.

Explora

1. ¿Qué significa para ti cuando alguien dice“empuja con fuerza”?

2. ¿Qué entiendes por hacer algo “a la fuerza”?

3. ¿Qué sentido tienen para ti las frases“luchamos contra una fuerza desconocida”,“prefirió el lado oscuro de la fuerza” y“puedes lograr todo lo que quieras si man-

tienes la fuerza del espíritu”?

4. ¿Qué relación tiene para ti la fuerza con elestado de movimiento o el de reposo deun cuerpo?

5. La fuerza que el halterófilo requiere aplicaren las pesas para levantarlas, ¿será la mis-ma que la que requiere para mantenerlasel tiempo reglamentario sobre su cabeza?Explica tu respuesta.

6. Anota tus reflexiones y respuestas en tucuaderno y compártelas con una pareja;al final de la secuencia las utilizarás paracomparar el concepto de fuerza en locotidiano con este mismo concepto en elcontexto de la Física.

¿Qué ocasiona los cambios en el movimiento y de la caída de los cuerpos? ¿Por

qué los imanes atraen algunos objetos? ¿Qué produce los rayos? Preguntas como

éstas (figura 57) nos han llevado a una búsqueda continua de respuestas a lo largo

de la Historia. En la actualidad, las teorías y modelos que los seres humanos hemos

propuesto se siguen construyendo, ampliando, modificando y revisando, lo que nos

FIGURA 56. El levantamientode pesas o halterofilia es undeporte de mucha tradiciónen nuestro país. ¿Requiere elatleta mucha “fuerza” para alzar

las pesas?

Te sugerimos revisar el libro

¿Sientes la fuerza? de tu

Biblioteca Escolar para descu-

brir cómo las fuerzas están

presentes en todos los ámbi-

tos de la vida cotidiana.

Hammond, Richard, ¿Sientes

la fuerza? , México, SEP-SM,

2007 (Colección Libros del

Rincón).

Lee más...

Page 72: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 72/276

70

permite profundizar nuestra comprensión de los fenómenos natu-

rales a través de un proceso que nunca termina.

Si golpeamos una lata de refresco vacía con el puño cerrado

contra una mesa, no sólo produciremos una deformación perma-

nente en la lata, sino que muy probablemente sentiremos dolor en

la mano. Haz la prueba aplastando la lata con el pie contra el suelo

y verás que siempre que hay una interacción entre dos objetos, se

produce algún cambio en ellos o en los objetos que se encuentran

entre ambos, pero ¿qué es una interacción?

Cuando pateas un balón, jalas un carrito, empujas una puerta,

usas una brújula, estiras una liga, emites un sonido o dejas caer

un objeto, hay una interacción o acción recíproca entre dos cuerpos. Algunas de

estas interacciones requieren una gran proximidad entre los cuerpos que intervienen:

requieres hacer contacto con la punta de tu pie en el balón para lanzarlo, y simultá -

neamente percibes el empuje del balón en tu pie. Este tipo de interacción, donde asimple vista los cuerpos están tocándose para ejercer una acción recíproca, se deno-

mina interacción por contacto. Exploremos un ejemplo de interacción por contacto.

FIGURA 57. ¿Porqué el rollo deplástico y el confeti se atraen?

Describe un movimiento acelerado.

> Continúa en la página siguiente

Disposición de los péndulos antes del choque.Ensayen antes de medir las alturas desde las quesueltan las pesas y a las que llegan despuésde chocar para evitar errores.

Material

• 1 soporte universal con arillo. En su defecto, algún lugarde donde puedan colgar dos péndulos, como por

ejemplo, una sección de una tubería.• 2 pesas de diferente peso, de preferencia de 200 g

y 250 g. O en su lugar, dos objetos de cualquiermaterial pero de pesos diferentes, que se puedancolgar de un hilo y, que al chocar, no quedenenredados ni pegados.

• 1 carrete de hilo.

• 2 reglas graduadas de 30 cm.

Procedimiento

a. Construyan dos péndulos de 30 cm de longitud de cuerdacon el hilo y las pesas. Las pesas que cuelgan deben tener

pesos distintos. El dispositivo que van a construir semuestra en la figura de la derecha.

b. Coloquen o sostengan las reglas a un costado de cada unode los péndulos, de tal forma que se puedan medir concomodidad la altura inicial antes del choque y la altura finalmáxima que alcanza cada péndulo después del choque.

c. Identifiquen a uno de los péndulos como péndulo 1 y alotro como péndulo 2. Levanten ambos péndulos de modoque los centros de los péndulos queden a una altura de15 cm, y de tal forma que cuando los suelten, choquen.

d. Hagan antes una predicción de lo que sucederá una vezque hayan chocado los dos péndulos.

e. Registren su observación.

f. Repitan el experimento dos veces más aumentando laaltura inicial.

ReglaRegla

Arillo

Mesa

S3

Experimenta y comunica tus avances en ciencias

Page 73: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 73/276

71

B1

»

Registro de datos

1. Registren sus observaciones y completen en su cuadernouna tabla como la siguiente.

Análisis de resultados

1. Contrasten su predicción con lo sucedido. ¿Corroboraron suhipótesis?

2. Anoten en su cuaderno las respuestas de las siguientes

preguntas:

• ¿Qué causa el movimiento de los péndulos antes del choque?

• ¿En qué momento se puede decir que los péndulos interac-túan entre sí?

• ¿Cómo se manifiesta esta interacción? ¿Qué cambios obser-varon en el movimiento de los péndulos?

• ¿Cómo se relaciona la altura inicial desde la que sueltan lospéndulos con el cambio en su movimiento después delchoque? ¿Y con la altura final? Expliquen.

Conclusiones

• ¿Por qué ambos péndulos se detienen y luego regresan endirección su posición inicial después del choque?

• ¿Por qué los dos péndulos no llegaron a la misma alturadespués del choque?

• ¿Qué interacciones se presentaron en estos experimentos?Expliquen su respuesta.

• ¿Qué pasaría si uno de los péndulos fuese mucho máspesado que el otro?

1. Concluyan grupalmente y anoten sus dudas para resolverlasmás adelante.

Experimento

Altura inicial

del péndulo 1

(cm)

Altura inicial

del péndulo 2

(cm)

Altura final

del péndulo 1

(cm)

Altura final

del péndulo 2

(cm)

1 15 15

2 20 20

3 25 25

Las interacciones y las fuerzas

Como hemos podido comprobar, cuando dos cuerpos interactúan mediante un cho-

que o contacto presentan un cambio en la forma en que se venían moviendo: cambia

la dirección y el sentido de su movimiento después del choque y el módulo de su

velocidad. La magnitud física que nos permite cuanti ficar y medir el

resultado de las interacciones en función de los cambios en los cuerposque interactúan, ya sea porque éstos se deforman o porque cambia su

estado de movimiento, se llama fuerza.

Las fuerzas se presentan como efecto de las interacciones entre los

cuerpos. En el caso de los péndulos identificamos un par de fuerzas que

actúan sobre objetos distintos: la fuerza con la que el péndulo 1 golpeó

al péndulo 2, y la fuerza con la que el péndulo 2 golpeó al péndulo 1.

Esto siempre será así cuando dos objetos interactúen.

Las fuerzas que resultan de la interacción por contacto entre dos o

más cuerpos (figura 58) se denominan fuerzas de contacto: este tipo

de fuerzas obligó a cada péndulo a detener el movimiento que llevaba

y a ret roceder en dirección opuesta. Otra fuerza de contacto presente

en este experimento en cada péndulo fue la fricción o rozamiento con

el aire mientras se movía, así como el rozamiento entre la cuerda con

el soporte justo en el punto donde se sujeta del soporte.

¿Qué efecto tienen las fuerzas sobre los cuerpos? En general, pueden

darse dos tipos de efectos. El primero es modificar el movimiento en términos de la

velocidad. Recordemos que la velocidad es una var iable vectorial que tiene módulo,

dirección y sentido. En el caso de los péndulos, las fuerzas de contacto que cada uno

ejerció en el otro durante el choque modificaron todas las características de la velocidad

FIGURA 58. Tal vez en algunaocasión has jugado o hasvisto jugar con el “Traca-Traca”.El funcionamiento de este

juego se basa en las fuerzas

de contacto.

Page 74: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 74/276

72

que cada uno tenía justo en el instante previo. La fuerza de fricción, por su parte, se

opone siempre al movimiento, lo que produce una disminución en el módulo de la

velocidad. Dado que la aceleración es la variable que indica cómo es el cambio en

la velocidad, podemos decir que las fuerzas pueden producir una aceleración (positiva

o negativa) en los cuerpos. Al estar la fuerza relacionada con la aceleración, y siendo

la aceleración una magnitud también vectorial, la fuerza es asimismo una magnitud

vectorial, con módulo, dirección y sentido, la cual puede también representarse me-

diante flechas, como veremos más adelante.

Cuando consideramos que las fuerzas actúan sobre cuerpos extensos, otra de las

consecuencias puede ser la deformación. Si la deformación es temporal, como en el

caso de una liga que estiramos un poco o un resorte que comprimimos suavemente,

decimos que los cuerpos son elásticos, como en la figura 59. Cuando la deformación

es permanente, como la que sucede en un chicle cuando lo masticamos, aplicando

una fuerza de contacto con nuestros dientes, hablamos de cuerpos plásticos, y los que

no se deforman en absoluto se denominan rígidos, como señalamos en la parte delmovimiento ondulatorio. Un vaso de cristal o una hoja de papel pueden considerarse

cuerpos rígidos, pues ante una fuerza de contacto pueden llegar a romperse en vez

de deformarse.

La interacción gravitacional

Las interacciones por contacto que produjeron fuerzas de contacto entre los péndulos

no explican por qué los péndulos caen en primer lugar, así que hay otras interacciones

además de las de contacto.Consideremos que ambos péndulos interactuaron todo el tiempo con la Tierra: lo

notamos como una fuerza que los “jala” hacia abajo. No obstante, jamás hubo contacto

entre los péndulos y la superficie del planeta. Esto implica que en la Naturaleza se

pueden dar interacciones entre dos cuerpos sin tocarse, sin ningún contacto directo.

Cuando dos objetos se encuentran separados, pero percibimos algún tipo de cambio

en un objeto por la presencia del otro, diremos que los objetos están interactuando

a distancia. En este caso también podremos asociar siempre pares de fuerzas a cada

interacción. Las fuerzas que resultan de una interacción a distancia se llaman fuer-

zas a distancia.

Una de estas interacciones a distancia es la atracción entre todos los cuerpos por elsimple hecho de tener cantidad de materia, o masa, y se llama interacción gravita-

cional. El efecto de la interacción gravitatoria son las fuerzas de gravedad o fuerzas

gravitacionales, la cuales siempre son atractivas.

Un ejemplo de la acción de estas fuerzas es la caída de un meteorito, que expe-

rimenta una fuerza que lo jala hacia el centro de la Tierra, a la vez que el meteorito

jala a la Tierra hacia su propio centro. Por supuesto, la masa de estos cuerpos es muy

disímil, por lo que el efecto de la fuerza gravitacional de la Tierra sobre el meteorito,

que es un movimiento acelerado, es más evidente que la acción inversa. Es importante

resaltar que ambas acciones se producen al mismo tiempo, como se representa en la

FIGURA 59. Hay ocasiones enque el mismo cuerpo (a) antefuerzas de poca intensidad recu-pera su forma original, teniendoun comportamiento elástico (b),o puede deformarse permanen-temente (c) si la fuerza es degran intensidad, comportándoseplásticamente.

a

b

c

GLOSARIO

Los meteoritos son rocas de diversos

tamaños (hasta unas pocas decenas

de metros de diámetro) que caen

hacia la Tierra sin desintegrarse por

completo a causa de la fricción con la

atmósfera terrestre.

S3

Page 75: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 75/276

73

B1

figura 60. En general, la caída libre de

todos los cuerpos en la Tierra es resulta-

do de la interacción gravitacional entre

dichos cuerpos y el planeta.

En la experiencia de los péndulos no-

tamos que la altura que alcanzan los

péndulos después del choque está relacio-

nada con la altura desde la que se soltaron.

Lo anterior nos indica que las interacciones

ocurren con distintas intensidades.

La interacción electrostática

Existe otra interacción a distancia ob-

servable en nuestro entorno. Realiza lasiguiente experiencia para reflexionar

sobre esto.

FIGURA 60. La flecha roja representa la fuerza de atracción gravitacional de la Tierra sobreel meteorito, y la verde la del meteorito sobre la Tierra. Ambas fuerzas son de la mismaintensidad, pero como la masa del meteorito es muy pequeña comparada con la de laTierra, el efecto sobre cada cuerpo es distinto. Al entrar en contacto con la atmósferaterrestre, el meteorito experimenta una fuerza de fricción (que es por contacto), y quelo calienta considerablemente.

Material

• 1 pedazo de papel reciclado

• 1 regla de plástico

Procedimiento

a. Hagan confeti con el papel reciclado, cortándolo enpedacitos de unos cuantos milímetros de largo y ancho.

b. Froten la regla de plástico vigorosamente contrasu cabello.

c. Acerquen la regla a 1 cm de los papelitos y observenlo que sucede.

d. Froten de nuevo la regla y acérquenla a 2 cm delos papelitos y observen lo que sucede.

Experimenta

Identifica la interacción electrostática.

Los papelitos interactúan eléctricamentecon la regla.

Análisis de resultados

• ¿Qué tipo de interacción se dio entre los papelitos y la

regla frotada, de contacto o a distancia? ¿Por qué?• ¿En qué caso fue más intensa la interacción entre los

papelitos y la regla frotada? ¿Cuando acercaron la reglaa 1 cm o cuando lo hicieron a 2 cm?, ¿cómo lo puedenexplicar?

• ¿Qué pasaría si colocan la regla a una distancia mayor,por ejemplo, 3 cm?

• ¿La regla sigue atrayendo a los papelitos después deunos segundos? ¿Por qué?

Conclusiones

• ¿Cómo llamarían a la interacción entre la regla y los

papelitos?• ¿Cómo explicarían este fenómeno?

1. Compartan sus conclusiones con su maestro y los otrosequipos.

Page 76: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 76/276

74

La palabra electricidad tiene su origen en el nombre griego elektron que designa

al ámbar . En este material se descubrieron los primeros fenómenos eléctricos ¡hace

más de veinticinco siglos!

El filósofo griego Tales de Mileto (figura 61) observó que al frotar el ámbar con

trozos de piel de animales aquél atraía objetos ligeros como pedacitos de paja, pelu-

sas, semillas y polvo.

Muchos siglos después, en la época de Isabel I de Inglaterra, el médico de la corte

y físico (1544-1603) Wil liam Gilbert se interesó en estos fenómenos y amplió la gama

de materiales conocidos que se comportaban como el elektron, llamándolos “objetos

eléctricos”. El doctor Gilbert descubrió, por ejemplo, que el vidrio frotado con seda

tiene un comportamiento semejante al del ámbar y, tras presentar sus experimentos

a la reina, la corte isabelina tuvo un nuevo pasatiempo que les resultó fascinante:

cargar o “volver eléctricos” los objetos.

Dos siglos más tarde, el francés Charles Du Fay, que se muestra en la figura 62,

tuvo el interés científico de explicar la atracción entre los objetos eléctricos y rea-lizó experimentos de manera más rigurosa, registrando todas las combinaciones de

materiales que eran frotados. Tuvo la magnífica idea de acercar dos piezas de ámbar

frotadas con piel de animal. Observó con sorpresa que éstas no podían atraerse, y de

hecho se rechazaban o repelían. Du Fay pensó que había una fuerza que les impedía

atraerse y la llamó eléctrica.

Prosiguió experimentando y para su sorpresa observó que el ámbar cargado con

piel y el vidrio cargado con seda se atraían entre sí. Además, se dio cuenta de que,

cuando un objeto cualquiera es atraído por el ámbar, es rechazado por el vidrio car-

gado y viceversa.

Como este comportamiento se repetía con diversos objetos, Du Fay concluyóque:

1. Dos objetos cargados experimentan una fuerza eléctrica entre sí.

2. Sólo hay dos tipos de carga: la resinosa, como la del ámbar, y la vítrea,

como la del vidrio.

3. Dos objetos con el mismo tipo de carga experimentan una fuerza de

repulsión, mientras que dos objetos que poseen diferente carga experi-

mentan una fuerza de atracción.

Los enunciados de Du Fay son considerados las leyes fundamentales de las cargas

eléctricas.

Años más tarde, e l científ ico francés Charles Coulomb (figura 63) consiguió medir

la intensidad de las fuerzas que resultan de las interacciones electrostáticas descubier-

tas por Du Fay. Descubrió que el valor de la fuerza con la que los cuerpos se at raen o

se repelen está relacionado con la distancia que los separa y con la cantidad de carga

que poseen. Un cuerpo que ha sido cargado vigorosamente atrae o rechaza a otro con

mayor intensidad que aquél que tiene una carga muy débil. Entonces, el valor de la

fuerza eléctrica es directamente proporcional al producto de las cargas. Coulomb

FIGURA 62. Charles Du Fay(1698-1739) descubrió que haydos tipos de carga y concibió laidea de fuerza electrostática.

FIGURA 63. Charles Coulomb(1736-1806), físico e ingenierofrancés que estableció la ley dela fuerza electrostática.

GLOSARIO

El ámbar es una resina fosilizada

cuya apariencia es traslúcida y de

color amarillento, muy apreciada para

la elaboración de joyas desde tiem-

pos muy remotos.

FIGURA 61. Tales de Mileto (630

a 545 a. n. e.) es consideradocomo uno de los famosos SieteSabios de la Grecia antigua yel iniciador de la indagaciónracional del Universo. Fue mate-mático, astrónomo y filósofo.

S3

Page 77: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 77/276

75

B1

Construye un rehilete electrostático.

Material

• 1 popote

• 1 globo inflado

• 1 hoja de papel reciclado

1 palillo de dientes• 1 goma

• 1 prenda de lana

• Tijeras

Procedimiento

a. Doblen la hoja de papel en cuatro partes iguales y hagan uncorte con las tijeras, como se muestra en la figura. Cuandodesdoblen la hoja tendrán una estrella de cuatro picos.

b. Entierren el palillo en la goma y coloquen en el otro extremola estrella de papel.

c. Froten el popote con la tela de lana.d. Elaboren una predicción: ¿Qué creen que va a suceder con la

estrella de papel si le acercan el popote?

e. Acerquen el popote por encima de una de las puntas de laestrella y hagan círculos.

f. Repitan lo anterior a una menor distancia sobre la estrella sintocarla.

g. Froten el globo inflado en su cabello y acérquenlo a la estre-lla. ¿Sucederá lo mismo?

h. Repitan lo anterior reduciendo la distancia entre la estrellay el globo.

Registro de observaciones

1. Registren en su cuaderno lo sucedido a la estrella. Puede serútil una tabla como ésta.

Cerca Lejos

Popote cargado conlana

Globo frotadocon el cabello

Análisis de resultados

Reflexionen grupalmente:

• ¿Por qué gira la estrella?

• ¿Cuáles de los objetos tienen la misma carga? ¿Cómo lo saben?

• ¿Existe alguna relación entre la distancia de los objetos carga-dos con el movimiento de la estrella? Expliquen.

• ¿Consideran que la estrella adquirió carga eléctrica a pesar deno haber sido frotada? ¿Por qué?

Al acercar un objeto cargado eléctricamente a otro puedeinducirse una carga en éste.

encontró también que el valor de la fuerza eléctrica es inversamente proporcional

al cuadrado de la distancia que los separa, lo que significa que cuando los cuerpos

cargados se alejan, la intensidad de las fuerzas eléctricas entre ellos disminuye mu-

cho, o decae, con la distancia entre éstos. Este resultado se conoce como la ley de

Coulomb.

Experimenta y comunica tus avances en ciencias

Page 78: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 78/276

76

Si al acercar el popote a la punta de la estrella hay una interacción

electrostática de atracción que provoca que ésta gire, entonces las

cargas son diferentes. Si al acercar el popote, la punta de la estrella

parece rechazar al popote al girar en sentido inverso, entonces tenemos

una evidencia de que hay cargas iguales. Por convención, a uno de

los tipos de carga se le llama “positiva” y al otro “negativa”, en vez

de los nombres que les había dado originalmente Du Fay (figura 64).

¿Cómo se cargan los cuerpos? ¿De dónde salen las cargas? Recor-

demos que los cuerpos se conforman de partículas; una propiedad

inherente a las partículas es la carga eléctrica. Resulta que algunos

cuerpos están hechos de material que no favorece el desplazamiento

de las cargas eléctricas – aislantes eléctricos – y otros sí lo hacen, y

por eso se llaman conductores eléctricos. En general, los metales son

buenos conductores de las cargas eléctricas, mientras que el ámbar, el

vidrio y los plásticos no lo son.¿Qué pasa entonces cuando cargamos un cuerpo por frotamiento? Si

frotamos un conductor eléctrico, el desequilibrio de las cargas dura un

tiempo brevísimo, puesto que éstas se pueden movilizar con relativa

facilidad por el cuerpo y el equilibrio se restablece pronto. Los cuerpos

que no son buenos conductores pueden quedar más tiempo en ese

estado de desequilibrio eléctrico, es decir, adquieren efectivamente

una carga neta durante un tiempo mesurable. Es por ello que hemos

conseguido cargar diversos objetos, como el popote, la regla de plás -

tico y el globo. Todos ellos están hechos de material que no es buen

conductor de las cargas. Ahora bien, ¿cómo es que el papel adquirió carga eléctrica si no fue

directamente frotado? A veces, basta con acercar un objeto cargado a

otro para conseguir que las cargas eléctricas del segundo se redistribu-

yan. Por ejemplo, si el cuerpo que acercamos tiene una carga eléct rica

positiva, las cargas eléctricas negativas del segundo cuerpo (que no

tocamos ni frotamos) interactúan con las positivas, y son atraídas. Esto

produce un área del segundo cuerpo donde predominan las cargas ne-

gativas y, consecuentemente, la región opuesta quedará con una carga

neta positiva, aunque el cuerpo como un todo siga teniendo sus cargas

equilibradas. Decimos que el cuerpo cargado indujo una redistribución

de las cargas en el otro cuerpo, es decir, que el segundo cuerpo se

cargó por inducción. La redistribución de cargas en éste se denomina

polarización eléctrica, como se aprecia en la figura 65.

Estas formas de cargar eléctricamente cuerpos, como la fricción o

frotamiento y la inducción, son experiencias que probablemente hemos

vivido al qui tarnos una prenda de lana o tela sintética en clima seco

(o al ver un rayo durante una tormenta eléctrica, que se da por la in-

teracción electrostática entre nubes cargadas y entre nubes cargadas y

el suelo, de cargas contrarias). Observa la figura 66.

FIGURA 64. Las cargas de signos iguales serepelen, mientras que las del mismo signose atraen. Las flechas representan las fuerzaselectrostáticas, que pueden ser de atracción orepulsión, según el signo de las cargas.

FIGURA 65. El péndulo de la derecha tiene unacarga neta positiva, lo que induce una polari-zación eléctrica en el cuerpo de la izquierda.La inducción electrostática es otra prueba de

que esta interacción es a distancia.

S3

Page 79: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 79/276

77

B1

Los efectos de los imanes. El magnetismo terrestre

¿Conoces los imanes? Posiblemente los has manipulado y te ha intrigado la manera

en que interactúan entre ellos, y te habrás dado cuenta de que se trata de otra inte-

racción a distancia. Indaguemos acerca de esta interacción a distancia y las fuerzas

que de ella resultan.

FIGURA 66. a) Cuando frotas un globo con tu cabello,tanto el globo como tu cabello se carganeléctricamente. Cada uno de tus cabellos se cargacon el mismo tipo de carga, y por lo tanto se repelen

entre sí. b) Los globos cargados inducen carga eléctricade signo contrario en la región de la pared próxima aellos, por ello quedan pegados durante un tiempo.a

Describe una interacción magnética.

Material

• 2 imanes de barra iguales

• 1 cinta adhesiva

• 2 elásticos de 20 cm de largo por 1 cm de ancho

• 2 reglas graduadas de 30 cm

Procedimiento

a. Corten cuatro trozos de cinta adhesiva de 5 cm de largo. Pe-guen la mitad de cada trozo a los extremos de los elásticos.

b. Fijen un extremo de cada elástico a la mesa pegándolo conel trozo sobrante de cinta adhesiva.

c. Fijen el otro extremo del elástico a cada imán. Disponganlos imanes de tal manera que tiendan a atraerse; para ello,deben quedar de frente los polos opuestos. Realicen unaprueba antes de armar el dispositivo. Pueden guiarse por lasiguiente figura.

d. Coloquen los imanes casi juntos y suéltenlos.

e. Repitan el experimento dos veces más aumentando ladistancia de separación entre los imanes antes de soltarlos.

f. Midan los estiramientos de los elásticos.

g. Registren sus observaciones y completen esta tabla en sucuaderno.

Separaciónentre los imanes

(cm)

Estiramientodel elástico

izquierdo (cm)

Estiramientodel elástico

derecho (cm)

1

2

3

Análisis de resultados

1. ¿Qué tipo de interacción hubo entre los imanes y los elásticos,por contacto o a distancia? ¿Por qué?

2. ¿Y entre los imanes? Justifiquen su respuesta.

3. ¿Hubo algún cambio en el estado de movimiento de los ima-nes por efecto de la interacción entre ellos?

4. ¿En qué caso se estiran más los elásticos, cuando los imanesestán inicialmente más separados o cuando están menosseparados?

Conclusiones

1. Concluyan grupalmente una vez que hayan respondido losiguiente:

• ¿Cómo llamarían a la interacción entre los imanes?

Al atraerse, los imanes ejercerán una fuerza, uno sobre el otro,provocando que se estiren los elásticos a los cuales están atados.

b

Experimenta y comunica tus avances en ciencias

Page 80: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 80/276

78

En la experiencia anterior pudimos notar que cuando los imanes se soltaron con

menor distancia de separación, interactuaron con mayor intensidad que en los otros

casos, y su movimiento fue acelerado, pues su velocidad cambió. Conforme estaban

más cerca, la intensidad de su interacción fue mayor, lo que detectamos por el incre-

mento en la deformación o estiramiento en los elásticos. La interacción entre imanes

se llama precisamente interacción magnética, y da lugar a las fuerzas magnéticas.

Los fenómenos magnéticos se observaron por primera vez hace más de 2 500 años

en la antigua ciudad de Magnesia (hoy Manisa, en el oeste de Turquía). En esta ciudad

se hallaron rocas que tenían la propiedad de atraer al hierro, llamadas magnetitas,

como la que se ilustra en la figura 67.

Tales de Mileto, personaje del que hablamos antes, descubrió que la magnetita

atraía pedazos de metal y pensó que el ámbar y la magnetita poseían un “espíritu” que

despertaba por momentos, explicando así la atracción entre los objetos. Sin embargo,

Tales no se percató de que la atracción o la repulsión electrostática y la magnética

son interacciones de naturaleza diferente, ya que un imán no puede “magnetizarse”por frotamiento ni atrae pedacitos de papel o paja, y un trocito de ámbar cargado

eléctricamente no interacciona en absoluto con un imán.

Ya se había descubierto que cuando un objeto de hierro se ponía en contacto per-

manente con un imán, éste se magnetizaba.

La interacción magnética se describe en términos de polos magnéticos. Todo imán

posee dos polos, llamados polo norte ‘N’ y polo sur ‘S’, respectivamente. La interac-

ción a distancia entre los polos magnéticos resulta en una fuerza de atracción entre

polos distintos, o fuerza de repulsión entre polos iguales.

El nombre de los polos magnéticos, al igual que el de las cargas eléctricas, res-

ponde a un acuerdo o una convención. En el caso de los imanes, la denominaciónde sus polos tiene razones históricas. La mayoría de los historiadores coinciden en

que desde el siglo IX los chinos descubrieron que si una barra de hierro imantado se

pone a flotar sobre el agua o se suspende de un hilo tiende a alinearse en la dirección

geográfica Norte-Sur. La aguja de una brújula es un trozo de hierro magnetizado, que

se muestra en la figura 68.

Ahora se sabe que nuestro planeta tiene un comportamiento magnético, de ahí que

los polos magnéticos de la Tierra interactúen con los polos magnét icos de los imanes.

Sucede que el polo magnético norte de la Tierra atrae al polo magnético sur de los

imanes, y viceversa.

FIGURA 67. Las magnetitas seatraen o se repelen mutuamen-te dependiendo de cómo esténorientadas entre sí.

FIGURA 68. a) Barra de hierroimantada en forma de aguja. Elextremo rojo se orienta haciael Norte geográfico. b) Brújulamoderna. Ambas han servidoa la humanidad durante siglos

para orientarse en la navegación. a b

S3

Page 81: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 81/276

79

B1

No hay que confundir “polo magnético” con “polo geográfico”; el primero tiene que

ver con la interacción magnética que presentan algunos cuerpos hechos de materiales

como el hierro, el cobalto o el níquel, y los polos geográficos son los puntos donde el

eje de rotación de la Tierra se interseca con la superficie de la misma. De hecho, en la

actualidad, el polo sur magnético de la Tierra está cercano al polo norte geográfico, y el

polo norte magnético se encuentra cerca del polo sur geográfico. Observa la figura 69.

El polo norte de la brújula es atraído por el polo sur magnético de la Tierra, y por ello

la brújula apunta aproximadamente al Norte geográfico.

Cuando un imán se divide, cada uno de los trozos es un nuevo imán, como se

aprecia en la figura 70, es decir, cada uno de ellos tendrá su polo norte y su polo sur.

FIGURA 69. En este esquema serepresentan las líneas de fuerzamagnética que surgen a partirdel polo norte magnético y sedirigen al polo sur magnéticoterrestre. El estudio del magne-tismo terrestre indica que, enla historia de la Tierra, los polosmagnéticos terrestres no se han

localizado siempre en la mismaposición sobre la superficie delplaneta, ni su posición es fija enel tiempo.

FIGURA 70. a) Imán entero rodeado de limadura de hierro, la cual se acomoda siguiendo las líneas defuerza magnética. b) Imán fragmentado en dos; cada fragmento es un nuevo imán con polos norte y sur.En principio, no es posible tener un solo polo magnético aislado en la Naturaleza, si bien se han realizadomuchos experimentos en condiciones muy part iculares para obtener imanes con un solo polo magnético.

• ¿La intensidad de la fuerza aplicada por la resor-tera a la piedrita es la misma en los tres casos?¿Cómo inferiste esto?

• La fuerza aplicada en cada caso, ¿produce uncambio en la velocidad? ¿Cómo es ese cambio?

• ¿Es correcto afirmar que la fuerza aplicada a lapiedrita con la resortera produce una aceleraciónen la misma? Explica tu respuesta.

• ¿Cómo se relaciona la dirección y el sentidoen que se aplica la fuerza con la dirección y elsentido de la aceleración de la piedrita?

2. Comenta con tus compañeros por qué no emplea-rían una resortera con la finalidad de herir a un servivo o dañar algún objeto útil.

Comunica tus avances en ciencias

Representa fuerzas mediante vectores.

Representación vectorial de las fuerzas

¿Qué diferencias encuentras entre estas tres fotos? La semejanza es que no sedisparó la piedrita contra ningún ser vivo ni objeto.

1. Observa con atención las fotografías, marca las diferencias que encuentres entre ellas y responde los siguiente.

a b

Page 82: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 82/276

80

En la actividad anterior notamos que la dirección y el sentido en que se aplica una

fuerza es importante en términos del efecto que produce. No es lo mismo empujar

hacia la derecha que hacia la izquierda, pues el resultado es diferente.

Lo anterior nos lleva a que una forma conveniente de representar gráficamente la

fuerza sobre un objeto es mediante flechas, puesto que es una magnitud vectorial

(como la posición, el desplazamiento, la velocidad y la aceleración, como vimos antes),

y como tales t iene cuatro elementos que def inen sus características:

• Punto de aplicación

• Módulo (también llamado magnitud o intensidad)

• Dirección

• Sentido

En el caso de la fuerza, el módulo se relaciona con la intensidad de la interacción

de la cual es resultado. La dirección, como siempre, es la recta a lo largo de la cual se

aplica la fuerza y se define como el ángulo que forma esta recta con el eje horizontalen un sistema de referencia cartesiano, medido en el sentido contrario a las manecillas

del reloj. El sentido es hacia el extremo de la recta al que apunta la fuerza. Observa

las representaciones de vectores de fuerza en las figuras 71a y 71b.

FIGURA 71a . El inicio de la fle-cha que representa a un vector

indica el punto de aplicación.La línea sobre la cual se dibujala flecha indica la dirección;en este caso es una recta queforma un ángulo de 0° con laparte positiva del eje horizontal.La punta de la flecha indica elsentido; en este caso, hacia laderecha. El largo de la flechaindica el módulo del vector, queen este caso es de 5 unidades.

FIGURA 71b. El vector azul tieneun módulo de 5 unidades, sudirección es la de la recta queforma 39.32° con la partepositiva del eje x y su sentidoes hacia arriba a la derecha. Elvector morado tiene un módulode 4.24 unidades, su direcciónes la de la recta que forma 45°con la parte positiva del eje x y su sentido es hacia abajo a laderecha. El punto de aplicación

de ambos está en el origen.

4

3

2

1

0

–1

–2

–3

–2 –1 0 1 2 3 4 5 6

Punto de aplicación

y

x

3

2

1

0

–1

–2

–3

–4

4.24 unidades

5 unidades

y

x

–1 0 1 2 3 4 5 6 745º

39.32º

S3

Page 83: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 83/276

81

B1

Es importante insistir en que la fuerza no es una propiedad que “poseen” los

cuerpos, sino que sus efectos se pueden apreciar cuando interactúan un cuerpo con

otro. Por ejemplo, si pensamos en un imán aislado, no podríamos hablar de que tiene

fuerza magnética, pues el imán no puede ejercer fuerza sobre sí mismo; en cambio,

si consideramos un objeto imantado o un segundo imán que se acerca al primero,

cada uno experimentará el efecto de la fuerza magnética que el otro ejerce. Lo mismo

puede decirse de cualquier fuerza, sea de contacto o a distancia. Observa la figura 72.

FIGURA 72. El cuerpo A ejerceuna fuerza →F A sobre el cuerpoB y éste ejerce una fuerza →F B sobre A.

F A F

B

1. Clasifica las siguientes interacciones con base en si son por contacto o a distancia.

a. La fricción o rozamiento de un móvil con el medio material.

b. La caída libre de un objeto.

c. La atracción electrostática entre dos cuerpos con cargas de signos distintos.

d. La deformación de un cuerpo.

e. La repulsión entre los polos iguales de dos imanes.

f. El choque de una pelota de boliche con los pinos.

2. Explica cómo sería el módulo o intensidad de las fuerzas electrostáticas si…

a. La distancia entre las cargas fuera muy pequeña.

b. La distancia entre las cargas fuera muy grande.

c. Las cargas aumentaran su valor.

3. Si un objeto se mueve por efecto de la atracción electrostática con otro objeto, ¿su movi-miento será acelerado? Explica.

4. Si acercas un imán de barra a una brújula, ¿cómo se movería la aguja de ésta? Explica los doscasos posibles.

5. ¿Cómo se orientaría una brújula colocada entre dos imanes?:

a. Considera los imanes fijos a una mesa, con sus polos magnéticos opuestos encontrados.

b. Considera los imanes fijos a una mesa, con sus polos magnéticos iguales encontrados.

6. En una hoja cuadriculada, representa los siguientes vectores correspondientes a las fuerzas:

a. Una fuerza con un módulo de 8 unidades de fuerza, en dirección horizontal con sentidohacia la izquierda.

b. Una fuerza de 3 unidades de fuerza, en una dirección a 30° de la parte positiva del eje x con sentido hacia arriba a la derecha.

c. Una fuerza de 10.5 unidades de fuerza a 90° del eje x hacia abajo.

Evalúo mi avance

Page 84: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 84/276

82

1. Menciona un ejemplo de tu vida cotidiana en el que identifiques dos o másfuerzas que actúen simultáneamente sobre un objeto.

a. Describe lo mejor que puedas cómo son esas fuerzas en cuanto a inten-sidad y dirección.

b. Formula una predicción acerca de cómo cambiará el movimiento de eseobjeto a causa de esas fuerzas.

c. Compara tu ejemplo con el de otros compañeros.

2. Responde en tu cuaderno y anota la explicación:

• ¿Pueden actuar dos fuerzas sobre un cuerpo y que éste permanezca enreposo? ¿Por qué?

3. Observa la figura y contesta:

• ¿A cuántas fuerzas consideras que está sometido cada uno de los volado-res participantes?

•Fuerza resultante, métodos gráficos de suma vectorial

Explora

La población de Papantla, en Veracruz, es famosa en el mundo por dos cosas: su aromá-tica vainilla y sus “voladores”, osados danzantes que ejecutan un fascinante vuelo ritual.

Las fuerzas, sean de contacto o a distancia, no suelen presentarse aisladas. Práctica-

mente todos los cuerpos están sometidos simultáneamente a una variedad de fuerzas.Si las fuerzas que resulten de las interacciones entre cuerpos producen cambios en

su movimiento o en su forma, ¿qué sucede cuando hay varias fuerzas que actúan a la

vez sobre un cuerpo determinado?

La dirección de la fuerza y la dirección del movimiento

Cuando hay dos o más fuerzas que actúan sobre un cuerpo en la misma dirección, se

les llama fuerzas colineales. Realicemos la siguiente actividad:

Material

• 1 cinturón grueso y resistente de cuero o tela (puede sermanta o lona). Es muy importante que el material delcinturón no les raspe la piel.

• 1 cinta adhesiva

Procedimiento

a. Realicen esta actividad bajo la supervisión estrecha y cons-tante de su maestro.

b. Formen equipos de seis estudiantes de complexión y tallasemejantes.

c. Otro estudiante será el encargado de indicar el comienzo yel fin de cada parte de la actividad.

Predecimos la dirección de un movimiento.

S3

Experimenta y comunica tus avances en ciencias

Page 85: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 85/276

83

B1

> Continúa en la página siguiente

Comiencen a tirar en sentidos opuestos con tres en cada lado .

Parte A

d. Los seis estudiantes se dividen en dos equipos de tresmiembros, llamados Equipo I y II, respectivamente.e. En una parte despejada del aula o del patio marquen en

el suelo con la cinta adhesiva un rectángulo de unos 50 cmpor 30 cm.

f. Aten bien el cinturón para que quede en forma de aro ycuelguen de él una cinta.

g. Los equipos se sitúan uno frente al otro, pisando uno de loslados largos del rectángulo y tomando con ambas manos elcinturón, cuidando de no lastimarse.

h. A una indicación del compañero encargado, ambos equiposempezarán a tirar firmemente del cinturón hacia su ladodel rectángulo, cuidando de no lastimarse ni lastimar a losdemás.

i. El compañero encargado contará lentamente hasta cinco. j. El resto del grupo predecirá de qué lado quedarán situados

ambos equipos. Anoten la predicción.k. Cuando termine la cuenta, cada equipo permanecerá exac-

tamente donde haya quedado. ¡No se vale moverse de eselugar!

Parte B

l. Repitan el procedimiento anterior, sólo que ahora uno delos integrantes del Equipo I se pasará al Equipo II.

m. Nuevamente, el grupo predecirá el resultado de esta parte.

Parte Cn. Por último, dos compañeros del Equipo II pasarán al I, repi-

tiendo el procedimiento anterior.o. El resto del grupo predecirá el resultado de esta parte.

Anoten sus predicciones.

Resultados

1. En cada parte, los equipos quedaron distribuidos como sigue:

Parte: Número deintegrantesen Equipo I

Número deintegrantesen Equipo II

A 3 3

B 2 4

C 4 2

2. Para cada parte, representen mediante flechas las fuerzasque ejercieron los equipos conforme los siguientes criterios:

a. Cada integrante del equipo equivaldrá a una unidad defuerza.

b. Tracen una línea horizontal y marquen la mitad con unpunto:

c. Si el Equipo I tiró hacia la izquierda y el II hacia la derecha,las flechas correspondientes apuntarán en esos sentidos.

d. Para determinar la longitud de cada flecha usen una escalaen la cual 1 cm = 1 unidad de fuerza. Por ejemplo, la ParteA se representa con dos flechas de 3 cm cada una, ambassobre la línea y partiendo del punto central, donde la delEquipo I va hacia la izquierda y la del Equipo II a la derecha.

Alguien de uno de los equipos se pasa al equipo contrario .

Ahora dos integrantes del segundo equipo se pasan alprimer equipo.

Parte A Equipo I Equipo II

»

Page 86: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 86/276

84

»

3. Realicen lo mismo para las Partes B y C.

a. Al igual que en una recta numérica, asignen signo positivoa las fuerzas cuyas flechas apuntan hacia la derecha, y

negativo a las que apuntan a la izquierda. En la Parte A, porejemplo, diríamos que el Equipo II ejerció una fuerza de+3 unidades, mientras que el Equipo I ejerció una fuerzade –3 unidades.

4. Completen la siguiente tabla, sumando en la última columnalas fuerzas de ambos equipos.

Parte Fuerza ejercidapor el Equipo I

Fuerza ejercidapor el Equipo II

Sumade fuerzas

A –3 3 –3 + 3 = 0

B

C

Conclusiones

1. Reflexionen sobre lo siguiente.

a. Si la suma de fuerzas resulta positiva, ¿hacia dónde se

movieron los equipos?b. ¿Cuánto valdría la suma de fuerzas si el Equipo I tuviera 15

integrantes y el Equipo II contara con 9?

• ¿Y si ocurriese la situación inversa?

• ¿Cómo deben ser dos fuerzas colineales aplicadas a uncuerpo en intensidad (módulo) y dirección para que susuma sea cero?

2. Compartan sus resultados con el grupo sigan las indicacionesde su maestro.

Representar las fuerzas colineales es sencillo, sólo requerimos utilizar el eje x .

Por ejemplo, en el diagrama siguiente se ha representado una fuerza→ F 1 con un

módulo de 6 unidades de fuerza, cuya dirección es horizontal y cuyo sentido es

a la derecha (representada con una flecha de color rojo), y una fuerza→ F 2 con un

módulo de –8 unidades de fuerza, cuya dirección es horizontal y cuyo sentido es

a la izquierda (representada con una flecha de color verde). Por acuerdo, si una

fuerza va hacia la derecha, el módulo tiene signo positivo, y si va hacia la izquier-

da, el signo es negativo.

El efecto combinado de dos fuerzas que actúan simultáneamente sobre un

cuerpo es otra fuerza llamada fuerza resultante. Esta fuerza se obtiene sumando

vector ia lmen te la s dos fuerza s, es to es , cons iderando el módu lo , la di recc ión y

el sentido de cada una. Sin embargo, cuando se trata de obtener la resultante de

fuerzas colineales, sólo es necesario sumar aritméticamente sus módulos, pues la

dirección de la fuerza resultante será la misma que la de las fuerzas colineales, y

el sentido vendrá dado por el signo de su módulo.

Entonces, la resultante→ F R de las fuerzas antes mencionadas se localiza sobre el

eje x y su módulo vale (6) + (-8) = –2, lo que indica que su sentido es a la izquie r-

da. Si la representamos mediante una flecha en color azul (en la que la línea de

la flecha es punteada para mayor claridad), tendremos algo así:

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

F 2

F 1 x

F 2

F R

F 1 x

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

S3

Page 87: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 87/276

85

B1

Otro caso puede presentarse cuando las fuerzas colineales también coinciden

en el sentido; por ejemplo, una fuerza→ F 1 con un módulo de 5 unidades de fuerza,

cuya dirección es horizontal y cuyo sentido es a la derecha (representada con una

flecha de color rojo), y una fuerza→ F 2 con un módulo de 2 unidades de fuerza,

cuya dirección es horizontal y cuyo sentido es también a la derecha (representada

con una flecha de color violeta). En este caso, lo más conveniente es colocar una

fuerza a continuación de la otra (para realizar la suma gráfica de vectores):

El módulo de la fuerza resultante es (5) + (2) = 7, por lo que si la represen-

tamos en color azul (de nuevo con la línea punteada por razones de claridad),quedaría así:

Suma vectorial de fuerzas por métodos gráficos

Hasta ahora hemos abordado el caso de fuerzas colineales. Sin embargo,en ocasiones las fuerzas que actúan sobre un mismo objeto no operan a

lo largo de una línea. Por ejemplo, dos personas empujan arrastran un

saco pesado mediante cuerdas. Para hallar la fuerza resultante, podemos

utilizar el método gráfico llamado método del paralelogramo.

Supongamos que una de las fuerzas→ F 1 tiene un módulo de 6 uni-

dades y una dirección a 50° del eje x , y la otra→ F 2 es de 5 unidades de

fuerza, y forma un ángulo de 120° con el eje x , como se representa en

el esquema de la figura 73.

Estas rectas (figura 74) se encuentran en un punto. El vector corres-

pondiente a la fuerza resultante → F R es justamente el que comienza en

el origen, que es el punto donde se aplican las fuerzas que se suman,

y termina en el punto donde se encuentran las rectas paralelas a cada

fuerza. Al medir la longitud de este vector, resulta con un módulo de

9 unidades, y forma un ángulo de 81° con el eje x , que puedes medir

con un transportador.

La fuerza resultante (figura 75) es una fuerza que por sí misma equi-

vale a la acción combinada de las fuerzas que actúan s imultáneamente

sobre un cuerpo. En otras palabras, fuerza resultante o suma vectorial

de las fuerzas es lo mismo. En el ejemplo que vimos obtendríamos el

F 2

F 1 x

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

F 2

x F

1 F

R

x

50º

120º

F 2

F 1

–2 0 2 4 6 8 10

FIGURA 74. Para obtener la fuerza resultante, tracemosuna recta paralela al vector F1 justo en la punta del

vector F2, y otra recta paralela a F2 en la punta de F1.

x

50º

120º

F 2

F 1

–2 0 2 4 6 8 10

FIGURA 73. Esquema que representa el plan-teamiento de la situación a partir del cual seaplicará el método del paralelogramo.

Page 88: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 88/276

86

mismo resultado si empujáramos el mueble con una fuerza de 9 uni-

dades a 81° que si aplicamos dos fuerzas de 6 y 5 unidades, una a 50°

y otra a 120°.

Una fuerza que siempre actúa sobre cualquier cuerpo en nuestro

planeta es el peso, que justamente es la fuerza gravitacional que ejerce

la Tierra.

Consideremos una bola de béisbol a la que se le aplica una fuerza→ F 1

en una dirección a 11.31° con una intensidad o módulo de 5.1 unidades

(figura 76). ¿Hacia dónde se moverá la bola? Además de esta fuerza,

existe su peso→ F G que tiene un módulo de 3 unidades y apunta direc-

tamente hacia abajo, es decir, con un ángulo de 90°. El peso siempre

apunta hacia abajo, hacia el centro de la Tierra.

La bola se moverá en la dirección de la fuerza resultante→ F R , la cual,

al completar el paralelogramo y trazarla, tiene un módulo de 5.39 uni-

dades y un ángulo de 21.8°.Otra posibilidad para hallar la fuerza resultante es el método del

polígono, en el cual se traza la primera fuerza que se suma, y luego se

dibuja la segunda fuerza partiendo de su extremo. La resultante será la

fuerza que une el comienzo de la primera fuerza directamente con el

final de la segunda, como podemos ver en la figura 77. En este caso,

colocamos la fuerza→ F 1 en el extremo de

→ F G , verificando que la flecha

que la representa tiene la misma longitud y forma el mismo ángulo

respecto de una recta horizontal auxiliar. Podemos constatar que la

fuerza resultante tiene las mismas características independientemente

del método gráfico empleado.El método del paralelogramo se suele utilizar en el caso de dos fuerzas

que actúan sobre el mismo cuerpo y en el mismo punto de aplicación. A

tales fuerzas se les denomina fuerzas concurrentes. Si tenemos tres o más

fuerzas concurrentes, podemos hallar la resultante total encontrando la

resultante de dos de las fuerzas, y luego obteniendo la resultante entre

la tercera fuerza y la primera resultante obtenida, y así sucesivamente,

hasta reducir todas las fuerzas concurrentes a una sola. En este caso, sin

embargo, es más fácil usar el método del polígono, pues representamos

todas las fuerzas una a continuación de la otra, y la resultante será la

que cierre el polígono, como se ilustra en la figura 78, donde se suman

vectorialmente seis fuerzas mediante este método gráfico.

F 1

F G

F R

11.31º

90º

21.8º

FIGURA 76. Analiza la representación de las fuerzasque actúan en el instante en que se lanza la bolade beisbol.

F 1F G

F R

11.31º

90º

21.8º

FIGURA 77. Para hallar la fuerza resultante

mediante el método del polígono, colocamos unade las fuerzas justo en el extremo de la otra, yrepresentamos la resultante como la flecha queva del punto de aplicación de la primera fuerza alextremo donde llega la segunda, completando asíun polígono (en este caso, un triángulo).

FIGURA 78. En este esquema la fuerzaresultante de la suma de las seis fuerzas,obtenida por el método del polígono, se

representa con la flecha azul:→

F R.

F 2

F 1

F 5

F 3

F 4

F 6

F R

x

F 2

F 1

F R

–2 0 2 4 6 8 10

120º

50º

81º

FIGURA 75. Se muestra la resultante de las fuerzassumadas vectorialmente.

S3

Page 89: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 89/276

87

B1

1. Una rondana se suspende mediante una cuerda a la cual estáatada, como se muestra en la figura. El esquema representa

las fuerzas que actúan sobre ella. Obsérvalo y responde:• ¿Son colineales estas fuerzas? ¿Por qué?

2. Representa las siguientes fuerzas que actúan sobre el mismopunto de aplicación de un cuerpo: una fuerza →F 1 con un mó-dulo de 6 unidades en dirección horizontal, hacia la izquierda,y otra fuerza →F 2 con una intensidad o módulo de 4 unidadesa un ángulo de 45° respecto al eje x y con sentido hacia laderecha. ¿Cuál es el módulo, la dirección y el sentido de la

fuerza resultante?

a. Obtén la fuerza resultante por el método del paralelogra-mo, represéntala sobre el mismo esquema y anota cuál esel módulo, el ángulo de su dirección y su sentido.

3. Un contenedor de carga de 50 unidades de peso es levantadode una plataforma por dos cuerdas simultáneamente. Una delas cuerdas ejerce una fuerza de tensión

→F 1 de 30 unidades

con un ángulo de 60° respecto al eje x , y la fuerza de tensión→F 2 tiene un módulo de 25 unidades con un ángulo de 40°respecto a la misma vertical.

a. En una hoja cuadriculada, representa las tres fuerzas queactúan simultáneamente sobre el contenedor, que son su

peso, la fuerza→

F 1 y la fuerza→

F 2. Usa la misma escala pararepresentar cada fuerza. Ten en cuenta que el peso siem-pre apunta hacia abajo.

b. En primer lugar, encuentra la fuerza resultante de las fuer-zas→F 1 y→F 2 mediante el método del paralelogramo.

c. Aplica de nuevo el método del paralelogramo para hallarla fuerza resultante entre el peso y la resultante de

→F 1 y

→F 2

que encontraste en el inciso anterior.

• ¿Cuántas unidades mide la fuerza resultante de las tresfuerzas originales? ¿Qué ángulo forma respecto al eje x ?

• ¿Hacia dónde se moverá el contenedor sujeto a estas

tres fuerzas?

d. Encuentra ahora la resultante de las tres fuerzas medianteel método del polígono.

• La fuerza resultante obtenida, ¿coincide con la del inciso 4?

• ¿Cuál de los métodos gráficos fue más sencillo de utilizaren este caso? ¿Por qué?

y

x

10 20 30 40

–10

–20

–30

–40

40

30

20

10

–40 –30 –20 –10

El punto de aplicación de las fuerzas es el punto amarillomarcado en la agarradera superior del contenedor.

Evalúo mi avance

A menos que se indique lo contrario, el punto de aplicaciónde la o las fuerzas que actúan sobre un cuerpo se considerael centro del mismo.

Fuerza debidaa la tensiónde la cuerda

Fuerza debidaal peso de larondana

Page 90: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 90/276

88

•Equilibrio de fuerzas; uso de diagramas

Hay ocasiones en que requerimos que los cuerpos permanezcan inmóviles, aun estan-

do sujetos a ciertas fuerzas. Una situación muy cotidiana es colocar un objeto sobre

una superficie horizontal, por ejemplo, un zapato deportivo sobre el suelo, como

se aprecia en la figura 79. En este caso, aunque no lo parezca, existen fuerzas que

actúan sobre él. Una de ellas es la fuerza gravitacional que la Tierra ejerce sobre él.

La otra fuerza es proporcionada por la mesa. ¿De dónde surge esta segunda fuerza?

Cuando dos cuerpos se tocan, existe una superficie donde se produce la interacción

por contacto entre ellos. En particular, sobre el zapato actúan dos fuerzas: el peso,

que siempre apunta en dirección vertical y con sentido hacia abajo, y la fuerza que el

otro cuerpo, en este caso el suelo, ejerce sobre dicho zapato, y que se llama fuerza

normal. La fuerza normal es siempre perpendicular a la superficie de contacto. Si el

suelo está horizontal, la fuerza normal apunta en dirección vertical, pero hacia arriba,

y su módulo es igual al del peso. Nos damos cuenta de que existe esta fuerza, puesde no ser así, el zapato se hundiría en el suelo.

Entonces, las fuerzas que actúan sobre el zapato son colineales, de la misma inten-

sidad y apuntan en sentidos opuestos. La fuerza resultante de un par de fuerzas como

éstas es cero, lo que resulta en un estado de inmovilidad o reposo.

Cuando realizaron la Parte A de la primera actividad, las fuerzas que ejercieron los equi-

pos se anularon mutuamente cuando ambos tiraron hacia su lado. Las fuerzas aplicadas

fueron igualmente intensas, pero de sentidos contrarios; se trató de fuerzas equilibrantes.

En general, una de las condiciones necesarias para que un cuerpo esté en reposo

es que la suma de todas las fuerzas que actúan sobre él sea cero. Otra manera de

expresar la misma idea es decir que las fuerzas están equilibradas.Pero, ¿qué pasa cuando tenemos un par de fuerzas sobre un mismo objeto, de la

misma intensidad, que apuntan en sentidos opuestos, pero que no se aplican sobre

el mismo punto? Veamos la siguiente experiencia.

FIGURA 79. Hay dos fuerzas

equilibradas que actúan simul-táneamente sobre este zapatodeportivo: su peso, que apuntahacia abajo, y la fuerza normal,que en este caso apunta haciaarriba, y ambas con el mismomódulo, de tal suerte que elzapato permanece inmóvil.

Peso

Fuerza normal

Comunica tus avances en ciencias

Comprueba la importancia del punto de aplicación de las fuerzas sobre los cuerpos.

1. Toma un lápiz o pluma, colócalo sobretu pupitre y empújalo con suavidad encada extremo como se muestra en lafotografía, de tal manera que apliquesfuerzas de la misma intensidad peroen sentidos opuestos. ¿Cómo se mue-ve el lápiz al aplicarle estas fuerzasde la misma intensidad en sentidosopuestos?

• ¿Cuánto vale la suma de estas fuer-zas?

• ¿Son concurrentes estas fuerzas?¿Por qué?

• Comenten entre todos: ¿Qué condi-ción adicional para el reposo agrega-rían ahora a las características de lasfuerzas que actúan sobre un objeto?

2. Concluyan con ayuda del maestroaplicando esta experiencia con otroscuerpos.

En el análisis de las fuerzas que actúansobre un objeto es importanteconsiderar el punto de aplicación.

Para completar tuaprendizaje entra a:

htpp://concurso.cnice.mec.es/cnice2005/56_ondas/ondas.swf

S3

Page 91: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 91/276

89

B1

Para que un cuerpo esté en reposo es necesario que las fuerzas que actúan

sobre él estén equilibradas y se apliquen en el mismo punto. ¿Cómo se da el

equilibrio cuando hay más de dos fuerzas concurrentes que actúan simultánea-

mente sobre un cuerpo?

Consideremos el ejemplo de una piñata que colgará de dos cuerdas. El extre-

mo de la cuerda derecha está fijo y el otro será sostenido por un compañero. La

tensión de la cuerda del lado derecho tiene un valor de 2.2 unidades y hace un

ángulo de 27° respecto al eje x . La piñata tiene un peso de 3 unidades de fuerza.

¿Qué fuerza de tensión→ F 2 se debe ejercer en la cuerda izquierda para sostener

la piñata en reposo? Para resolver este problema, llevemos a cabo lo siguiente:

• Representemos gráficamente las fuerzas que son conocidas, esto es, el peso de

la piñata→

F G (¿hacia qué dirección se dirige el peso?) y la fuerza de tensión que

se ejerce mediante la cuerda derecha,→

F 1. Observa el diagrama de la figura 80.

• Consideremos que para que la piñata se mantenga en reposo, las tres fuerzas

deben estar equilibradas.• Podemos reducir el número de fuerzas si hallamos la fuerza resultante entre

el peso→ F G y la fuerza de tensión conocida

→ F 1, utilizando el método del pa-

ralelogramo, como se muestra en el diagrama de la figura 81.

• Medimos la longitud del vector de la fuerza resultante y su ángulo, y obtene-

mos que su módulo es de 2.8 unidades, y su dirección se define con el ángulo

de 45° respecto, como siempre, al eje x . Esta fuerza es equivalente a la com-

binación del peso y la tensión de la cuerda de la derecha, y le llamamos→ F R .

• Ahora, sólo necesitamos que la fuerza de tensión de la cuerda izquierda→ F 2

sea igual a→ F R pero con sentido opuesto, como se muestra en la figura 82.

• Podemos concluir entonces que la fuerza de tensión de la cuerda izquierda,

para que la piñata se mantenga en reposo, es de 2.8 unidades de fuerza,

y su dirección es un ángulo de 135° de fuerza respecto a la parte pos it iva

del eje x . Es en esa dirección que debemos jalar la cuerda izquierda para

equilibrar la piñata.

FIGURA 80. Representación de la piñatasuspendida y de las fuerzas que conoce-mos. El punto de donde se suspende lapiñata, señalado en color amarillo, es elpunto de aplicación de todas las fuerzas.

FIGURA 81. La fuerza →F R es equivalente a lasfuerzas →F G y →F 1. Para claridad en el diagra-ma, ya no se muestran los ángulos de lasdirecciones de dichas fuerzas, pero sí el dela fuerza resultante, que es de 45°.

Evalúo mi avance

1. Ponte de pie por un momento sobre una superficie horizontal, como el suelo, sin

recargarte ni agarrarte de nada, ni desplazarte. Contesta las siguientes cuestiones:• ¿Estás en reposo? ¿Por qué?• ¿Qué fuerzas están actuando sobre ti?• Represéntalas en un esquema, y obtén la fuerza resultante mediante uno de los

métodos gráficos revisados en esta secuencia.• ¿Cuánto vale la resultante de estas fuerzas?• ¿Están equilibradas estas fuerzas? Justifica tu respuesta.• ¿Qué pasaría si no existiera la fuerza normal que ejerce el suelo sobre ti?

2. Explica cuáles son las condiciones que deben cumplir las fuerzas que actúan sobre uncuerpo para que dicho cuerpo esté en reposo.

3. Describe el procedimiento que seguirías para hallar la fuerza equilibrante de un con- junto de cuatro fuerzas concurrentes que actúan simultáneamente sobre un cuerpo.

FIGURA 82. Para representar la fuerzaequilibrante →F 2, es conveniente dibujarla recta que contiene a →F R y trazar sobreésta una flecha de la misma longitud quela que representa a →F R, pero apuntandoen el sentido opuesto.

F 1

F G

F R

F 2

135º

F 1

F G

F R

45º

F 1

F G

90º

27º

Page 92: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 92/276

90

Autoevaluación Al completar esta tabla podrás saber si lograste dominar, a lo largo de los contenidos, los aprendizajes señalados. Rellena el cuadroque corresponda a tu propia evaluación y comenta, en la última columna, la tarea necesaria para que logres el aprendizaje y compártela con tu maestro.

I N D I C A D O R D E L L O G R O

L O S É

(Tengo elconocimiento)

L O S É H A C E R

(Desarrollé las habilida-des para representar y

seguir procedimientos)

V A L O R OE S T E

A P R E N D I Z A J EC O M E N T A R I O S

Sí Aún no Sí Aún no Sí No ¿Cómo lo lograré?

¿Interpretas la velocidad como la relaciónentre desplazamiento y tiempo, y lasdiferencias de la rapidez?

¿Interpretas tablas de datos y gráficas deposición–tiempo, en las que describesy predices diferentes movimientos?

¿Describes características del movimientoondulatorio con base en el modelo de ondas:cresta, valle, nodo, amplitud, longitud,

frecuencia y periodo, y diferencias elmovimiento ondulatorio transversal dellongitudinal, en términos de la dirección depropagación?

¿Describes el comportamiento ondulatorio delsonido: tono, timbre, intensidad y rapidez, apartir del modelo de ondas?

¿Identificas las explicaciones de Aristóteles ylas de Galileo respecto al movimiento decaída libre, así como el contexto y las formasde proceder que las sustentaron?

¿Argumentas la importancia de la aportaciónde Galileo en la ciencia como una nuevaforma de construir y validar el conocimientocientífico basado en la experimentación y elanálisis de los resultados?

¿Relacionas la aceleración con la variación dela velocidad en situaciones del entorno y/oactividades experimentales?

¿Elaboras e interpretas tablas de datos ygráficas de velocidad–tiempo y aceleración–tiempo para describir y predecir característicasde diferentes movimientos?

¿Describes la fuerza como efecto de lainteracción entre los objetos y larepresentarás con vectores?

¿Aplicas los métodos gráficos del polígono ydel paralelogramo para obtener la fuerzaresultante que actúa sobre un objeto, ydescribes el movimiento producido?

¿Argumentas la relación del estado de reposode un objeto con el equilibrio de fuerzasactuantes, con el uso de vectores, ensituaciones cotidianas?

Page 93: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 93/276

91

B1

Evaluemos lo aprendido

1. En el siguiente marco de referencia cartesiano se representa latrayectoria ABCD de un móvil.

Con base en la representación de la trayectoria:

• ¿Cuál es el módulo del desplazamiento total del móvil y cuál essu distancia recorrida en centímetros?

a. El módulo del desplazamiento es 4 cm y la distanciarecorrida es 6 cm.

b. El módulo del desplazamiento es 4 cm y la distanciarecorrida es 3 cm.

c. El módulo del desplazamiento es 13 cm y la distancia reco-

rrida es 3 cm.d. El módulo del desplazamiento es 3 cm y la distancia

recorrida es 13 cm.

2. La siguiente gráfica representa una onda mecánica transversalque se propaga a través de una cuerda tensa en la dirección po-sitiva del eje x . Si se sabe que cada ciclo se repite cada 2 s, conesta información, más la que se puede obtener directamente dela gráfica, determina cuál de los siguientes valores correspondena la amplitud ( A), la longitud de onda (λ) y a la frecuencia ( f ):

a. A = 5 m, = 2 m y f = 0.5 Hz, respectivamente.

b. A = 5 m, = 1 m y f = 0.5 Hz, respectivamente.

c. A = 5 m, = 4 m y f = 0.5 Hz, respectivamente.

d. A = 5 m, = 1 m y f = 1 Hz, respectivamente.

> Continúa en la página siguiente

3. Se presentan a continuación cuatro explicaciones relacionadascon objetos que caen libremente desde la misma altura.

a. Un objeto diez veces más pesado que otro toca el suelo en untiempo diez veces menor, ya que los objetos pesados tienenuna tendencia natural a estar sobre el suelo.

b. Varios objetos de diversos tamaños y pesos tocan el suelo conuna pequeña diferencia de tiempo debido sólo a la forma, yaque algunos presentan mayor área expuesta al rozamiento conel aire.

c. Dos objetos de diferente peso caen en tiempos diferentes,

porque el tiempo de caída está asociado a su composición: elobjeto ligero, al contener más aire, cae más despacio.

d. Dos objetos de la misma forma, uno cien veces más pesado queel otro, tocan el suelo aproximadamente al mismo tiempo, yaque ambos son atraídos de la misma forma por la Tierra.

• ¿Cuáles de estas explicaciones corresponden con los plantea-mientos hechos por Aristóteles?

i. 1 y 4.

ii. 1 y 3.

iii. 3 y 4.

iv. 2 y 4.

4. Indica cuáles de los movimientos descritos a continuación sonacelerados.

a. Una piedra en reposo.

b. Un automóvil que toma una curva con un módulo de velocidadconstante.

c. Un avión en vuelo que avanza en línea recta con una veloci-dad constante de 600 km/h hacia el noroeste.

d. Una pelota que se deja caer desde el primer piso.

e. Un camión que avanza en línea recta y frena hasta quedardetenido.

i. 2, 3, y 5.ii. 1, 3 y 4.

iii. 1, 4 y 5.

iv. 2, 4 y 5.

5. Un jinete a caballo parte del reposo, avanza en línea recta ace-lerando uniformemente durante 15 minutos hasta alcanzar unarapidez de 100 m/min; avanza 15 minutos con un módulo develocidad constante; luego frena uniformemente durante 10minutos hasta detenerse, y por último permanece en su posicióndurante otros 10 minutos.

5

4

3

2

1

–1

–2

–3

–4

–5

1 2 3 4 5 6 7 80 m e t r o s

metros

y

x

91

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 1.51 2.52 3.53 4.54 5.55 6 76.5

A

B C

D

En los reactivos del 1 al 6 elige el inciso que corresponda a la respuesta correcta.

Page 94: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 94/276

9292

Elije la combinación de gráficas de (velocidad–tiempo) y(aceleración–tiempo) que representen el movimiento descrito.

a. Gráficas 1 y 4. c. Gráficas 1 y 2.

b. Gráficas 3 y 2. d. Gráficas 3 y 4.

6. A continuación se presenta un diagrama con la representacióngráfica de dos vectores de fuerza en un plano coordenado. Aplicael método del paralelogramo para obtener el módulo y la direc-ción de la fuerza resultante, y elige la opción que concuerde con

tu respuesta

a. Módulo = 5 unidades de fuerza. Dirección = 90° respecto al eje x .

b. Módulo = 6 unidades de fuerza. Dirección = 81º respecto al eje x .

c. Módulo = 6 unidades de fuerza. Dirección = 53º respecto al eje x .

d. Módulo = 5 unidades de fuerza. Dirección = 102º respecto aleje x .

7. En la siguiente gráfica de posición-tiempo se representa el movi-miento de un autobús de pasajeros que transita por un tramo decarretera recto entre la parada “San Miguel” y la parada “El Pal-mito”, donde el origen o punto de referencia está en la primaraparada “San Miguel”.

Elije la descripción del movimiento del autobús que correspondea la gráfica:

a. El autobús tarda 30 minutos en ir de la parada “San Miguel” a laparada "El Palmito"; en los primeros 10 minutos sube una cuestade 8.2 km, luego va por una parte plana otros diez minutos, ydespués baja por otra cuesta durante los últimos 10 minutos.

b. El autobús parte de la parada “San Miguel” y va cada vez másrápido en los primeros 10 minutos; luego tiene una velocidadconstante de 8.2 km/h durante otros 10 minutos, y luego vacada vez más despacio en los últimos 10 minutos hasta dete-nerse en la parada “El Palmito”.

c. El autobús va con una velocidad constante durante 10 minutosdesde el la parada “San Miguel” a la parada "El Palmito", queestá a 8.2 km de la primera, luego está detenido 10 minutosen la parada de “El Palmito”, y regresa a la parada de “San Mi-guel” con una velocidad constante durante otros 10 minutos.

d. El autobús parte de la parada “San Miguel” y toma una carre-tera diagonal en los primeros 10 minutos, y cuando está a 8.2km da vuelta a la derecha y toma una carretera recta durante

10 minutos para llegar a la parada “El Palmito”, luego da otravuelta a la derecha y toma otra carretera diagonal durante losúltimos 10 minutos.

8. Observa el diagrama de las fuerzas que actúan en el punto desuspensión de una fotografía colgada de un clavo en la pared.Elige las afirmaciones que son verdaderas:

a. La fuerza →F 2 es el peso de la fotografía.

b. La fuerza →F 1 es única fuerza de tensión de las cuerdas de lasque está suspendida tu fotografía.

c. La suma vectorial o resultante de lasfuerzas →F 1 y →F 3 es →F 4.

e. La fuerza F4 no es la fuerza equili-brante del peso.

e. Las fuerzas →F 1, →F 2 y →F 3 se equilibranmutuamente, de tal suerte que lafotografía está en reposo.

a. A, C y D.

b. B, C y D.

c. B, C y E.

d. A, C y E.

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60

y

x

t (min)

v e l o c i d a d ( m / m i n )

–5

0 5 10 15 20 25 30 35 40 45 50 55 60

–10

10

5

y

x

t (min)

a c e l e r a c i ó n ( m / m i n 2 )

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 t (min)

v e l o c i d a d ( m / m i n )

–5

0 5 10 15 20 25 30 35 40 45 50 55 60

–10

10

5

y

x

t (min)

a c e l e r a c i ó n ( m / m i n 2 )

1 2

3 4

Velocidad-tiempo

Velocidad-tiempo

Aceleración-tiempo

Aceleración-tiempo

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1

2

3

4

5

67

8

9

Posición

Tiempo

k i l ó m e t r o s

minutos

1

1 2–2

A

B

–1 3 4 5 6

–1

2

3

4

5

6

x

y

Page 95: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 95/276

93

B1

93

• Plantearán y delimitarás un

proyecto derivado de cues-

tionamientos que surjan de

su interés y para el que bus-

ques solución.

• Utilizarán la información

obtenida mediante la expe-

rimentación o investigación

bibliográfica para elaborar

argumentos, conclusiones y

propuestas de solución a lo

planteado en su proyecto.

• Diseñarán y elaborarán ob-

jetos técnicos, experimentos

o modelos con creatividad,

que les permitan describir,

explicar y predecir algunos

fenómenos físicos relaciona

dos con las interacciones de

la materia.

• Sistematizarán la informa-

ción y organizarán los resul-

tados de su proyecto y los

comunicarán al grupo o a la

comunidad, utilizando diver

sos medios: orales, escritos

modelos, interactivos, gráfi-

cos, entre otros.

Aprendizajes esperados

Para guiarte en la elección de un proyecto que sea de tu interés, te invitamos

a leer con tus compañeros de equipo los dos proyectos propuestos para este

primer bloque. Si tienes interés en investigar otros temas puedes ofrecer a tu

equipo los argumentos de tu elección, para luego acordar conjuntamente el

tema que investigarán en el proyecto.

PROYECTOS

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR O INNOVAR.

INTEGRACIÓN Y APLICACIÓN

Sismos y Tsunamis ¿Cómo es el movimiento de los

terremotos o tsunamis y de quémanera se aprovecha esta informaciónpara prevenir y reducir riesgos anteestos desastres naturales?

Indonesia

Mozambique

India

Somalia IslasMaldivas

SriLanka

Bangldesh

Myanmar(Birmania)

KeniaTanzania Islas

Seychelles

Madagascar

SudáfricaOcéano Índico

Banda Aceh

FIGURA 1. Algunos países afectados por el tsunami del 2004. El epicentro estuvo sólo a 9 km deprofundidad, y la rotura de la placa tectónica ocurrió a sólo 1 600 km de distancia de Banda Aceh.¿Por qué el país africano de Mozambique (marcado en verde) prácticamente no recibió el impactodel tsunami?

El tsunami más devastador del que tenemos noticia ocurrió el 26 de diciembre de 2004 en el océanoÍndico, y causó aproximadamente 230 000 muertes, además de incontables personas heridas, afectas y desplazadas, sin contabili zar las enormes pérd idas materiales. Este evento podría considerar se

como la mayor catástrofe natural ocurrida desde hace mucho tiempo, debida, en parte, a la faltade sistemas de alerta temprana en la zona. Los sistemas de alerta de tsunamis se encuentran en elPacífico Norte, pero nadie imaginó que algo así pudiese suceder en el Índico (figura 1).

Los sismos son el resultado de una perturbación que se produce cuando las grandes placas queforman la corteza terrestre, llamadas placas tectónicas, chocan o se deslizan unas debajo de otras.Estas perturbaciones producen ondas mecánicas tanto longitudinales como transversales, e inclusocombinaciones de éstas. Revisen sus libros de Geografía de México y del Mundo.

Dada la importancia que los sismos representan para la vida en general y para las actividadeshumanas, han sido objeto de estudio por disciplinas científicas como la sismología. Uno de susobjetivos es el de registrar y medir la intensidad de los sismos, dónde y cuándo se producen, a quéprofundidad se generaron, etcétera.

Un maremoto es un sismo que ocurre en el fondo marino, el cual genera una perturbación en elmar en forma de olas gigantes, conocidas como tsunami . El terremoto que originó el tsunami del2004 tuvo una intensidad de 9.1 grados en la escala de Richter, y es uno de los más poderosos quese han medido. En el norte de Indonesia se formó una pared de agua de 25 metros de altura, que se

propagó a partir del epicentro y penetró en la isla 6 kilómetros desde la costa hacia tierra adentro.

P1

Page 96: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 96/276

94

Actividades Acciones Tiempo Responsables

1.

2.

3.

1. Planeación del problema y delimitación.2. Investigación. Fuentes de información (impresas o electrónicas).3. Análisis de resultados de la investigación.4. Elaboración del informe.5. Comunicación. Exposición del informe.

6. Evaluación y participación en el proyecto.

1. Planeación

Formen equipos y sigan las orientaciones delmaestro para definir si escogerán este temapara su proyecto o si ya eligieron otro tema.Para este proyecto pueden investigar acercade los sismos, cómo se originan, qué esca-las existen para clasificarlos y cuáles son las

zonas de mayor riesgo sísmico en México.Pueden plantearse preguntas como: ¿cuán-do se le llama terremoto a un sismo?, ¿conque rapidez promedio se propagan las ondassísmicas en tierra?, ¿es diferente la rapidezpromedio de propagación de un tsunami res-pecto a un sismo en tierra?, ¿cuáles son lasmedidas de prevención más importantes a to-mar antes, durante y después de un sismo?,¿existe el riesgo de tsunamis en las costas deMéxico?, ¿existen sistemas de alerta de sis-mos y tsunamis en nuestra localidad, y deser así, dónde o quiénes emiten las alertas?,

entre otras.

1. Con base en los datos de la tabla, calculen la rapidez promedio de propagación del tsunami en km/h. Observen la figura 1 y comenten en cuáles de los lugares señalados en el mapapudieron haberse desalojado las costas para evitar tantas pérdidas humanas.

Tiempo Distancia del epicentro Llega a

0 min = 0 h 0 kmSe origina el terremoto a1 600 km de Sumatra (Indonesia)

0.416 h = 25 min 335 km Banda Aceh al norte de Sumatra

1.77 h = 106.2 min 1 423.08 km Costa oeste de Sri Lanka

2.45 h = 147.2 min 1 969.8 km Costa noroeste de la India

ACTIVIDAD PREVIA

Elaboren una hipótesis sobre el tema a in- ves tigar , es dec ir, formu len una suposici ónprovisional que trate de dar una posiblesolución o respuesta al problema de su inves-tigación. Por ejemplo, si eligieran el aspectode la prevención ante los sismos, pueden

consultar estadísticas de sismos recientes enMéxico y verificar cuáles fueron las zonas se-guras en un edificio, y si es verdad que es másseguro colocarse bajo una mesa o escritorioque bajo los marcos de las puertas, o si entodos los casos lo más seguro es salir en orden y rápidamente del edif icio.

Planifiquen cómo desarrollarán el proyecto;para ello será necesario que propongan unametodología. Pueden tomar como referenciauna tabla de trabajo como la siguiente.

INVESTIGACIÓN

Documental

Implica la búsqueda de información científi-ca en la biblioteca, en internet o localizar aun especialista relacionado con el tema de

estudio, por ejemplo, un físico, un geólogo,sismólogo o un científico en Ciencias de laTierra, así como un especialista en proteccióncivil. Puede resultarles de mucha utilidad con-sultar el Atlas Nacional de Riesgos, elaboradopor el Centro Nacional de Prevención de De-sastres (Cenapred). Pueden buscar mapas dela República Mexicana que indiquen las zonassísmicas para saber qué tan grande o pequeñoes el riesgo sísmico en tu localidad.

Cualitativa

Se trata de recabar testimonios de algunoshabitantes de la comunidad mediante en-trevistas. Por ejemplo, pueden entrevistar afamiliares, maestros, compañeros, amigossobre qué experiencias han tenido con terre-motos y qué plan de prevención y protecciónhan implementado en sus casas, escuelas ycentros de trabajo.

2. Desarrollo

Elaboren una guía para la investigación

documental y cualitativa. A continuación in-

PROYECTO 1

Page 97: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 97/276

B1

9

Agrega las que encontraron:

cluimos un ejemplo de algunos de los puntosque puede contener; sin embargo el equipodeberá decidir cuáles consideran importantes,sin perder de vista el objetivo de su investi-gación, así como las preguntas y la hipótesis

formuladas en la etapa de planeación.• Averigüen dónde hay estaciones de moni to-

reo sísmico y cómo acceder a la informaciónque ofrecen para todo público.

• Para la detección de sismos, si eligen unproyecto de tipo tecnológico, pueden cons-truir un sismoscopio muy sencillo para de-tectar sismos de diferentes intensidades yreflexionar acerca de: ¿Cómo pueden darseidea de la intensidad del sismo (relacionadacon la amplitud de la onda) con un disposi-tivo como el de la figura 2 ?

FIGURA 2. Sismoscopio.

3. Difusión

Elijan qué medio de difusión es el más ade-cuado para dar a conocer los resultados de su

investigación, como cartel, tríptico, exposiciónfotográfica, mapas, esquemas, presentación enalgún programa de computadora, campaña deprevención y protección civil ante sismos ytsunamis , intercambio de información útil enredes sociales, entre otros.• Trabajen en el medio de difusión elegido.

Tengan en cuenta que éste debe comunicarla información que se incluyó en el informede la investigación y que debe contemplartambién información o indicaciones relacio-nadas con las medidas de prevención antesismos y tsunamis , las estadísticas que re-

cabaron, y las conclusiones a las que lle-garon.

• Expongan el resultado de su proyecto antesu comunidad escolar. Despierten su inte-rés y curiosidad por conocer cómo el co-nocimiento de las ondas mecánicas es unaherramienta fundamental para saber mássobre sismos y tsunamis , en especial parapoder emitir alertas tempranas a la pobla-ción civil.

Redacten un texto breve sobre las cosas quedebemos tener preparadas y a la mano todoel tiempo para prevenir la eventualidad deun sismo o de tsunamis , si viven en la costa.Tomen en cuenta lo siguiente: Ya que no es posible evitar los sismos, ni

predecirlos con precisión, es de gran im-portancia conocer, practicar y difundir lasmedidas de prevención ante los daños po-tenciales que podrían ocasionar.Los sismos y tsunamis son eventos to-talmente naturales que responden a ladinámica de la corteza de nuestro plane-ta, y no representan “señales”, “castigos”ni ninguna otra razón de índole fuera del

contexto natural.

4. Evaluación

Evalúen su desempeño individual y el delos integrantes del equipo en el proceso detrabajo del proyecto. Tengan en cuenta lossiguientes rubros: metodología de trabajo,objetivos del proyecto, producto final deacuerdo con el medio de difusión, la eficaciade la difusión, y la actitud para el trabajo indi-

vidual y de los integrantes del equipo.

Diseñen una lista de preguntas para entrevis-tar a las personas que eligieron, de acuerdocon el tema e intención de su proyecto.Tomen nota en fichas de lectura y bibliográfi-cas de la información documental que vayanrecabando y registren las respuestas de lasentrevistas.

Reúnan los datos recabados y organícenlosen cuadros, tablas, fichas o gráficas, entreotros formatos pertinentes.

Analicen los datos obtenidos en la inves-tigación, acuerden qué les indican éstos ycontrástenlos para establecer si se confirmóla hipótesis planteada en la etapa inicial.

Formulen las conclusiones de la investiga-ción. Para ello, tengan en cuenta los aspectosesenciales que responden las preguntas que

han guiado su trabajo y que ustedes eligieron.

P1

9

Lomnitz, Claudio, El próximo sismo en la

Ciudad de México, México, Universidad

Nacional Autónoma de México, Dirección

General de Divulgación de la Ciencia,

2005.

Nava, Alejandro, Terremotos, México,

Fondo de Cultura Económica, 2003

(Colección Ciencia para todos).

Arnold, Nick, Esa poderosa energía,

México, SEP: Molino: RBA Libros, 2007

(Colección Libros del Rincón).

Lee más...

www.atlasnacionalderiesgos.gob.mx/index.

php (Esta página muestra mucha información

recopilada en nuestro país por muchos años

acerca de riesgos como sismos, tsunamis,

erupciones volcánicas, entre otros).

www.ssn.unam.mx/ (La página del Servicio

Sismológico Nacional (SSN) contiene infor-

mación sobre los últimos sismos ocurridos

en México, entre mucha otra información de

interés para la ciudadanía y los funcionarios

del gobierno).

http://www2.sepdf.gob.mx/en_caso_de/

sismo.jsp (Guía rápida sobre las medidas pre-

ventivas y paliativas i nmediatas ante casos de

emergencias o desastres naturales, como sismos,

inundaciones e incendios, entre otros).

http://earthquakes.tafoni.net/?hl=es (En este

sitio hay mapas interactivos con los que pode-

mos localizar los sismos que se han producido

en todo el mundo en determinado rango defechas).

http://www.facebook.com/pages/SISMOLO-

GICO-NACIONAL-UNAM/103619816339149 (Si

utilizas redes sociales como el Twitter , puedes

seguir a @SismologicoMX y a @SkyAlertMx

para recibir información actualizada sobre sis-

mos de magnitud importante. También puedes

ver la página en Facebook).

http://digaohm.semar.gob.mx/cenroAler-

tasTsunamis.html (Portal de la Secretaría de

Marina).

Page 98: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 98/276

96

La velocidad en los deportes ¿Cómo se puede medir la rapidez de per-sonas y objetos en algunos deportes; porejemplo, beisbol, atletismo y natación?

FIGURA 1. El atleta neoyorkinoBob Beamon impuso unanueva marca mundial ensalto de longitud (8.90 m)que sólo ha sido superada porMike Powell, pero no en juegos ol ímpicos.

En la mayoría de los deportes la rapidez es un asunto crucial, pudiendo ser la diferencia entre

perder o ganar. En las carreras no podría ser más determinante. Hay muchos ejemplos de esto.El atleta Usain Bolt es hasta el momento el velocista más rápido del mundo; su rapidez máxima

registrada es de 43.93 km/h. En su nación, Jamaica, las carreras de velocidad se han convertidoen toda una tradición; los niños pequeños se entrenan desde los cinco años.

Cuando en el estadio de Ciudad Universitaria, el atleta estadounidense Bob Beamon (figura 1)comenzó a acelerar en dirección a la arena del salto de longitud, nadie se imaginó que alcan-zaría la mayor distancia recorrida hasta ese momento por un ser humano en el aire tras supropio impulso.

1. Hagan una lista se sus deportes favoritosy elijan aquellos en los que la rapidezes el factor determinante para obtenerel triunfo (por ejemplo en competenciasde natación, carreras, ciclismo, canota-

je, etcétera) o para lograr una ventaja(como la rapidez de un lanzamiento deuna bola en beisbol, de un tiro libre en

fútbol soccer, de un “saque” en voleibol,un “pase” en básquetbol, fútbol ameri-cano, etcétera).

2. Anoten junto a los deportes o jugadaselegidos cómo consideran que se podríamedir la rapidez.

ACTIVIDAD PREVIA

Era difícil de creer, y por ello los jueces verificaron de nuevo la medición: ¡Beamon habíasaltado 8.9 metros! Esta hazaña lo convirtió en el ganador indiscutible de la medalla de oro enla prueba de salto de longitud en la Olimpiada de México 68, estableciendo, además, una históricamarca mundial que tardó 23 años en ser superada.

En aquella ocasión, los jueces utilizaron una enorme regla montada sobre dos postes paralelosa manera de travesaño, que fue ubicada desde la línea de salto hasta la marca final dejada porel cuerpo del atleta sobre la arena.

A di ferencia de l as competencias de sal to, en otros deportes se mantiene fija la distancia y semide el tiempo, como sucede en el maratón, el ciclismo, la caminata, las pruebas de natación,el beisbol y las carreras en la pista, entre otras. Los jueces registraban el tiempo en que elatleta llegaba a la meta y éste se capturaba de inmediato por el personal encargado del pizarrónelectrónico

La tecnología de medición actual ha aportado mucho para dirimir controversias y permitedetectar diferencias de tiempo con una precisión de milésimas de segundo entre un atleta yotro. Actualmente, los jueces no miden directamente el tiempo de las competencias deportivas,lo hacen los cronómetros digitales.

P2

Page 99: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 99/276

B1

9

P2

1. Planeación

Formen equipos y recuerden que el temaque elijan debe tratar una situación real yproblemática que sea de su interés y esté vin-

culada con el tema central de este bloque:“La descripción del movimiento y la fuerza.”Planteen un título para su proyecto.

Analicen si es posible realizar el proyecto ydelimiten su investigación. Pueden plantearsepreguntas como: ¿investigaremos desde unaperspectiva histórica cómo se fueron modifi-cando los dispositivos para medir la rapidezen los deportes?, ¿nos enfocaremos en el fun-cionamiento de un dispositivo de éstos, comola pistola de radar?, ¿investigaremos sobre lastécnicas que emplean los corredores para con-

seguir mayor rapidez? o bien, ¿elaboraremosun cuadro o periódico mural con los mejorestiempos, los récords establecidos en los di-ferentes Juegos Olímpicos (Beijing 2008 yLondres 2012, y Guadalajara 2011) consegui-dos por atletas mexicanos?

Elaboren una hipótesis , que es suposi-ción provisional que trate de dar una posiblesolución o respuesta al problema de su in- vest igac ión que podr ía ser: La rapidez en losdeportes se mide mediante un aparato llama-do pistola de radar.

Planifiquen cómo desarrollarán el proyecto;para ello será necesario que propongan unametodología.

Busquen información científica en la biblio-teca, en internet o mediante la comunicaciónpersonal con el maestro de Educación Fí-sica, un físico, un especialista en medicinadel deporte, atleta o entrenador que puedancontactar. En la página web del Comité Olím-pico Mexicano o del Comité de los Juegos

Panamericanos, las ligas juveniles de diversosdeportes, las delegaciones estatales o regiona-les del deporte, entre otras.

2. Desarrollo

Elaboren una guía para la investigación docu-mental y cualitativa.• Aspectos de la importancia de cont ar con

dispositivos precisos y confiables para me-dir la rapidez en algunos deportes y qué variables cinemát icas deben medi rse para

medir la rapidez.

• Organicen una mini competencia de atletis-mo en su escuela y propongan la manerade medir las distancias y los tiempos conmateriales sencillos.

Diseñen una lista de preguntas para entrevis-

tar a las personas que les darán información.

Tomen nota, en fichas de lectura y biblio-gráficas, de la información documental que vayan recabando y registr en las respuestas delas entrevistas.

Reúnan los datos y represéntenlos en cua-dros, tablas, fichas o gráficas, entre otrosformatos pertinentes.

Analicen y contrasten los datos para estable-cer si se confirmó la hipótesis planteada en

la etapa inicial.

Formulen las conclusiones de la investiga-ción. Para ello, tengan en cuenta los aspectosesenciales que responden las preguntas quehan guiado su trabajo y que ustedes eligieron.

3. Difusión

Elijan qué medio de difusión es el más ade-cuado para dar a conocer los resultados de su

investigación, como cartel, tríptico, exposiciónfotográfica, presentación en algún programade computadora, debate, entre otros.

• Expongan el resultado de su proyecto antesu comunidad escolar. Despierten su interés y curiosidad por conocer cómo el conoci-miento de la cinemática es una herramientafundamental para medir el desempeño delos deportistas.

Redacten un texto breve sobre la importanciaque tiene para los jóvenes el practicar algún

deporte de manera sistemática. Tomen encuenta lo siguiente:

La utilización de criterios científicos para elentrenamiento y la medición del desempe-ño en las habilidades físicas.

La relación entre las actividades deportivas y el logro de metas personales y de equipo.

La sana competitividad y el gusto por laactividad deportiva como forma de integra-ción social.

4. Evaluación

Evalúen su desempeño individual y el delos integrantes del equipo en el proceso detrabajo del proyecto. Tengan en cuenta los

siguientes rubros: metodología de trabajo,objetivos del proyecto, producto final deacuerdo con el medio de difusión, la eficaciade la difusión, y la actitud para el trabajo indi- vidual y de los integrantes del equipo.

9

Halliday, Resnick, Walker, Fundamentos de

física, México, CECSA, vol. 1, 2006.

Noreña, Villarías Francisco y Juan TondaMazón, El movimiento, México, SEP, 2002

(Colección Libros del Rincón).

Perelmán, Yákov, Física recreativa I , México,

Ediciones Quinto Sol, 1992.

Lee más...

www.efdeportes.com/efd38/cien-cia1.htm (En esta liga encontrarásinformación sobre la importancia de lamedición en los deportes).

http://parapan.guadalajara2011.org.mx/inicio (En esta página encontra-rás las estadísticas y el medallero, asícomo marcas batidas y nuevas marcasde los Juegos Parapanamericanos Gua-dalajara 2011).

www.sermexico.org.mx/articulo.php?modo=detalle&idarticulo=1464&idcanal=4 (En esta página hay informacióndetallada de deportistas mexicanosdestacados, incluyendo jóvenes, niñosy atletas con capacidades diferentes).

Agrega las que encontraron:

Agrega las que encontraron:

Page 100: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 100/276

98

S1

98

a b c

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

La explicación del movimiento en el entorno

Interpretarás y aplicarás las Leyes de Newton como un conjunto de reglas para describiry predecir los efectos de las fuerzas en experimentos y/o situaciones cotidianas.

Valorarás la importancia de las Leyes de Newton en la explicación de las causasdel movimiento de los objetos.

Primera ley de Newton: el estado de

reposo o movimiento rectilíneo uniforme.La inercia y su relación con la masa.

Segunda ley de Newton: relación fuerza,masa y aceleración. El newton comounidad de fuerza.

Tercera ley de Newton: la acción y lareacción; magnitud y sentidode las fuerzas.

Efectos de las fuerzas en la Tierra y en el Universo

Establecerás relaciones entre la gravitación, la caída libre y el peso

de los objetos, a partir de situaciones cotidianas.

Describirás la relación entre distancia y fuerza de atracción gravitacionaly la representarás por medio de una gráfica fuerza-distancia.

Identificarás el movimiento de los cuerpos del Sistema Solarcomo efecto de la fuerza de atracción gravitacional.

Argumentarás la importancia de la aportación de Newtonpara el desarrollo de la ciencia.

Gravitación. Representación gráfica dela atracción gravitacional. Relación concaída libre y peso.

Aportación de Newton a la ciencia:explicación del movimiento en la Tierray en el Universo.

BLOQUE 2

Leyes del movimiento

(a) Aristaco de Samos, dibujo basado en un grabado del siglo III a.n.e. (b) Puente Golden Gate en San Francisco, California, Estados Unidos de América.

(c) Manteniendo el equilibrio durante el canotaje en los rápidos. (d) Satélite artificial. (e) Isaac Newton (1642-1727) experimentó con un haz de luz .

(f) Fuerza para acelerar.

S1

S2

Page 101: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 101/276

99

B2

d f

9

B2

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturalesdesde la perspectiva científica.

Comprensión de los alcances y limitaciones de la ciencia

y del desarrollo tecnológico en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambientey la promoción de la salud orientadas a la cultura de la prevención.

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

La energía y el movimiento

Describirás la energía mecánica a partir de las relaciones entreel movimiento: la posición y la velocidad.

Interpretarás esquemas del cambio de la energía cinética y potencialen movimientos de caída libre del entorno.

Utilizarás las expresiones algebraicas de la energía potencial y cinética para describir

algunos movimientos que identificarás en el entorno y/o en situaciones experimentales.

Energía mecánica: cinética y potencial.

Transformaciones de la energíacinética y potencial.

Principio de la conservaciónde la energía.

PROYECTO : Imaginar, diseñar y experimentar para explicar o innovar (opciones)*Integración y aplicación

Plantearás preguntas o hipótesis para responder a la situación de tu interés,relacionada con el movimiento, las fuerzas o la energía.

Seleccionarás y sistematizarás la información relevantepara realizar tu proyecto.

Elaborarás objetos técnicos o experimentos que te permitan describir, explicary predecir algunos fenómenos físicos relacionados

con el movimiento, las fuerzas o la energía.

Organizarás la información resultante de tu proyecto y lacomunicarás al grupo o a la comunidad, mediante diversos

medios: orales, escritos, gráficos o con ayuda delas tecnologías de la información y la comunicación.

¿Cómo se relacionan el movimientoy la fuerza con la importancia deluso del cinturón de seguridadpara quienes viajan enalgunos transportes?

¿Cómo intervienen las fuerzas en laconstrucción de un puente colgante?

* Revisa la introducción al bloque 5 antes de trabajar con los proyectos.

e

S3

Page 102: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 102/276

100

S1

“NO DEBEN ADMITIRSE MÁS CAUSAS de las cosas naturales que aquellas que sean

verdaderas y suficientes para explicar sus fenómenos.

Ya dicen los filósofos: la naturaleza nada hace en vano, y vano sería hacer

mediante mucho lo que se puede hacer mediante poco.

Pues la naturaleza es simple y no derrocha en superfluas causas de las cosas.Por ello, en tanto que sea posible, hay que asignar las mismas causas a los

efectos naturales del mismo género.

Como en el caso de la respiración del hombre y del animal; de la caída de las

piedras en Europa y en América; de la luz en el fuego de la cocina y en el Sol;

de la reflexión de la luz en la Tierra y en los planetas.”

Con estas reflexiones comienza Isaac Newton su libro tercero: “Sobre el

sistema del mundo”, dentro de su obra cumbre Los principios matemáticos

de la filosofía natural.Newton legó a la humanidad las leyes que rigen el movimiento de los cuerpos

en la Tierra, y supuso que también rigen lo que sucede fuera del planeta.

Esta certeza científica es apenas una fracción del conocimiento que los seres

humanos seguimos construyendo para explicar cómo funciona el Universo. La

búsqueda se hace más amable y apasionante a través de las ciencias físicas,

lo que para Newton fue filosofía natural. En el título de su obra cumbre da el

camino a seguir, observar y observar todo movimiento, toda transformación

de energía y materia, de uno y otro modo, a través de la experimentación y

las matemáticas. Experimentación y matemáticas son las arterias que llevanal corazón de la ciencia.

Trabaja tu proyecto

Es importante poner atención a los

contenidos que más te interesen de este

bloque, tomar notas y compartir tus ideas

y tus dudas con tu maestro y con los

compañeros con los que integrarás el

equipo de trabajo. Ya sabes que, juntos,

elegirán el problema a resolver, o bien

realizarán el que proponemos aquí.

B2

PROYECTO

100

Page 103: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 103/276

B2B2

La explicación delmovimiento en el entorno

El Sol es la fuente principal de energía para la vida en el planeta.

Aprendizajes esperados

S1

• Interpretarás y aplicarás

las leyes de Newton

como un conjunto de

reglas para describir

y predecir los efectos

de las fuerzas en

experimentos y

situaciones cotidianas.

• Valorarás la importancia

de las leyes de Newton

en la explicación de las

causas del movimiento

de los objetos.

101

Primera ley de Newton: el estadode reposo o movimiento rectilíneouniforme. La inercia y su relacióncon la masa.

Segunda ley de Newton: relación entrefuerza, masa y aceleración. El newtoncomo unidad de fuerza.

Tercera ley de Newton: la accióny la reacción; magnitud y sentido

de las fuerzas.

Page 104: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 104/276

102

S1

Explora

1. Reflexiona un poco sobre lassituaciones planteadas y contesta entu cuaderno las siguientes preguntas.

• ¿Qué se necesita hacer para mover

algo que está en reposo?

• Un cuerpo en movimiento, como

una patineta o una manzana que

cae, ¿puede seguir en movimiento

indefinidamente si nada o nadie lo

toca? Explica tu respuesta.

• Conserva tus respuestas para revi-

sarlas al terminar este contenido.

Hasta este momento has estudiado cómo describir el movimiento sin atender a las

causas que lo producen, pero, ¿has pensado por qué se mueven las cosas que estaban

en reposo o qué las mantiene en movimiento?

Si alguna vez recibiste un empujón, habrás notado que te moviste en la dirección y

el sentido de ese empujón. Imagina ahora que juegas futbol y quieres mandar un pase

a un jugador de tu equipo y procuras patear el balón en esa dirección. Puedes intentar

mandar el pase pegándole al balón quieto o en movimiento, pero de cualquier forma,

hay que patearlo para mandar un pase.

( (ENTRA FOTO S/N

FUTBOLISTA PÁG 101, FIG

14, PIES Y BALÓN))

El movimiento de la pelota se debe a la

acción de una o varias fuerzas.

2. Observa la fotografía y contesta en

tu cuaderno considerando, que las

fuerzas se asocian con interacciones.

• ¿Con qué interactúa el balón?

3. Identifica todas las posibles fuerzas

que actúan sobre el balón, y

explica, basándote en ellas, en qué

condiciones se movería este objeto.

Desde que uno es pequeño es posible darse cuenta de que

para mover algún objeto es necesario jalarlo o empujarlo, lo

cual significa aplicar una fuerza . Probablemente con todas las

experiencias de tu vida moviendo cosas, hayas llegado a darte

cuenta de que para mover algo que se encuentre en reposo,

es necesario que le apliques una fuerza (figura 1).

Una de las figuras científicas más importantes para la física:

Isaac Newton (figura 2), un hombre polémico que revolucionó

el pensamiento científico de su época, y cuyos trabajos han de-

jado huella hasta la actualidad, tanto así que hoy en día aún se

aplican sus leyes o reglas del movimiento a un sinfín de situa-

ciones problemáticas del estudio de la física y de la ingeniería.

La última ejecución por herejía en Gran Bretaña fue en el año de 1697, época en

que Newton ya tenía más de 50 años, oponerse a la Iglesia católica acarreaba muchas

complicaciones. La Iglesia católica había adoptado la filosofía de Aristóteles como

parte de su dogma y contradecirlo podía significar convertirse en hereje. Muchos de

los pensadores de esa época, usando su sentido común y no la experimentación,

FIGURA 1. ¿Por qué estos niños

pueden columpiarse?

•Primera ley de Newton: el estado de reposo omovimiento rectilíneo uniforme. La inercia y su relacióncon la masa

Page 105: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 105/276

103

B2

afirmaban que el estado natural de las cosas era el reposo,

es decir, que si sobre un objeto (incluido la Tierra) no actúa

ninguna fuerza éste debe permanecer quieto o en reposo.

Para el siglo XV , ya habían aparecido en el escenario de la

ciencia hombres que desafiaron a la iglesia católica poniendo

en entredicho las ideas de Aristóteles, como Nicolás Copérnico

(1473-1543) que inspiró el trabajo de Galileo Galilei. En el

bloque anterior has analizado las diferencias más relevantes

entre las ideas de Aristóteles y de Galileo con respecto a la

caída libre, ahora vamos a profundizar un poco.

Ari stóteles había presentado en su teoría del movimien-

to dos conceptos clave: fuerza y resistencia . Era necesario

mantener la fuerza sobre un objeto para que éste comenzara

y continuara su movimiento. Pero Aristóteles reconocía la

influencia del medio en el que se movían las cosas: “cuestamás” mover un objeto en el agua que en el aire sin presen-

cia de ráfagas de viento. Piénsalo así, si bailas fuera de una

alberca y luego lo haces dentro de ella, ¿en qué medio te

moverás con mayor facilidad?

Aristóteles jamás imaginó que pudiera existir el vacío , así

que la influencia del medio en el movimiento de los cuerpos,

a lo que él llamó resistencia, siempre estaría presente en su pensamiento. Aquí surge

una cuestión interesante, ¿existe algún tipo de resistencia propia del objeto que se

mueve?

Otro problema sobre el que reflexionó Aristóteles fue que cuando se lanzaba unobjeto, la fuerza que producía su movimiento dejaba de actuar justo en el momento

en que el objeto dejaba de hacer contacto con la mano del lanzador; sin embargo, el

objeto se seguía moviendo por un rato. Aristóteles analizó el problema argumentan -

do que el objeto desplazaba aire al moverse, y por lo tanto éste empujaba el objeto

hacia el frente cuando ocupaba el espacio que iba dejando libre el objeto, salvando

al mismo tiempo la inexistencia del vacío.

Pese a todo, Aristóteles llegó a proponer, como regla, que a mayor fuerza aplicada

sobre un objeto mayor velocidad alcanzaba éste; claro, pensaba en la velocidad úni-

camente como un fenómeno en el que intervenían la distancia y el tiempo.

A di ferencia de Aristó teles, Gali leo empleó la experimentación controlada para ar-

gumentar sus observaciones y perfeccionó algunos de los conceptos de Aristóteles al

introducir la aceleración. El resto de la historia ya lo conoces. Sin embargo, ninguno

de los dos pudo elaborar una teoría que explicara satisfactoriamente las causas del mo-

vimiento. Incluso, ninguno definió con precisión una “cantidad de movimiento”, esto

es, alguna variable que permitiera cuantificar “qué tanto y cómo se mueve un cuerpo”.

Lo que sí quedó claro para Galileo, y que puso en entredicho a la teoría de Aristóte-

les, fue la conclusión siguiente: el estado natural de movimiento de los cuerpos no es

el reposo, es el movimiento rectil íneo uniforme. Para que corrobores esta afirmación,

realiza con algunos de tus compañeros la siguiente actividad.

FIGURA 2. Isaac Newton

(1642-1727). Nació en la

ciudad inglesa de Woolsthorpe,

Lincolnshire. En su obra cumbre

Principios matemáticos de

la filosofía natural, mejor

conocida como los Principia

por su nombre en latín, publicó

las tres leyes del movimiento,

que son el eje de la rama de

la física que hoy en día se

denomina Mecánica Clásica.

GLOSARIO

Vacío: falto de contenido físico; libre

de materia.

Page 106: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 106/276

104

S1

104

Describe el movimiento de un disco compacto que se desliza sobre una mesa.

Experimenta y elabora modelos

1. Reúnanse en equipos de tres o

cuatro personas para llevar a cabo el

experimento.

Material

• 1 disco compacto que ya no uses.

• 1 jeringa de plástico de 1 cm de

diámetro (tamaño estándar)

• Pegamento transparente para plástico

• 1 globo mediano

Procedimiento

a. Pidan a su maestro que retire la aguja

de la jeringa.

b. Tomen el disco compacto y peguen la

jeringa al centro, sobre la cara superior.

c. Coloquen el globo en el extremo de la

jeringa donde estaba la aguja.

d. Una vez que se haya secado el

pegamento, inflen el globo a través de

la jeringa, por la cara inferior del disco

compacto.

e. Coloquen el disco sobre la mesa

dejando salir el aire del globo. Esto es

equivalente a que el disco no tenga

rozamiento con la mesa, como semuestra en la foto.

f. Sujeten el disco colocando el dedo índice

de cada mano sobre cada extremo

lateral de la jeringa, procurando que el

disco se mantenga en reposo.

g. Antes de retirar los dedos, predigan lo

que sucederá mientras sale todo el aire

del globo.

h. Retiren cuidadosamente los dedos y

esperen a que salga todo el aire del

globo. Observen qué ocurre.

i. Vuelvan a inflar el globo, pero ahora

den al disco un pequeño empujón

perfectamente horizontal a la jeringa,

evitando que gire. Esperen a que salgatodo el aire del globo y, mientras tanto,

observen el movimiento del disco.

j. Guarden su dispositivo para la siguiente

actividad.

2. Respondan las siguientes preguntas en

su cuaderno.

Análisis de resultados

1. Respondan:

• ¿Sucedió lo que esperaban en sus

predicciones? Expliquen.

• Cuando no se aplicó ninguna fuerza al

disco, ¿cuál fue su movimiento?

• Cuando dieron el pequeño empujón al

disco, ¿qué movimiento describió éste

una vez que se suprimió la fuerza?

• ¿Qué hubiera ocurrido en ambos casos si

no se hubiese inflado el globo? ¿El aire

movió al globo como probablemente lo

hubiera pensado Aristóteles? Justifiquen

sus respuestas.

2. Compartan los resultados y conclusiones

de su equipo con el grupo y con su

maestro.

Este estudiante coloca el dispositivo sobre

la mesa, para iniciar el experimento

Afirmar que el estado natural de los cuerpos es el movimiento rectilíneo uniforme

significa que, si no actúa ninguna fuerza sobre un cuerpo, éste describirá un movi-

miento con trayectoria rectilínea y, en todo momento, mantendrá constante su ve-

locidad. Recuerda que como la velocidad es una cantidad vectorial, en este tipo de

movimiento, en todo momento, no pueden variar ni su magnitud ni su dirección y

tampoco su sentido durante todo el movimiento.

El reposo pasa a ser un caso particular del movimiento rectilíneo uniforme; sólo

hay que considerar la velocidad igual a cero. Así que la perspectiva de Galileo tiene

un alcance más general que la de Aristóteles.

GLOSARIO

Estado natural: situación en la que

se encuentra algo espontáneamente,

sin intervención alguna.

Page 107: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 107/276

105

B2

Las teorías científicas gozan de aceptación mientras permitan explicar satisfacto-

riamente una gran diversidad de fenómenos, pero cuando se enfrenta una situación

particular, para la cual no pueden ofrecer ninguna respuesta es necesario revisarlas,

ampliarlas o bien sustituirlas por otras, lo que ha ocurrido muchas veces a lo largo

de la historia. Así se construye la ciencia, siempre en constante cambio y evolución.

La coyuntura histórica estaba dada para la gran “síntesis de Newton”, como si se

tratara de una carrera de relevos. Newton nació el mismo año en que murió Galileo,

y cuando tuvo la edad suficiente estudió con esmero todos los detalles de éste y otros

predecesores, en particular sobre la caída libre y el movimiento de proyectiles. Newton

recuperó entonces la idea de movimiento natural de Galileo como la “ley Primera del

movimiento” y la expresó así en su trabajo monumental.

Presentó también una pequeña pero significativa explicación de su Primera ley:

Los proyecti les perseveran en su movimiento a no ser que sean retardados por la resi stencia

del aire y empujados hacia abajo por la gravedad. Los cuerpos más grandes de los cometas y

de los planetas conservan por más tiempo sus movimientos, tanto de avance como de rotación,

realizados en espacios menos resistentes.

Necesitamos detenernos aquí y profundizar un poco. ¿A qué se refería Newton al

hablar de cuerpos grandes? Es razonable pensar que sólo se refiriera al volumen de

dichos cuerpos, pero también que se refiriera a la mayor cantidad de materia que

tienen los cuerpos celestes, comparada con la cantidad de materia de cualquier pro-

yectil que se pudiera construir en la Tierra. Se deduciría

de este hecho que un cuerpo con más materia presenta

mayor oposición a cambiar su movimiento y por ello lo

conserva por más tiempo (figura 3).

En la actualidad a la cantidad de materia de un objeto

se le define como masa y a la oposición que éste presen-

ta para cambiar de manera instantánea su mo vimiento,

inercia. La conclusión es que la inercia y la masa se

relacionan: la inercia es directamente proporcional a la

masa . A partir de un principio de equivalencia, que se

explicará más adelante, se hacen iguales la inercia y la

masa, midiéndose ambas en una unidad fundamental

del Sistema Internacional de Unidades llamada kilogra-

mo. Para reforzar la idea de inercia realiza la siguiente

actividad.

FIGURA 3. En las carreteras los camiones de carga deben viajar a menor

velocidad, pues para frenar un auto tan pesado se requiere más tiempo

y pericia del conductor, ya que puede provocar accidentes.

Ley Primera

Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo

a no ser que sea obligado por fuerzas impresas a cambiar su estado.

GLOSARIO

Los predecesores son personas que

antecedieron a otros, en este caso,

otros seres humanos que contribu-

yeron al conocimiento científico de

la época.

Page 108: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 108/276

106

S1

Comunica tus avances en ciencia y experimenta

Predice lo que sucederá al realizar esta experiencia.

1. Lee las instrucciones e imagina lo que ocurrirá y explícalo.

a. Toma un lápiz y colócalo encima de una hoja reciclada y ésta sobre la mesa.

b. Tira de la hoja hacia ti muy rápido.

c. Repite el experimento cambiando el lápiz por una goma.

2. Ahora realiza la experiencia y responde.

• ¿Permanecieron en reposo el lápiz y la goma?

• ¿Hubo alguna diferencia entre los dos experimentos? ¿Cuál?

3. Explica los resultados, compara con los de otros compañeros y argumenta tus respuestas

haciendo uso de los conceptos de masa e inercia.

• ¿En qué situaciones de la vida cotidiana ocurre algo parecido a lo que experimentaste?

4. Investiga en internet o en otras fuentes cómo se definió el kilogramo patrón.

Podemos constatar la inercia en innumerables casos prácticos tomados de la vida coti-

diana. Por ejemplo, si viajas de pie en un autobús y no estás sujeto a un tubo o senta-

do, cuando el autobús frene bruscamente, te moverás hacia el frente, continuando con

tu movimiento uniforme en línea recta. Por la misma razón, aunque frene, el autobús

recorrerá cierta distancia hasta detenerse completamente.

Comunica tus avances en ciencias

Valora la utilidad del conocimientocientífico.

1. Observa la foto e intenta explicar por qué

es necesario agitar la botella que contiene

a la salsa para que ésta salga y caiga en

las papas fritas.

2. Compara tu explicación con la de otros

compañeros y comenta si te parece útil

encontrar una respuesta científica que

resuelva esta pregunta.

Sin saberlo, esta adolescente está aplicando el

principio de inercia para sazonar sus papas fritas.

1. Una vez que un cuerpo se encuentra en movimiento rectilíneo uniforme, ¿qué se requiere

para cambiar este estado de movimiento y por qué?

2. ¿Por qué la Primera ley de Newton se asocia con la inercia?

3. ¿Cuál debe ser el valor de la fuerza resultante que actúa sobre un cuerpo para que éste des-

criba un movimiento rectilíneo uniforme?

Evalúo mi avance

Page 109: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 109/276

107

B2

•Segunda ley de Newton: relación fuerza, masay aceleración. El newton como unidad de fuerza

Como hemos visto con la Primera ley de Newton para poner en movimiento o para

modificar su estado de movimiento, es necesario aplicarle una fuerza. Cambiar elestado de movimiento significa un cambio en la velocidad del objeto, es decir, una

aceleración.

En este hecho se basa la Segunda ley de Newton, la cual se puede enunciar de la

siguiente manera:

Cuando se aplica una fuerza neta sobre un cuerpo, éste experimentará una acele-

ración en la misma dirección y sentido de la fuerza, cuya magnitud es directamente

proporcional a la magnitud de la fuerza, e inversamente proporcional a su masa.→

F = m→a

La ecuación de la Segunda ley de Newton permite definir la unidad de fuerza en el

sistema internacional como sigue:

[N] [kg] [m — s2 ].

El newton es la un idad de fuerza en este sistema, se denota con N y equivale aun kilogramo (kg), unidad de masa, por metro sobre segundo al cuadrado (m/s 2),

unidad de aceleración.

La Segunda ley de Newton se puede aplicar de inmediato para cuantificar las causas

que producen el movimiento de un objeto, y a partir de esta información describir

cómo se moverá dicho objeto. Presta atención al siguiente ejemplo.

Ley Segunda

El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre

según la línea recta a lo largo de la cual aquella fuerza se imprime.

Comprende a través de un ejemplo cómo se aplican las leyes de Newton, que permiten predecir el efecto de la fuerza.

1. Considera los siguientes casos, reflexiona sobre ellos antes

de leer las soluciones.

Caso a. Si sobre un bloque de 10 kg se aplica una fuerza

constante de 100 N en dirección horizontal y sentido hacia la

derecha, ¿qué aceleración experimentará el cuerpo?

Caso b. Si el bloque inicialmente estaba en reposo, ¿qué

velocidad alcanzará en 2 s?

2. Lee con atención la solución de cada uno de los casos. Pide al

maestro que los guíe en esta explicación

Comunica tus avances en ciencias

F = 100 N a

m = 1 kg

Este esquema representa un objeto con ciertas características

al que se le aplica una fuerza. Resulta útil hacer un dibujo de

la situación planteada para poderla analizar.

> Continúa en la página siguiente

Para que observesel efecto de la fuerza

en la aceleración, trabaja

con el recurso:

www.ibercajalav.net/

curso.php? fcontenido=

Newt_2Ley_1.swf

La experimentación con fuer-

zas puede hacerse jalando

objetos mediante cuerdas

concurrentes y colineales,

de manera que con el tacto

se perciba la tensión, la di-

rección y el sentido de las

cuerdas, y valorar cuál de

ellas es la fuerza resultante

en función del movimiento

del objeto.

Sé incluyente

Page 110: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 110/276

108

S1

Solución a. Como la fuerza que se aplica sobre el bloque es

constante producirá una aceleración constante, en la misma

dirección y sentido que la fuerza aplicada, en este caso

horizontal y con sentido a la derecha, como lo establece

la Segunda ley de Newton. Para calcular el módulo o

la magnitud de la aceleración se aplica nuevamente la

Segunda ley de Newton mediante la ecuación F = ma. Para

obtener la magnitud de la aceleración es necesario realizar

un despeje, el cual se muestra a continuación:

F ma,F —m

a.

O, lo que es lo mismo:

a F — m

Luego se sustituyen los valores asignados a cada una de

las variables, en este caso, la magnitud de la fuerza y lamasa:

100 N Na = ———— = 10 ——

10 kg kg

3. Ahora se procede a simplificar unidades, para ello se

descompone el newton como se muestra a continuación

m kg —— s2

a = 10 ————. kg

Al simplificar los kilogramos (kg) se obtiene el resultado final.

Cuando se aplica una fuerza constante en dirección horizontal

Como lo has constatado con este ejemplo, la ecuación F = ma es un modelo mate-

mático que te permite predecir muchas de las características del movimiento de un

cuerpo, si se conocen su masa y la fuerza que opera sobre él durante cierto tiempo,

de una manera cuantitativa. Todo esto constituye otro de los aspectos importantes de

la ciencia. Por ello, realiza con dos de tus compañeros la siguiente actividad.

y sentido a la derecha de 100 N sobre un bloque de 10 kg,

éste acelerará a 10 m/s2 en dirección horizontal con sentido

hacia la derecha.

Solución b. Cuando un objeto se mueve en trayectoria

rectilínea con aceleración constante son válidas las

ecuaciones que estudiaste en el bloque anterior, en

particular es válida la ecuación:

v f v

i at ,

donde v f es la velocidad final, v

i es la velocidad inicial, a es

la aceleración y t es el tiempo. En este caso lo que se quiere

determinar es la velocidad final, es decir la velocidad que

alcanza el bloque inmediatamente después de que se ha

aplicado la fuerza constantemente durante 2 s.

En el inciso a se determinó que la aceleración producida

por la fuerza es de a = 10 m/s2. Al haber estado el bloque

inicialmente en reposo, su velocidad inicial v i = 0, así que al

sustituir estos valores en la ecuación se obtiene:

v f 0 10

m—s2 (2s) 20

ms—s2

.

Para simplificar las unidades se descompone el segundo al

cuadrado, como se muestra a continuación y se simplifican las

unidades:

v f 20

ms—

ss.

Por lo tanto, se concluye que el bloque alcanza una velocidad de:

v f

20

m

—s

Experimenta

Observa cómo aceleran los cuerpos sobre la superficie de la Tierra.

Material

• 1 soporte universal montado con

pinzas de nuez y una varilla de madera

de unos 30 cm de largo. Se ofrecen

alternativas a este material en el

procedimiento.

• 1 riel o canaleta de aluminio o plástico.

Se da una alternativa en el

procedimiento.

• 1 pesa de 200 g

• 1 transportador

• 1 flexómetro o una regla

• 1 balanza

• 1 balín o una canica de 1 cm de

diámetro

• Hilo grueso que soporte la pesa

de 200 g

• 1 cronómetro

• Plastilina

Procedimiento

a. Construyan un péndulo de 30 cm de longitud

con la pesa de 200 g y el hilo. Armen el

soporte universal con la nuez y el palito de

madera para que puedan colgar el péndulo

de él. Si no cuentan con soporte universal

pueden buscar un tubo de la instalación de

agua del laboratorio o la esquina de una

protección de ventana.

> Continúa en la página siguiente

»

Page 111: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 111/276

109

B2

b. Utilicen su ingenio y creatividad, lo importante es sujetar el péndulo,

poder darle una apertura de 30° y que la pesa impacte el centro

de una canica colocada sobre un riel o la mesa. Si no cuentan con

un riel, pongan la canica en el extremo de la mesa y coloquen dos

reglas de 30 cm paradas horizontalmente, en paralelo y separadas

un par de milímetros más del diámetro de la canica, para así poder

controlar el avance de la canica en línea recta, además de determinar

el momento en que la canica ha avanzado 30 cm.c. Coloquen el transportador en el extremo del palito de madera, y

fíjenlo con plastilina. El transportador sólo sirve para tener una

referencia y dar al péndulo una apertura de 30° en todo momento.

Si no contaron con el soporte universal, basta con que usen el

transportador una vez para dar la apertura de 30° al péndulo y hacer

una marca en el lugar adecuado

d. A partir de esta instrucción se supondrá que se cuenta con el péndulo

montado en el soporte universal y el riel de aluminio; si no es así,

hay que hacer las adecuaciones pertinentes. Ajusten el riel y el

soporte de tal forma que al levantar la pesa con el hilo a un ángulo

de 30°, la pesa impacte con el balín y éste pueda avanzar sobre el

riel, como se muestra en la figura de arriba.

e. Fijen el flexómetro o la regla a un costado del riel.

f. El tiempo de contacto entre la pesa y el balín o la canica será muy

breve, es menor al tiempo en que reaccionen algunos de ustedes

para activar y desactivar el cronómetro; no obstante, tomarán este

tiempo como el tiempo de contacto, considerando que se trata

de una aproximación. Por lo tanto (antes de iniciar con el uso del

péndulo y el balín, para tomar práctica) cada integrante del equipo

activará y desactivará el cronómetro lo más rápido que pueda y

posteriormente calcularán un promedio; anótenlo en su libreta.

g. Suelten el péndulo desde la posición de 30°. Al impacto con el balín

activen el cronómetro y desactívenlo cuando el balín haya avanzado

una distancia de 30 cm. Con esto medirán el tiempo que tarda

éste en recorrer una distancia en línea recta de 30 cm. Calculen la

velocidad media del balín después del impacto dividiendo la distancia

entre el tiempo. Procuren que el impacto de la pesa sea en el centro

de la canica o el balín.

h. Repitan el paso g diez veces, calculen el promedio de sus velocidades

medias y anótenlo en su libreta.

i. Repitan el experimento, dejando que el balín avance 40 cm. Anoten

sus resultados en la libreta.

j. Midan la masa del balín o la canica con la balanza.

Resultados

1. Elaboren en su cuaderno una tabla que contenga sus resultados, como

la que se muestra en la siguiente página.

2. Calculen la magnitud de la fuerza que ejerció la pesa sobre el balín,

aplicando la Segunda ley de Newton.

Análisis de resultados

1. A partir de sus observaciones y de sus cálculos contesten lo siguiente.

• ¿De dónde provino la fuerza que puso en movimiento el balín?

• Comparando sus resultados de la velocidad media que alcanza el

balín al recorrer 30 cm y 40 cm, ¿se nota un cambio apreciable?

¿Por qué? Justifiquen su respuesta.

• ¿Cómo mejorarían este dispositivo experimental para obtener una

tecnología con la cual se pudiera medir la fuerza con la que un

bloque de madera impactara, por ejemplo, con un maniquí?

2. Comparen sus resultados con sus compañeros de otros

equipos y sigan las instrucciones del maestro.

Velocidad del balínantes del impacto

con la pesa

Velocidadmedia (promedio)del balín después

del impactocon la pesa

Tiempo del impacto entre elbalín y la pesa (aproximación

equivalente a tu tiempode reacción para activar ydesactivar el cronómetro)

Considerando la aceleraciónconstante, calculen usandoalguna de las ecuacionesde la cinemática vistas

en el bloque

v i (m—s ) v

f (m—s ) t (s) a (m—s2)

Como un ejemplo más de aplicación de la Segunda ley de Newton, considera la si-

tuación de la figura 4. Se trata del juego de tirar de la cuerda entre dos grupos de

personas. Cada grupo jala de la cuerda en la misma dirección y magnitud pero con

sentido contrario; como ya sabes, si se aplican dos fuerzas colineales de igual mag-

nitud pero con sentido contrario sobre un objeto, la fuerza resultante que opera sobre

dicho objeto es cero.

»

GLOSARIO

Tecnología: conjunto de teorías y

de técnicas que permiten el aprove-

chamiento práctico del conocimiento

científico.

Page 112: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 112/276

110

S1

FIGURA 4. La fuerza resultante

es cero, por lo tanto el

pañuelo no se mueve.

En la experiencia repre-

sentada en la figura 4, el

pañuelo que se encuentra

en el centro de la cuerda

no se mueve, es decir, se

mantiene en reposo. Esta

conclusión puede obte-

nerse al aplicar a la situación la Segunda ley de Newton, como se muestra a con-

tinuación. Considera la Segunda ley F = ma; con F = 0 se tiene que ma = 0, lo cual

implica que la aceleración es cero, ya que la masa siempre es diferente de cero.

Aceleración cero significa que no hay aceleración, es decir que la velocidad del

objeto no cambia ni en magnitud ni en dirección ni en sentido; el objeto se mantiene

en reposo o bien está describiendo un movimiento rectilíneo uniforme. ¿Habías escu-

chado esto alguna vez? Sí, se trata precisamente de la Primera ley de Newton.

Parece que la Primera ley de Newton es sólo un caso particular de la Segunda. Bien,las cosas no siempre son lo que parecen a simple vista y mucho menos en el ámbito

de la ciencia, pues siempre hay que detenerse para reflexionar y sopesar los alcances

de una teoría científica.

El movimiento es algo relativo a un punto de referencia o, más en general, a un

marco de referencia. La Primera ley es necesaria para establecer los marcos de refe-

rencia que garanticen que la Segunda ley se cumpla satisfactoriamente, y por ello es la

primera. A estos marcos de referencia se les llama inerciales, que te remiten a la idea

de inercia (figura 5).

Volviendo al ejemplo del autobús, si éste es tá arrancando y frenando continuamen-

te, en el autobús no podrías establecer un marco de referencia inercial, ya que sinaplicar ninguna fuerza sobre un objeto que se encuentre dentro de él, es posible que

el objeto se mueva por su propia inercia. Por lo tanto, no podrías aplicar la Segunda

ley de Newton para estudiar su movimiento con confianza, pero al contrario, si garan-

tizas que se cumple la Primera ley en el marco de referencia que hayas seleccionado,

con seguridad se cumplirá la segunda, y entonces es perfectamente lógico que de la

Segunda ley se recupere la Primera.

FIGURA 5. Piensa ahora en tu

caso. Mientras permaneces en

tu banca puedes decir que estás

en reposo respecto al suelo y

las paredes del salón; pero visto

desde el Sol, giras y te mueves

junto con la Tierra; estos son

dos marcos de referencia desde

los cuales se puede estudiar tu

estado de reposo o movimiento.

1. Si empujas un carrito de supermercado que está en reposo y

vacío, y notas que lo aceleras, y adquiere así cierta velocidad,

¿qué pasaría si triplicaras la magnitud de la fuerza con la que

lo has empujado?

2. Si llevas a cabo la experiencia anterior, aplicando las mismas

fuerzas, pero ahora con un carrito lleno de mercancías, ¿qué

ocurriría? Explica.

3. Si consideras poner en movimiento una bicicleta y un automó-

vil jalando ambos, ¿cuál sería más fácil de mover y por qué?

4. Un carrito del supermercado abarrotado de mercancías viene

hacia ti, y lo detienes con tus manos estirando tus brazos; el

carrito se detiene, pero caen algunas de las mercancías que

estaban en él.

• ¿Por qué sucede esto? ¿En qué dirección caen?

5. Se aplica una fuerza constante de 250 N, horizontalmente y

con sentido hacia la derecha durante 5 s, sobre un bloque de

5 kg, que inicialmente se estaba moviendo horizontalmente

hacia la derecha con una velocidad de 2 m/s.

a. Calcula la aceleración que experimenta el bloque en este

lapso.

• ¿Qué velocidad alcanzará el bloque justo después de haber

transcurrido los 5 s en que se aplicó la fuerza?

Evalúo mi avance

Page 113: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 113/276

111

B2

•Tercera ley de Newton: la acción y la reacción; magnitudy sentido de las fuerzas

Las fuerzas provienen de interacciones ya sea por

contacto o a distancia (figura 6). Cuando dos objetosinteractúan lo hacen a través de fuerzas que operan

sobre los distintos objetos en interacción, jamás so-

bre uno solo. A este respecto, Newton enunció su

Tercera ley del movimiento como sigue.

La Tercera ley nos sirve para identificar las fuerzas que producen el movimiento de

un objeto. Las fuerzas siempre aparecen por pares. Por ejemplo, si jalas una caja llena

de libros puesta en el piso con la idea de moverla, no basta con que la jales hacia ti

exactamente en la dirección en que la quieres mover. Te habrás dado cuenta de que

tienes que flexionar ligeramente las rodillas y apoyar bien tus pies sobre el piso para

lograr tu objetivo; sólo si queda alguna fuerza no equilibrada en la dirección en la que

quieras mover la caja, ésta se moverá. Con todo esto, es evidente que la Tercera ley es

un ingrediente fundamental para tener una descripción correcta del movimiento.

Describe el movimiento de un disco compacto que se desliza sobre una mesa.

Elabora modelos y experimenta

Material• 2 discos compactos como los usados

en la actividad Experimenta de la

página 104.

Plastilina

Procedimientoa. Hagan chocar de frente los discos

deslizándolos sobre una superficie

lisa, procurando que avancen sobre

la misma línea.

b. Pongan un poco de plastilina sobre

uno de los discos.

Análisis de resultadosa. Reflexiona y contesta las siguientes

preguntas antes de compartirlas con

tus compañeros.

• Después del choque, ¿cómo se

mueven los discos?

• ¿En dónde está localizado el par

acción-reacción?• ¿Qué pasa si la masa de uno de los

discos que choca es mayor que la

otra?

Responde en términos de la magnitud y

dirección de la velocidad de cada uno.

Conclusión1. Comparte tus respuestas con tus

compañeros de equipo y después

con otros equipos para concluir

grupalmente.

Esquema que muestra lacolocación de los dispositivos

FIGURA 6.¿Cuál bola golpea a cuál?

Ley Tercera

Con toda acción ocurre siempre una reacción

igual y contraria: O sea, las acciones mutuas de

dos cuerpos siempre son iguales y dirigidas en lamisma dirección y en sentidos opuestos.

Inicia el experimento.

Page 114: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 114/276

112

S1

112

En la vida cotidiana podrás encontrar una gran cantidad de ejemplos en los cuales la

Tercera ley del movimiento de Newton es aplicable. Por e jemplo, cuando caminas,

ejerces con tus pies una fuerza hacia el suelo, éste ejerce una fuerza hacia ti que te per -

mite avanzar. En las carreras de canotaje se observa que los atletas mueven sus remos

hacia delante y las canoas se mueven hacia atrás. Los remos golpean el agua, como

se ve en la figura 7, y ésta ejerce la fuerza que hace avanzar la canoa hacia atrás. En

este ejemplo se nota que tanto el agua como las canoas se mueven de acuerdo con la

Segunda ley de Newton;toda fuerza provoca una aceleración en su misma dirección y

sentido.Por lo tanto, las fuerzas actúan sobre el agua y sobre la canoa, es decir, sobre

objetos distintos. En estos ejemplos,se puede constatar que la fuerza resultante sobre

cada objeto es distinta de cero, ya que ambos se mueven.

Comunica tus avances en ciencias

Identifica y calcula los pares de fuerzas acción-reacción que mantienen al libro en reposo.

1. Analiza el esquema de la situación.

2. Identifica los pares de fuerzas que mantienen el libro en reposo.

3. Calcula: ¿cuál es la fuerza neta que actúa sobre el libro?

4. Analiza la solución del problema y comparte tus dudas y

aciertos con tus compañeros y tu maestro.

Solución. Al estar sobre la mesa, el libro ejerce una fuerza

de acción sobre ésta; esa fuerza es F 1. La mesa reacciona con

una fuerza hacia el libro, que es F 2. Aquí se tiene el primer

par, por la Tercera ley de Newton F 1 = –F

2. A su vez el conjunto

mesa más libro ejercen una fuerza de acción sobre el piso,

esta fuerza es F 3. El piso reacciona con una fuerza F

4 hacia la

mesa más el li bro, y por la Tercera ley de Newton F 3 = –F

4.

Por lo tanto, la fuerza neta que actúa sobre el libro es cero. En

consecuencia el libro está en equilibrio.

Recuerda que el equilibrio significa que el objeto se mueve

con movimiento rectilíneo uniforme o se mantiene en reposo.

En este caso el libro se mantiene en reposo.

FIGURA 7. En el canotaje se

evidencian muchos pares

acción-reacción: de los remos

con el agua y el de las piernas

de las atletas con el bote.

F 1

F 3

F 2

F 4

F 3

F 4

A continuación se desarrolla un ejemplo en el cual se identif ican los pares de fuer-zas que actúan para mantener un libro en equilibrio sobre una mesa, que a su vez

esta posada sobre el piso.

Para que observes una

consecuencia de la Tercera

ley de Newton, trabaja

con el recursowww.ibercajalav.net/

curso.php?fcontenido=

Newt_3Ley_1.swf

Page 115: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 115/276

113

B2

En breve aplicarás tus conocimientos acerca de las leyes del movimiento de Newton

para comenzar el estudio de otro tema fascinante de la física: la gravitación universal.

Analizarás cómo se mueven los planetas y de cómo actúa esa fuerza que llamamos

gravedad. Esta es otra de las grandes contribuciones de Newton a la ciencia, que te

permitirá conocer otra pequeña parte del cosmos del que tú eres parte. Al analizar el

trabajo de Newton, podrás darte cuenta de que la observación, la experimentación y

las matemáticas son los cimientos de la ciencia.

1. Analiza el siguiente cuento, y antes de marcar la respuesta correcta en el inciso que corres-

ponda, identifica todos los pares de fuerzas acción-reacción. Utiliza la Tercera ley de Newton,

y básate en el ejemplo .

2. Descubre dónde está la fuerza desequilibrada que produce el movimiento, si es que lo hay.

• ¿Será capaz el caballo de mover la carreta?

3. Con base en las leyes del movimiento de Newton, escoge el enunciado que justifique mejor

la situación.

a. No hay fuerza neta actuando sobre la carreta, por lo tanto no se mueve.

b. La carreta se moverá ya que las fuerzas de acción y reacción no siempre tienen la misma

magnitud.

c. Sólo si el cuidador ayuda al caballo empujando la carreta, ésta se moverá. En efecto, la acción

y reacción entre el caballo y la carreta se nulifican.

d. Cuando el caballo jala de la carreta, la acción y reacción se equilibran, pero hay una fuerza

externa no equilibrada que mueve la carreta.

Evalúo mi avance

Un caballerango se da cuenta de que no tiene sentido que presione a su caballo

para que jale una carreta, ya que cuando lo haga, la carreta reaccionará con una

fuerza igual y de sentido contrario, de tal forma que la fuerza resultante será cero y

por lo tanto la carreta no se moverá.

Page 116: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 116/276

S2

Cualquier interacción entre dos (o más) cuerpos ya sea mediante contactoo a distancia, como al columpiarte, se puede describir con el concepto de fuerza.

A través de esta noción, podemos explicar los cambios en el movimientode cualquier cuerpo. El movimiento de un columpio se repite constantemente.

¿Conoces otros movimientos que sean periódicos?

Efectos de las fuerzasen la Tierra y en el Universo

Gravitación. Representación gráficade la atracción gravitacional. Relacióncon caída libre y peso.

Aportación de Newton a la ciencia:explicación del movimiento en la Tierray en el Universo.

114

Aprendizajes esperados

S2

• Establecerás

relaciones entre la

gravitación, la caída

libre y el peso de los

objetos, a partir de

situaciones cotidianas.

• Describirás la relación

entre distancia y

fuerza de atracción

gravitacional y la

representarás por

medio de una gráfica

fuerza-distancia.

• Identificarás el

movimiento de los

cuerpos del SistemaSolar como efecto de

la fuerza de atracción

gravitacional.

• Argumentarás la

importancia de la

aportación de Newton

para el desarrollo de la

ciencia.

Page 117: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 117/276

115

Explora

1. Reflexiona un poco sobre el movimiento de los ocho planetas del

sistema solar y cómo se mueven los objetos cerca de la superficie

de la Tierra. Observa las ilustraciones y contesta en tu cuaderno a

las siguientes preguntas.

• ¿Por qué un planeta no describe un movimiento rectilíneo

uniforme, tomando como punto de referencia al Sol? Justi-

fica tu respuesta.

• ¿Por qué puede caer al suelo una manzana cuando se

desprende de la rama de un árbol? ¿Hacia dónde acelera?

Explica.

• ¿La Luna cae hacia la Tierra? ¿Por qué?

2. Conserva tus respuestas para volverlas al revisar al terminar este

contenido.

Desde tiempos remotos los seres humanos se preguntaron, ¿por qué no se cae la Luna?,

¿por qué se mueven los planetas con respecto a las estrellas fijas? y, ¿qué nos mantiene

sobre la superficie de la Tierra? Los pensadores y filósofos griegos construyeron mo-

delos matemáticos para intentar responder a éstas y muchas otras preguntas similares.

En primera instancia los griegos pensaban que las leyes que regían el movimiento

de los objetos en la Tierra eran distintas de las que regían el comportamiento de los

astros del cielo. En lo que concierne al movimiento de los cuerpos celestes, el pen-

sador griego Aristarco de Samos propuso un modelo heliocéntrico para explicar el

movimiento de los planetas; este modelo se fundamenta en fijar al Sol como el centro

del Universo y a los planetas en movimiento alrededor de él. Realmente se sabe poco

acerca de los trabajos de Aristarco en torno a esta idea. Es probable que estos trabajos

se hayan perdido para siempre como consecuencia de los múltiples incendios ocurridos

en la biblioteca de Alejandría (figura 8). Siglos más tarde Nicolás Copérnico (1473-1543)

retomaría este modelo.

Otro modelo para explicar el movimiento de los planetas que se conocían en la Anti-

güedad fue presentado por Ptolomeo. Este modelo se basaba en las ideas de Aristóteles,

de las cuales se extraía la conclusión de que la Tierra era el centro del Universo y que

el Sol, los planetas y la Luna se movían dentro de esferas perfectas centradas en nues-

tro planeta; algo que parecería razonable pensar, a partir de la experiencia cotidiana.

B2

•Gravitación. Representación gráfica de la atraccióngravitacional. Relación con caída libre y peso

(a) Aristarco de Samos (310 a 230 a.n.e.), astronómo y matemático griego;

(b) modelo heliocéntrico; (c) Claudio Ptolomeo (100-170 a.n.e.), astrólogo,

astronómo, químico y geógrafo griego; (d) modelo geocéntrico.

¿Por qué caen

los objetos?

a c

b d

GLOSARIO

Filósofo : persona que busca

establecer de manera racional, los

principios más generales que orientan

el conocimiento de la realidad, así

como el sentido del obrar humano.

Page 118: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 118/276

116

S2

El modelo de Ptolomeo era complejo,

postulaba el movimiento de los pla-

netas en los llamados epiciclos, que

eran algo así como un círculo dentro

de otro círculo y éste a su vez centra-

do en la Tierra. La idea del epiciclofue necesaria porque los planetas, en

determinada época del año, parecían

moverse hacia atrás con respecto a

las estrellas fijas. En este sentido, los

modelos heliocéntricos daban una

mejor explicación a este fenómeno,

ya que al girar todos los planetas en

torno al Sol, incluyendo a la Tierra,

por la diferencia de velocidades en el recorrido de las órbitas, algunos planetas enapariencia podían moverse hacia atrás. Cuando vas en un autobús en movimiento, si

te fijas por la ventana, tendrás la sensación de que los objetos se mueven en dirección

contraria a la que se mueve el autobús.

Como podrás darte cuenta, entender el movimiento de los cuerpos celestes no fue

una labor fácil (figura 9). No obstante, con el modelo de Ptolomeo se podían hacer

predicciones que se ajustaban con buena precisión a los datos observacionales que se

tenían a la mano. Con el modelo heliocéntrico también se podían hacer predicciones

precisas, pero no superaban significativamente a las del modelo geocéntrico . Por

ello, el modelo geocéntrico fue aceptado y adoptado dentro de las enseñanzas de la

Iglesia católica romana y las de algunas universidades europeas que iban surgiendo.Por otra parte, el estudio del movimiento de los objetos sobre la superficie de la

Tierra ofrecía sus propias interrogantes, como ya lo has constatado al estudiar el pri-

mer bloque de este, tu curso de Ciencias 2 con énfasis en Física.

¿Existe alguna similitud en lo que respecta a la caída libre de los cuerpos cerca de

la superficie de la Tierra y el que un planeta se mantenga en órbita alrededor del Sol?

Para averiguarlo realiza la siguiente actividad con algunos de tus compañeros.

FIGURA 8. La ubicación en las

costas egipcias de la granbiblioteca de Alejandría, primer

centro de investigación del

mundo en la Antigüedad,

fue estratégica pues permitió

enriquecer sus acervos. Se calcula

que llegó a contener 700 000

manuscritos.

FIGURA 9. Modelos antiguos de

cuerpos celestes.

GLOSARIO

Órbita: trayectoria que en el espa-

cio, recorre un cuerpo sometido a la

acción de la gravedad ejercida por

los astros.

Page 119: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 119/276

117

B2

Experimenta

Identifica la similitud de las leyes que rigen el movimiento de los cuerpos celestes con las que rigen el movimiento en la Tierra.

Material

• 4 metros de cuerda rígida, aproximadamente de 1 cm a2 cm de diámetro de sección transversal.

• 1 faja de cargador (recomendable), o cinturón grueso.

Procedimiento

a. Organícense en equipos de cuatro o cinco personas y sigan

el procedimiento en el patio de la escuela bajo la supervisión

del maestro.

b. Doblen la cuerda por la mitad y unan los extremos de la

cuerda con un nudo lo más fuerte que puedan.

c. Dos o tres compañeros tomarán la cuerda desde el nudo,

otro compañero se introducirá al interior del lazo de la

cuerda, y se la ajustará a la cintura de tal modo que ésta

haga contacto con su cinturón, y caminará para tensar lacuerda a su alrededor. Es importante que tenga puesto un

cinturón grueso, para evitar que se lastime con la presión y el

rozamiento de la cuerda que ocurrirá posteriormente.

d. El compañero del cinturón correrá hacia el frente, mientras

los dos o tres miembros del equipo, ubicados en un punto

fijo, detendrán la cuerda desde el nudo y lo jalarán hacia sí

(ver la figura).

e. El último miembro del equipo correrá hacia el alumno del

cinturón y se sujetará a él, jalándolo hacia sí y soltándolo casi

al instante.

f. Mantengan la situación descrita en los pasos anteriores,

d y e, por un minuto aproximadamente.

g. Repitan el experimento, sólo que esta vez soltarán la cuerda

cuando haya transcurrido el minuto. Antes de hacerlo

cuenten hasta tres, para que el compañero del cinturón

que esté corriendo sepa que la cuerda va a ser soltada y se

encuentre preparado para ello.

h. Registren sus observaciones en su cuaderno.

Inicio de la experiencia. El grupo de estudiantesque detiene la cuerda están parados sobre un punto fijo,

mientras los demás son observadores que registran

lo que sucede, desde su punto de referencia.

Análisis cualitativo de las observaciones

1. Imaginen que los miembros del equipo que tiraban

de la cuerda representaban al Sol, el corredor con el cinturón

a un planeta, y la persona que lo jalaba era, por ejemplo,

una nave espacial. Reflexionen en equipo y contesten

en su cuaderno a las siguientes preguntas.

• ¿Qué trayectoria describió el corredor del cinturón con

respecto al nudo de la cuerda?• ¿Qué se necesita para que un planeta orbite al Sol?

• ¿Qué sucedió con el corredor cuando soltaron la cuerda?

• ¿Un planeta podría dar un impulso a una nave espacial?

¿Qué se requiere para ello?

2. Infieran lo que pasaría si se aumentara el tamaño de la

cuerda al triple.

Ya sabes que la caída libre de los cuerpos cerca de la superf icie de la Tierra puede

describirse como un movimiento rectilíneo con aceleración constante. En la caída

libre el objeto parte del reposo y, por lo tanto, en el instante inicial su velocidad es

cero, así que la distancia d que va recorriendo un objeto durante su caída depende

cuadráticamente del tiempo t , como lo demostró Galileo.

Matemáticamente se tiene que:

d =1

— 2 (a)t 2, (1)

en donde a corresponde a la aceleración. Todos los cuerpos aceleran aproximadamente

igual cerca de la superficie de la Tierra, de hecho:

a = g = 9.8

m

— s 2 .

B2

Page 120: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 120/276

118

S2

Ahora piensa en un planeta que orbita a una estrella; describiendo en

torno a ella una trayectoria curva, una situación como la que se muestra

en la figura 10.

Como ya te habrás dado cuenta por la actividad anterior, para que

el planeta se mantenga en órbita se requieren dos fuerzas. Una fuerza

ejercida por la estrella sobre el planeta que apunte hacia el centro de

la estrella, y la otra fuerza se da como un efecto inercial del planeta,

que intenta seguir en línea recta hacia el frente. La suma vectorial de estas dos fuerzas

produce una fuerza resultante que apunta en la dirección de la curva que el planeta

va describiendo.

Si la fuerza que apunta hacia el centro de la estrella dejase de actuar, el planeta

saldría disparado siguiendo una trayectoria recta, como también ya lo corroboraste

con algunos de tus compañeros en la actividad anterior. Así que la fuerza que apunta

hacia el centro de la estrella es la que obliga al planeta a cambiar la dirección de su

velocidad, aunque la magnitud de ésta se mantuviera constante. Esta fuerza es muyimportante para el caso del movimiento orbital y por esta razón tiene un nombre es -

pecial: fuerza central o centrípeta (apunta hacia el centro).

Antes de continuar es necesario detenerse un poco y reflexionar sobre lo siguiente.

Si se está hablando de fuerzas, en particular de la fuerza central, ésta debe ser parte

de un par asociado a alguna interacción.* En el caso de la actividad que acabas de desarrollar era clara la interacción que se dio

entre el corredor y los otros compañeros a través del contacto con la cuerda. En efecto

hubo un par de fuerzas acción-reacción; el corredor también ejercía una fuerza sobre

los compañeros que tiraban de la cuerda, aunque la presencia de esta fuerza quizá no

se notó porque el juego era algo injusto: tres contra uno. Algo similar sucede con la estrel la y el planeta. La

estrella atrae al planeta y a su vez el planeta atrae a la

estrella. Recuerda que un par acción-reacción siempre

opera sobre cuerpos diferentes. En efecto hay una fuerza

que opera sobre la estrella y que tiende a moverla hacia

el planeta, pero debido a la Tercera ley de Newton la

magnitud de esta fuerza debería ser igual a la magnitud

de la fuerza que opera sobre el planeta. Por lo tanto,

como la masa de la estrella es mucho mayor que la masa

del planeta, no se nota el movimiento de la estrella hacia

el planeta, por lo que se le puede considerar fija si que-

remos proponer un modelo que explique el movimiento

del planeta en torno a ella.

No obstante, en el Universo existen sistemas de

estrellas binarios (figura 11), y ambas estrellas (de masas

semejantes) orbitan en torno a un punto llamado centro

FIGURA 10. En el esquema se

observan los vectores de las

fuerzas que actúan sobre el

planeta que gira alrededor de

una estrella.

FIGURA 11. Una estrella binaria es un sistema estelar compuesto de

dos o más estrellas que orbitan mutuamente en torno a un centro

de masas común. La mayoría de estrellas de nuestra galaxia son

parte de sistemas binarios de estrellas.

Fuerza centrípeta

Fuerza asociadaa la inercia

Dirección del movimiento

* Recuerda que la fuerza se define como F = m1a

1. Como la fuerza de reacción es de la misma magnitud, tenemos también

F = m2a

2, si m

2 es mucho mayor que m

1, para poder mantener el mismo valor de fuerza F,a

2 debe ser en la misma medida

menor que a1. En el caso del Sol y la Tierra la aceleración del Sol producida por la atracción de la Tierra es mucho menor que la

que el Sol ejerce sobre la Tierra.

Page 121: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 121/276

119

B2

de masas. Imagina, ¿qué hubiera sucedido si en vez de “tres contra uno”,

sólo una persona hubiera tirado del nudo de la cuerda desde un extremo

mientras otra hubiera estado corriendo y, al mismo tiempo, tirando del otro

extremo de la cuerda?

Parece que todo está claro, pero hay un problema. En el sistema estrella-

planeta no hay cuerdas ni ningún tipo de sustancia “misteriosa” que sirva

de intermediaria para establecer la interacción de la estrella con el planeta

por contacto.

Pero sí existe la interacción, aunque no haya más que espacio vacío entre

los cuerpos que interactúan. A este tipo de interacción se le llama inte-

racción a distancia o efecto a distancia . Ya has estudiado un poco sobre

este tipo de interacciones en el bloque anterior, en el caso de la interacción

electromagnética.

De acuerdo con la Segunda ley de Newton, si existe una fuerza no equi-

librada que actúa sobre un cuerpo de cierta masa, éste debe acelerar enla misma dirección y sentido de la fuerza. Centra tu atención en la fuerza

centrípeta que actúa sobre el planeta. Esta fuerza debe provocarle una ace-

leración centrípeta. Visualiza la situación a partir de la figura 12.

Ya se ha mencionado que si no existiera la fuerza central el planeta

tendería a seguir en línea recta. Por ejemplo, si el planeta se moviera ho-

rizontalmente con velocidad constante,v, en un tiempo t recorrería una

distancia D = vt , ya que cuando la velocidad es constante su magnitud se

puede calcular como v = D/t . Pero, debido a la presencia de la fuerza cen-

tral, cambia la dirección de la velocidad del planeta haciéndolo describir

una trayectoria curva.Supón que durante el tiempo t , el planeta describe un arco de circunfe-

rencia de radio r . Con respecto a la dirección horizontal se puede decir que

el planeta ha “caído” hacia el centro de la est rella una distancia d . Observa

de nuevo la figura 12 se ha formado un triángulo rectángulo, cuyos catetos

miden r y D , y la hipotenusa mide r + d.

Precisamente el teorema de Pitágoras es aplicable a los triángulos rectángu-

los: La suma de los cuadrados de los catetos es igual al cuadrado de la hipo tenusa.

Aplicando este teorema se obtiene la siguiente expresión matemática:

r 2 D 2 (r d )2

Desarrollando el binomio al cuadrado de la derecha se obtiene:

r 2 D 2 r 2 2rd d 2.

El término r 2 se cancela ya que se encuentra en ambos lados de la ecuación,

pues si se pasa alguno de ellos al lado contrario de la ecuación y se resta,

se cancelan. La ecuación se simplifica a:

D 2 2rd d 2

El lado derecho de esta ecuación se puede escribir factorizando d como:

D 2

d (2r

d ).

FIGURA 12. Analiza este esquema con ayuda

de tu maestro.

B2

D

r

d

r

Page 122: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 122/276

120

S2

Se simplificará esta última ecuación considerando una aproximación en el término

que está entre paréntesis. La distancia d es mucho menor a la distancia r, que corres-

ponde a la distancia entre el planeta y la estrella, y por lo tanto, d es muchísimo menor

que: 2r , por lo tanto se despreciará d en el término entre paréntesis. Despreciar d

significa que la suma 2r + d no será muy diferente de 2r . Por ejemplo, si a una canti-

dad grande como 10 000 000, le sumas un milés imo 0.001, la suma es 10 000 000.001,

que prácticamente sigue siendo 10 000 000. Se toma esta aproximación con el fin de

hacer más clara una comparación que harás en seguida. Así que se rescribirá la última

ecuación como sigue:

D 2 d (2r )

Para despejar d el factor (2r ) se pasa dividiendo a la izquierda para obtener:

d D 2 — 2r

Recuerda que se consideró que, sustituyendo en la ecuación de arriba se obtiene:

(vt )2 v 2 t 2 d ——— ———. 2r 2r

Esto puede rescribirse de la siguiente manera:

1 v 2 d = — ( —– ) t 2. (2) 2 r

Puede entenderse el movimiento orbital como una secuencia de desplazamientos, D,

muy pequeños.

1. Compara la ecuación (2) de arriba, con la

ecuación (1) de la página 117 y contesta en

tu cuaderno las siguientes preguntas

• ¿Existe alguna similitud entre las expresio-

nes matemáticas (1) y (2)?

2. De ser así, escribe en tu cuaderno laexpresión matemática que servirá para

calcular la aceleración centrípeta de un

planeta en términos de la magnitud de su

velocidad lateral y su distancia al centro de

la estrella que está orbitando.

• Considera a la Luna orbitando a la Tierra,

¿cae la Luna hacia la Tierra?

3. Argumenta tu respuesta indicando por quéla Luna no se precipita hacia la Tierra hasta

chocar con ella.

Comunica tus avances en ciencias

Reconoce la relación entre la aceleración de caída libre de los cuerpos sobre la superficiede la Tierra y la aceleración centrípeta de la Luna.

Newton también reflexionó al comparar un par de ecuaciones como tú lo has hecho

al comparar las ecuaciones (1) y (2). Se dio cuenta de que la fuerza que hace caer

una manzana al suelo, cuando ésta se desprende de la rama del árbol en el que se

encontraba (según la leyenda), debía de ser del mismo tipo que aquella que mantiene

en órbita a la Luna en torno a la Tierra, así que se dio a la tarea de encontrar una

ecuación que recuperara todo este conocimiento.

Page 123: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 123/276

121

B2

FIGURA 13. Si se lanza un objeto, como un proyectil éste

caerá describiendo una trayectoria curva.

Primero Newton estableció que los cuerpos caen cuando se les suelta

cerca de la superficie de la Tierra, debido a que la totalidad de nuestro

planeta con sus mares y montañas los atrae hacia su centro, es decir,

esta fuerza es de naturaleza central , al igual que la fuerza que mantiene

en órbita a la Luna. La fuerza de atracción se produce por la interac-

ción a distancia entre la materia que compone o constituye a cada uno

de los cuerpos. La cantidad de materia que constituye a un cuerpo se

cuantifica en su masa . Esta atracción es el fenómeno que se conoce

como fuerza de gravedad o simplemente gravedad y a la atracción mu-

tua entre dos trozos de materia se le llama interacción gravitacional.

Por otra parte, el peso de un objeto se define como la fuerza que

ejerce el planeta para atraerlo hacia su centro.* Ya sabes que esta fuerza provoca que todos los cuerpos que se de-

jan caer libremente cerca de la superficie de la Tierra aceleran hacia el

centro de ésta g = 9.8

m

— s2 .Si consideramos la Segunda ley de Newton, al multiplicar esta ace-

leración por la masa del cuerpo debe dar como resultado la magnitud

de su peso, que es una fuerza, así que la magnitud del peso que se

denotará como F g , queda definida mediante la ecuación:

F g = mg . (3)

Si lanzas un objeto hacia el frente verás que el objeto describe una

curva antes de llegar al suelo, y desde luego, no llegará demasiado lejos.

Galileo estudió esta situación tomando como marco de referencia una

superficie plana y con el peso de los cuerpos actuando en la verticalhacia abajo. Demostró que la curva que describe un cuerpo que es

lanzado con cierta velocidad horizontal describe una trayectoria que

recibe el nombre de parábola .

No obstante, años después Newton visualizó mejor el fenómeno. Ima-

ginó el lanzamiento de proyectiles con velocidad horizontal desde la cima

de una colina (figura 13). Se percató de que si se lanzaba el proyectil

con el ángulo correcto, al ir aumentando la magnitud de la velocidad, el

proyectil tocaría el suelo cada vez más lejos. Sin embargo, él no consideró

la Tierra como una superficie plana, sino que al asignarle curvatura las

parábolas de Galileo se convirtieron para Newton en “órbitas frustradas”,como se muestra en la figura 13. Newton reconoció que el peso del

proyectil lanzado fuera de la Tierra ¡podría llegar a mantenerlo en órbita!

Pon atención a la figura 14 e imagina que la Luna al orbitar la Tierra

“cae hacia ella” un poco. Mientras se mantenga en órbita tiene una com-

ponente de su aceleración que apunta hacia el centro de la Tierra, que

* En la experiencia cotidiana, por ejemplo en el mercado, te dicen que un producto se vende por peso,en kilogramos, cuando en realidad se mide en newtons. Siendo rigurosos la balanza mide fuerza,pero¿cómo podrías medir la cantidad de materia? Medimos la fuerza gravitacional y la dividimos entre laaceleración g de la gravedad en las cercanías de la Tierra. Si viajaras a la Luna, ¿crees que esta misma

balanza te serviría para medir masa?

FIGURA 14. Efecto de las fuerzas entre la Tierra y

la Luna.

m

F g = mg

Page 124: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 124/276

122

S2

es precisamente la aceleración centrípeta . Esta aceleración se puede calcular con los

datos que se conocen con certeza acerca del movimiento de la Luna. El satélite de la

Tierra se encuentra a una distancia promedio de 384 000 km. Su órbita en torno a la

Tierra es elíptica, pero se aproxima mucho a lo que es una trayectoria circular.

Para simplificar los cálculos se supondrá que la trayectoria es circular. La longitud de

la órbita circular L se calcula como

L = 2πr ,

donde r es el radio de la órbita, que en este caso corresponde a la distancia entre la

Tierra y la Luna. Por otra parte la Luna tarda aproximadamente 27.32 días en darle

una vuelta completa a la Tierra. Al suponer que la trayectoria en la que la Luna orbita

a la Tierra es circular, también se está suponiendo que la magnitud de su velocidad

es constante pero no su dirección. Así que, a manera de e jemplo de resolución de un

problema matemático, se calculará la magnitud de la aceleración centrípeta de la Luna.

Calcula la aceleración centrípeta de la Luna durante su movimiento orbital alrededorde la Tierra, suponiendo que la órbita es circular.

1. Sigue la solución del problema y al terminar resuelve nuevamente la situación:

Antes de comenzar a resolver el problema se deben expresar los datos que se tienen dentro

del Sistema Internacional de unidades, es decir, lo que respecta a longitud en metros (m)

y lo que respecta a tiempo en segundos (s). Las cifras son aproximadas.

Primero la distancia que separa a la Luna de la Tierra es:

r = 384 000 000 m = 3.84 × 108 m.

El periodo T , que es el tiempo que tarda la Luna en dar una vuelta completa a la Tierra,

es de 27.32 días. Sabes que un día tiene 24 horas y que una hora tiene 3600 segundos.

Así que aplicando los factores de transformación se obtiene:

24 h 3 600 sT = 27.32 días (———)(—————) = 2 360 448 = 2.360448 × 106 s

1 día 1 h

La longitud de la órbita, tomando π = 3.1416 es:

L = 2πr = 2(3.1416)(3.84 × 108 m) = 24.127488 × 108 m.

Como la magnitud de la velocidad es constante, se puede calcular simplemente como la

distancia recorrida dividida entre el tiempo que se tarda en recorrerla. En este caso se obtiene:

L 24.127488 × 108 m mv =— = ———————————— = 10.221571 × 102 —,

T 2.360448 × 106 s s

Y por lo tanto la aceleración centrípeta es:

Comunica tus avances en ciencias

v 2 (10.221571 × 102 m—

s ) 104.480523 x 104 m2

s2

ac =— = ———————————— = ——————————————

r 3.84 × 108 m 3.84 × 108 m

mm ma

c = 27.208469 × 10–4 ——— = 27.208469 × 10–4 ——.

ms2 s2

> Continúa en la página siguiente

Page 125: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 125/276

123

B2

1. La aceleración de la gravedad en la superficie del Sol es de aproximadamente 28 veces ma-

yor que en la Tierra.

• ¿Cuál sería tu peso en esa estrella? Expresa tu resultado en newtons.

2. Dadas las condiciones actuales del Sistema Solar, si la masa del Sol fuera ligeramente mayor

de lo que es ahora

• ¿Qué sucedería con el movimiento de los planetas. ¿Podrían mantenerse en órbita? Explica.

3. Como parte de su preparación, los astronautas son sometidos a pruebas de resistencia en una

máquina que proporciona una gran fuerza centrípeta.

• ¿Cuál es el objetivo de este aparato?

Evalúo mi avance

B2

Recorriendo el punto decimal cuatro posiciones a la izquierda y tomando tres cifras diferentes de

cero se obtiene finalmente:

ac = 0.00272m

—s2

2. Ahora te toca a ti. Analiza el siguiente problema e intenta resolverlo para aplicar lo que has

aprendido y sobre las relaciones entre fuerzas y distancias:

• En la época de Newton se conocía el radio de la Tierra. Se estimaba que era aproxima-

damente de 6 400 km. Por lo tanto, la distancia de la Tierra a la Luna equivale a unos

60 radios terrestres. Compruébalo.

3. Trata de determinar cómo depende la fuerza gravitacional de la distancia que separa a dos

cuerpos que interactúan.

• Recuerda representar el problema con un dibujo, recuperar los datos del problema y asegurar

que las unidades estén expresadas en el SI.

Sabes que cerca de la superficie de la Tierra ac = 9.8 m

—s2 . Si la distancia aumentara,

esta aceleración disminuiría. Divide este valor de ac = 9.8

m—

s2 entre 3 600, número

que equivale a 60 al cuadrado. Anota el resultado en tu cuaderno y compáralo con el

resultado del problema que se mostró como ejemplo.

4. Para terminar, contesta en tu cuaderno la siguiente pregunta:

• ¿Cómo varía la fuerza de atracción con la distancia que separa a los dos cuerpos que interactúan?

»

Como parte de su

entrenamiento físico,

los astronautas

realizan actividades en

diferentes artefactos

especiales con el propósito

de adquirir habilidades

motrices en condiciones

de ingravidez en el espacio.Fotografía: NASA,

astronauta Rex Walheim.

Page 126: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 126/276

124

S2

•Aportación de Newton a la ciencia: explicacióndel movimiento en la Tierra y en el Universo

Experimenta

Observa cómo aceleran los cuerpos sobre la superficie de la Tierra.

En el momento de abordar el estudio de la fuerza que produce la caída de los cuerpos

sobre la superficie de la Tierra y la fuerza que produce que la Luna esté en órbita en

torno a ella, Isaac Newton consideró que sus tres leyes del movimiento eran aplicables

al problema. ¿Puedes reconocer dónde se incluye la Primera ley?

Como lo has constatado, llegó a la conclusión de que se trataba del mismo tipo

de fuerza. Esta fuerza es la que opera sobre cada uno de los cuerpos que interactúan

gravitacionalmente, a distancia, por efecto de sus masas, pensando en la masa como

cuantificador de la cantidad de materia que conforma los cuerpos. Así que la fuerza de

atracción gravitacional debía ser directamente proporcional al producto de las masas

de los cuerpos que interactúan.

Por otra parte, has constatado también que la intensidad de esta fuerza disminuye

con la distancia que separa a los cuerpos en interacción. Te habrás dado cuenta de que

Material

• 2 limones o dos pelotas de esponja del

mismo tamaño

• 2 cronómetros

Procedimiento

a. Un miembro del equipo sujeta los dosobjetos aproximadamente esféricos con

una mano entre el dedo índice y el pulgar,

procurando que tu palma esté hacia

abajo. Para apreciar mejor los resultados

súbete a una silla, o si es posible haz el

experimento desde un balcón.

b. Con la otra mano da un fuerte golpe

horizontal a uno de ellos, para que salga

disparado hacia el frente, mientras el

otro cae libremente de forma vertical.

Pero antes de dar el golpe cuenta en

voz alta hasta tres para que dos de sus

compañeros activen sus cronómetros

y estén al pendiente de desactivarlos

cuando los objetos hagan contacto

con el suelo.

Hagan una prueba preliminar para

asegurarse que ninguno de los objetos

hará contacto con la silla o el balcóny que ambos inicien su movimiento

al mismo instante.

c. d. Repitan los pasos anteriores cinco

veces. Tomen un promedio de los

tiempos.

Análisis de resultados

1. Registren sus tiempos promedio en

una tabla como la siguiente.

Copien la tabla en sus cuadernos.

2. Comparen los tiempos que anotaron en

la tabla. Si la diferencia entre ambos es

menor que 1 s, considérenlos iguales,

ya que deben tomar en cuenta que

existe la posibilidad de cometer errores

al medir.

3. En caso de ser iguales o aproxima-damente iguales los tiempos,

respondan:

• ¿A qué se debe esto, si uno de los

objetos recorrió mayor distancia que

el otro?

• ¿Qué pasaría si se soltaran juntos

los dos objetos aproximadamente

esféricos? Expliquen.

Objeto esférico en caída libre(vertical)

Objeto esférico disparadohacia el frente

Tiempo promedio (s), desdeque el objeto esféricoempieza a caer hasta quehace contacto con el suelo

Realiza la siguiente actividad con dos de tus compañeros para entender un poco mejor

los efectos de la gravedad sobre la superficie de la Tierra.

Page 127: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 127/276

125

B2B2

la intensidad de la fuerza es inversamente proporcional al cuadrado de la distancia

que separa a los dos cuerpos. Por lo tanto, Newton enunció su Ley de la Gravitación

Universal (figura 15) de la siguiente manera:

En términos de una ecuación matemática la Ley de la Gravitación Universal se expresa así:

m1m2 F = G ———. (4) r 2

Para expresar la fuerza gravitacional como una igualdad se introdujo G , llamada la

constante de Gravitación Universal . Esta constante se midió experimentalmente y se

determinó su valor en el Sistema Internacional de unidades como:

Nm2

G = 6.67 × 10 –11

——— kg2

Ahora se retomará el problema de calcular la acelera-

ción de un cuerpo que cae desde una distancia cercana

a la superficie de la Tierra. La idea se muestra en la

figura 16. Una masa m se encuentra a una altura h de

la superficie de la Tierra. La distancia r que separa a los

centros de la Tierra y de la masa m es:

r = R + h

Si la masa de la Tierra es M p, entonces por la Ley de laGravitación Universal, la atracción que ejerce la Tierra

sobre el cuerpo de masa m con una fuerza dada se ex-

presa con la siguiente ecuación:

M pm

F = G —————. ( R + h)2

FIGURA 15. Modelo que ayuda a representar

la Ley de la Gravitación Universal.

FIGURA 16. La masa de un cuerpo m, está separada del centro de

masa de nuestro planeta, Mp, una distancia, r , igual al radio de la

Tierra, R, más la altura sobre susuperficie, h.

La materia atrae a la materia. Dos trozos de materia se atraen con una fuerza que

es directamente proporcional al producto de sus masas e inversamente proporcio-

nal al cuadrado de la distancia que las separa, en cualquier región del Universo.*

* En cualquier parte del Universo hay una fuerza entre cualquier par de masas. Porejemplo, cada partícula de nuestra masa es atraída por cada partícula de masa dela Tierra. Las resultantes de estas fuerzas indican que cada cuerpo se atrae como si

toda su masa estuviera concentrada en su centro de masa.

F F

r

m1

m2

m

M p

h

R

r

Page 128: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 128/276

126

S2

Pero al mismo tiempo esta fuerza tiene que ser el peso de la masa m dado por la

ecuación (3). Por lo tanto se tiene la siguiente igualdad:

M pm

mg = G —————. (5) ( R + h)2

Observa que la masa del cuerpo se cancela en la ecuación (5). Esto es interesante,si recuerdas, la definición de peso que se dio a partir de la Segunda ley de Newton;

masa por aceleración y, por lo tanto, esta masa corresponde a la inercia del cuerpo.

Del lado derecho de la igualdad, la masa m corresponde a la cantidad de materia

que tiene el cuerpo en cuestión. Pues bien, estas dos masas son equivalentes, y esto

explica por qué todos los cuerpos aceleran igual cuando caen cerca de la superficie

de la Tierra y la fricción con el aire se puede despreciar.

Cuando sueltas dos cuerpos de diferente masa y constitución desde la misma altu-

ra, tocarán el suelo al mismo instante, ya que en efecto, el cuerpo de mayor masa es

atraído con mayor intensidad hacia el centro de la Tierra que el de menor masa, pero

por lo mismo tiene más inercia que el de masa menor, es decir, se resiste mucho más

a cambiar su velocidad; pues bien, ambos efectos se contrarrestan a la perfección, y

ambos cuerpos, independientemente de su masa, describirán la misma trayectoria con

igual aceleración cuando caigan cerca de la superficie de la Tierra.

Despreciando h frente a R , la ecuación (5) simplificada proporciona una fórmula

para calcular la aceleración producida por la gravedad de cualquier planeta o satélite ,

si se conocen su masa y su radio interno. La ecuación para calcular la aceleración de

la gravedad sobre la superficie de un planeta o satélite es:

M p

g

p =G

——. (6) R 2

Desarrolla tu habilidad matemática en ciencias para calcular laaceleración de la gravedad

1. Reúnanse en parejas y sigan este procedimiento, con ayuda de

su maestro, para resolver lo que se pregunta. Una vez que lean

el problema, hagan un dibujo que lo represente.

Se elige la ecuación que representa la aceleración de la

gravedad.

Sustituyendo en la ecuación (6) se obtiene:

Redondeando a un decimal se obtiene el valor que ya

conocían: g p = 9.8

m—

s2.

2. Lean el desarrollo matemático en voz alta y si tienen dudas

comenten con otros compañeros y con el maestro.

Comunica tus avances en ciencias

Calcula la aceleración de la gravedad sobre la superficie

de la Tierra suponiendo que la masa de la Tierra es:

M p = 5.98 × 1024 kg, y su radio R = 6.38 × 104 m.

Nm2 Nm2

(6.67 × 10–11 —–—) (5.98 × 1024 kg) 39.8866 × 1013 —–— kg2 kg g

p = ————————————————————— = ————————————

(6.38 × 106 m)2 40.7044 × 1012 m2

N

kgm—

s2

g p = 0.9799 × 101 —— = 9.799 ————

kg kg

La Ley de la Gravitación Universal y las tres leyes del movimiento son los grandes

logros de la síntesis newtoniana. Este es el gran legado de Newton a la humanidad,

una teoría matemática precisa para predecir el movimiento de cualquier objeto, si se

conocen ciertas condiciones iniciales.

GLOSARIO

Intensidad: relativo al módulo o

magnitud de la fuerza.

Page 129: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 129/276

127

B2

FIGURA 17. Satélites artificiales

orbitando alrededor de la Tierra.

Más allá de esto, en su propia época los trabajos de Newton causaron mucho re-

vuelo, y poco a poco la sociedad europea entendió la importancia de la ciencia como

eje central del desarrollo económico y sociocultural de un país. Por ejemplo, Federico

el Grande de Prusia y Catalina de Rusia, imitando a las cortes de Inglaterra y Francia,

se rodearon de científicos y matemáticos. Reyes, reinas, señores y señoras se diver-

tían charlando de los últimos avances científicos y jugando con básculas y todos los

instrumentos de la nueva moda.

No olvidemos que también gracias al conocimiento de la Ley de la Gravitación Uni-

versal es como el hombre es capaz de construir y poner en órbita satélites artificiales tan

útiles para las comunicaciones e incluso para las investigaciones científicas (figura 17).

Muchos países ya cuentan con empresas encargadas de la planeación, compra o

construcción, lanzamiento y monitoreo de estos satélites, y son los físicos e ingenieros

quienes se han encargado de corregir los errores en la órbita de algunos satélites para

evitar que salgan disparados o que caigan a la Tierra.

Pero esta tecnología tiene un periodo de vida útil. Cuando se termina su combusti-ble, por ejemplo, se convierten en basura espacial. De este modo es como no sólo se

contamina la Tierra, sino que ahora en nuestro espacio circundante también se incluye

un basurero; hasta el momento no se sabe cómo limpiar esta zona (existen varias pro-

puestas), pero es un tema que seguramente te tocará conocer de cerca, en unos años,

cuando ya no pueda posponerse la decisión, y probablemente seas tú quien podrá

ayudar a tener un ambiente, incluso fuera del planeta, más limpio.

1. Calcula la aceleración de la gravedad sobre la superficie de la Luna considerando que tiene

una masa de M p = 7.35 × 1022 kg y un radio interno R = 1.74 × 106 m. Muestra que esta

aceleración es aproximadamente igual a un sexto de la que se tiene en la Tierra.

2. Reflexiona con el grupo en qué tan valiosos resulta saber aplicar las matemáticas para

entender mejor los fenómenos físicos.

Evalúo mi avance

Para que observes la

interacción gravitacional

y algunas novedades del

sistema solar, ingresa a lasiguiente página:

www.ibercajalav.net

Page 130: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 130/276

S3

128

La energía y el movimiento

El ciclismo de montaña es un deporte de alto riesgo. La fotografía fue tomada

durante una competencia nacional de ciclismo en el Nevado de Toluca,Estado de México en el año 2000.

128

Aprendizajes esperados

S3

• Describirás la energía

mecánica a partir

de las relaciones

entre el movimiento:

la posición y lavelocidad.

• Interpretarás

esquemas del cambio

de la energía cinética

y potencial en

movimientos de caída

libre del entorno.

• Utilizarás las

expresiones

algebraicas de la

energía potencial

y cinética para

describir algunos

movimientos que

identificarás en

el entorno y/o

en situaciones

experimentales.

Energía mecánica: cinética y potencial.

Transformaciones de la energía cinéticay potencial.

Principio de la conservación de la energía.

Page 131: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 131/276

129

B2

Seguramente en tu vida cotidiana escuchas con frecuencia la palabra energía, y reco-

noces algunas manifestaciones de este término, por ejemplo: energía eléctrica, energía

luminosa y energía mecánica. Si se te pidiera dar una definición general de la energía,sería complicado no caer en descripciones que se refirieran a cada tipo de energía; lo

que está claro es que la energía se puede transformar de un tipo a otro.

Podrás construir una definición de una clase de energía especial llamada energía

mecánica. Cuando decimos operacional significa, en este caso, contar con una expre-

sión matemática para clasificar y medir la energía.

Como te habrás dado cuenta, al levantar la caja que estaba en reposo hiciste algo

que le dio la “capacidad” de ponerse en movimiento una vez que la soltaste. También

apreciaste que la caja se impacta con distinta rapidez dependiendo de la altura des-

de la que se suelta; desde tu marco de referencia, las distintas posiciones de la caja

tienen relación con su movimiento posterior. Llevar la caja a la posición desde la que

después podría ser soltada requirió que aplicaras una fuerza; ¡tuviste que trabajar para

darle a la caja ese estado o capacidad de movimiento!

En tu vida cotidiana seguramente has escuchado afirmaciones como: “tienes que traba-

jar duro si quieres llegar a la meta”; “debes comer bien si quieres tener suficiente energía

para rendir en el trabajo”, entre otras. La primera se refiere, aunque no en un sentido

literal, a que tienes que esforzarte mucho para recorrer un largo camino hasta llegar a

donde quieres. La segunda oración dice “entre líneas” que si comes bien tendrás energía

almacenada, en este caso proveniente de los alimentos, que te dará la posibilidad de

trabajar; la capacidad para realizar trabajo está latente en la energía almacenada. Pues

bien, te sorprenderá saber que la física no se aleja mucho de estas ideas.

En efecto, tuviste que trabajar para levantar la caja. Le aplicaste una fuerza cons-

tante de magnitud F hacia arriba y la desplazaste en la misma dirección y sentido de

1. Coloca una caja vacía de cartón sobre el suelo. Agáchatey levántala lentamente; intenta hacerlo prácticamente a

velocidad constante, hasta colocarla por encima de tu cabeza

enfrente de ésta con el brazo o los brazos extendidos. Suelta

la caja y contesta a las siguientes preguntas.

• ¿Qué pasa cuando sueltas la caja que levantaste? ¿Por qué

sucede esto?

• Prueba soltando la caja desde diferentes alturas. ¿Qué notas

con respecto a la rapidez con la cual la caja se impacta contra

el suelo?

• ¿Qué fue necesario hacer para vencer la acción de la grave-

dad sobre la caja y llevarla hasta su altura final?

2. Justifica tus respuestas en términos científicos, basándote en

las leyes del movimiento y de la gravitación de Newton.

Explora

•Energía mecánica: cinética y potencial

GLOSARIO

Latente: oculto o escondido.

Page 132: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 132/276

130

S3

esa fuerza una determinada distancia d . El trabajo (representado con

la letra W debido a su abreviatura del inglés work ), cuando la fuerza

es constante y el desplazamiento producido por ella está en la misma

dirección y sentido, se define matemáticamente como:

W = Fd . (1)Esta definición es fácil de recordar como: trabajo es igual a fuerza

por distancia. Pero es conveniente tener un poco de cuidado, pues la

ecuación (1) es una definición parcial de trabajo y, por lo tanto, tiene

sus limitaciones. En general no será válida cuando la fuerza varíe

mientras se desplaza el objeto sobre el cual se aplica, y cuando el

desplazamiento efectuado por el objeto no esté en la misma dirección y sentido de la

fuerza en todo momento. No obstante, esta idea sencilla de trabajo es útil para enten-

der el concepto de energía potencial . El término potencial significa que se encuentra

latente o almacenada para ser utilizada posteriormente. La cantidad de energía poten-

cial que diste a la caja fue exactamente igual al trabajo que efectuaste para levantarla y ponerla por encima y enfrente de tu cabeza.

Para comprender la expresión matemática que determina la energía potencial presta

atención a la figura 18. Si levantas una caja con velocidad constante, debes ejercer una

fuerza igual al peso de la caja hacia arriba, F = mg para equilibrarlo. Si la distancia a la

que queda el centro de la caja del suelo es d = h, entonces el trabajo fuerza por distancia

es W = mgh. La energía potencial EP que adquiere la caja será exactamente igual a este

trabajo, por lo tanto:

EP = mgh. (2)

Por último las ecuaciones (1) y (2) definen la unidad con la cual se miden el trabajo y la energía. Esta unidad es la unidad de fuerza mul tiplicada por la unidad de dis-

tancia; en el Sistema Internacional son el newton [N] y el metro [m], respectivamente;

por lo tanto, el joule [J], que se define como este producto, es la unidad en la que se

miden tanto el trabajo como la energía.

[J] = [N][m] = [Nm].

FIGURA 18. Este objeto puede levantarse mediante

la aplicación de una fuerza.

Material

• 2 m de manguera de plástico flexible y transparente

• 1 canica de vidrio pequeña, que quepa en la manguera

• 1 balanza

• 1 flexómetro o regla graduada

• 1 plumón

• 1 soporte universal y pinzas para sostener la manguera

(opcional)

Procedimiento

a. Midan la masa de la canica con la balanza y anoten el

valor en su cuaderno.

b. Tiendan la manguera de tal manera que tome la forma de

un arco de circunferencia o una especie de U. Colóquenla

en el piso y sujétenla por los extremos.

c. Midan la distancia o la altura desde el suelo a cada

extremo de la manguera, y procuren que los extremos

queden a la misma altura con respecto al suelo.

Experimenta

Identifica la similitud de las leyes que r igen el movimiento de los cuerpos celestes con las que rigen el movimiento en la Tierra.

> Continúa en la página siguiente

Fg = mg

h

Page 133: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 133/276

13

B2

d. Con el plumón hagan dos marcas una cerca de cada uno de

los extremos de la manguera.

e. Elijan dos puntos intermedios de la manguera y hagan

marcas en ellos con el plumón. La idea es tener

cuatro marcas, dos a la misma altura y dos a diferente

altura, como se muestra en la figura. Midan las alturas

correspondientes.

f. Introduzcan la canica por uno de los extremos de la

manguera y observen cómo se comporta durante unos

treinta segundos. Pongan especial atención en lo que

respecta a la rapidez de la canica al pasar por las marcas.

Observen lo que ocurre y registren los datos.

g. Calculen la energía potencial de la canica en cada una

de las alturas y presenten sus resultados en su cuaderno,

ordenados en una tabla como la siguiente.

Masa de la canica______________________(kg)

h. Repitan los pasos del b al g, pero ahora cambiando la

trayectoria y haciendo sus cuatro marcas a las mismas

alturas que en el caso anterior. Una trayectoria posible es

como la que se muestra en la siguiente figura.

El cambio de forma de la manguera permite que la canica

recorra una trayectoria diferente. Si les cuesta trabajo

doblarla de esta manera, pidan ayuda a su maestro.

Análisis cualitativo de las observaciones

1. Contesten las siguientes preguntas.

• ¿Qué ocurre con la energía potencial de la canica cuando

ésta va descendiendo por la manguera y qué ocurre con la

energía potencial cuando la canica asciende?

• ¿En qué se convierte la energía potencial de la canica?

¿Cómo lo notas? Explica.

• ¿Existen pérdidas de energía? Explica a qué se deben.

• ¿En qué punto de ambas trayectorias la rapidez que

alcanza la canica es máxima?

• ¿Qué ha ocurrido con la energía potencial en dichos

puntos? Relaciona ambos eventos.2. El trabajo realizado por la fuerza de gravedad, ¿depende de

la trayectoria que sigue la canica? Justifica tu respuesta.

• ¿Cuándo hay una transformación de energía potencial en

otro tipo de energía, es necesario que haya un trabajo

involucrado? ¿Por qué?

3. Concluyan en grupo con su maestro.

Considera un objeto de masa m moviéndose en línea recta con rapidez constante v i .

En algún momento posterior se le aplica una fuerza de magnitud F que se mantendrá

constante mientras el objeto recorre una distancia d en la misma línea recta. Ya sabespor la Segunda ley de Newton que si a un objeto se le aplica una fuerza constante,

éste acelerará de manera constante. Así que se tiene un movimiento rectilíneo con

aceleración constante. La situación se describe en la figura 19.

FIGURA 19. Descripción,

mediante un modelo,

de la aplicación de la fuerza

a un objeto que se movía

con rapidez constante; antes

de la aplicación de la fuerza.

»

h3

h2

h1

h3

h2

h1

h (m) EP ( J)

F

v i

m

v f

mF

a

d

Page 134: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 134/276

132

S3

Por efecto de la aceleración la rapidez del objeto aumentará, es decir v f > v

i . Existe

una ecuación que relaciona el cuadrado de la rapidez final con el cuadrado de la rapidez

inicial, la magnitud de la aceleración y la distancia recorrida mientras se mantiene

la aceleración. La viste en el primer bloque de este libro; así que se tiene:

v

2

f = v

2

i + 2ad A continuación se despeja el término 2ad de esta ecuación. En el primer paso se

pasa a la izquierda restando el término v i 2, obteniendo:

v 2 f – v 2

i = 2ad.

Ahora se divide cada término de esta ecuación entre 2, para hacerlo desaparecer

del miembro derecho de la ecuación:

v 2 f v 2i 2ad

—— – —— = —–— 2 2 2

Esta última ecuación se multiplicará por la masa del objeto (a mayor masa necesitas

más fuerza para moverla), ya que reconocerás del lado derecho que F = ma. Por lo

tanto se tiene que: v 2

f v 2

i m —— – m —— = mad = F d .

2 2

Del lado derecho de esta ecuación quedó justamente el trabajo realizado por la

fuerza F que actúa sobre el objeto la distancia d ; recuerda que W = Fd . Acomodando

los términos de la última ecuación y aprovechando que dividir entre 2 es lo mismo que

multiplicar por ½ se obtiene una ecuación muy importante que establece la conexión

que existe entre el trabajo y el movimiento.

W =1

2

mv 2 f –

1 —

2

mv 2i . (3)

Bien, así como se asignó la energía potencial a un objeto a partir del trabajo realiza-

do para levantarlo desde el nivel del suelo hasta cierta altura h en contra de la fuerza

de gravedad, el trabajo que se realiza para mover un objeto inicialmente en reposo

hasta que alcance una rapidez v será W = 1 — 2

mv 2, y este trabajo es exactamente igual

a la energía cinética EC o de movimiento de un objeto:

EC =1

— 2

mv 2. (4)

1. Un objeto se encuentra en reposo a una cierta altura con respecto

al suelo. Posteriormente se deja caer. Conforme va cayendo,

¿en qué tipo de energía se convierte su energía potencial?

2. Para subir un objeto por una colina, éste se empuja con una

fuerza constante de 15 000 N. Al llegar a la cima se ha recorrido

una distancia colina arriba de 500 m. Calcula la energía poten-

cial aproximada del objeto, despreciando todas las posibles

pérdidas de energía.

• En el caso del problema, si no se ignoran las pérdidas

de energía, el trabajo realizado para subir el objeto,

¿sería mayor o menor que la energía potencial del mismo

objeto en la cima de la colina? Explica.

• Si el objeto se suelta desde la cima de la colina al vacío, ¿con

cuánta energía cinética tocará el suelo aproximadamente?

3. Dos objetos caen desde la misma altura y tocan el suelo en el

mismo instante. No obstante, uno de los objetos cayó en línea

recta, mientras que el otro lo hacía describiendo una trayectoria

curva. Despreciando el rozamiento con el aire, ¿es posible que

el trabajo realizado por la fuerza de gravedad haya sido mayor

en la trayectoria curva? Justifica tu respuesta.

Evalúo mi avance

Page 135: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 135/276

13

B2

Transformaciones de la energía cinética y potencial

1. Refexiona sobre lo siguiente y responde:

• Si te lanzaras por esta resbaladilla, ¿con qué rapidez

tocarías la superficie del agua?

• Si a esta misma rapidez un auto circulara por el segundo

piso del periférico de la ciudad de México, ¿violaría el

límite de 80 km/h?

2. Comenta tus respuestas con los compañeros del grupo.

Explora

La energía potencial puede transformarse en energía cinética y la energía cinética puede

transformarse de nuevo en energía potencial. Sin embargo, ambas transformaciones sólo

pueden lograrse mediante un trabajo. Por ejemplo, observa la figura 20.

Un objeto se deja caer desde una altura hi con respecto al suelo. Se calculará el

trabajo efectuado por la fuerza de gravedad al mover el objeto desde hi hasta h f . Ob-

serva que la distancia recorrida se puede expresar como d = (hi – h

f ) y la magnitud

de la fuerza que la gravedad de la Tierra ejerce sobre el objeto es F=mg . Por lo tanto,

el trabajo realizado por esta fuerza esW = mg (h

i – h

f )

Este trabajo puede expresarse en términos de energía potencial.

W = mg (hi – h

f ) = mgh

i – mgh

f .

Después de aplicar la propiedad distributiva se puede factorizar “el signo menos”

para obtener finalmente que:

W = –(mgh f – mgh

i ). (5)

Los términos entre paréntesis en la ecuación (5) pueden entenderse como

energía potencial final EP f = mgh f , y energía potencial inicial EP i = mghi .La diferencia se entenderá como el cambio de energía potencial.

Como ya lo sabes desde el bloque 1 de este libro, los cambios se de-

notan generalmente con la letra griega delta mayúscula, y por lo tanto,

∆ EP = EP f – EP

i = mgh

f – mgh

i

Así que la ecuación (5) se puede reescribir como:

W = – ∆ EP . (6)FIGURA 20. Un objeto en caída libre.

Resbaladilla en un parque de diversiones

h1

m

m

hi –hf

hf

F = mg

La transformación de la energía potencial en energía

cinética se da también durante la diversión. Un parque

acuático ubicado en el estado de Morelos tiene una

resbaladilla con agua que alcanza una altura de

aproximadamente 30 m.

Page 136: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 136/276

134

S3

La ecuación (6) es interesante porque significa que el trabajo que efectúa la fuerza

de gravedad representa una pérdida de energía potencial; esto es lo que significa el

signo menos que precede a ∆ EP .

• ¿En qué tipo de energía se irá transformando la energía potencial que se va

perdiendo?

Por otra parte, es posible que el objeto de masa m ubicado en hi ya tenga cierta

rapidez v i . La fuerza de gravedad produce trabajo y al mismo tiempo acelera al

objeto incrementando su rapidez hasta v f en el instante de llegar a la posición h f . Por

lo tanto, se tiene una situación similar a la que se presentó cuando se quiso obtener

la ecuación (3), y el trabajo en términos de rapidez incial y final está dado por esta

ecuación; es decir,

W =1

— 2

m v 2 f –

1 —

2mv 2

i . (3)

Pero, si recuerdas la definición de energía cinética, la ecuación (3) se puede rees-

cribir en términos de ésta como sigue:

W = EC f – EC

i = ∆ EC , (7)

donde EC f es la energía cinética final y EC i es la energía cinética inicia l. Por lo tanto,

∆ EC corresponde a un cambio en la energía cinética.

Al comparar las ecuaciones (6) y (7) se tiene:

W = – ∆ EP

W = ∆ EC

Lo cual implica que:

– ∆ EP = ∆ EC (8)

Aparentemente sólo se trata de una simple transi tiv idad matemática; no obstante,

la ecuación (8) dice en términos físicos mucho más que eso. Como ya te habrás dado

cuenta, esta ecuación reafirma lo que seguramente observaste en la actividad “Expe-

rimenta” del contenido anterior. Hubo que realizar un trabajo para dotar de la energía

potencial inicial a la canica. Cuando la canica se suelta, la fuerza de gravedad hace

trabajo y transforma su energía potencial en energía cinética. La ecuación (8) dice

precisamente esto: la energía potencial que se va perdiendo se transforma en energía

cinética, pero esta transformación se lleva a cabo a través de un trabajo. Si multiplicas

la ecuación (8) por menos uno se obtiene que:

∆ EP = – ∆ EC .

Esto lo pudiste constatar en el momento en que comienza a subir la canica. En ese

instante la energía cinética comienza a decrecer, ya que la canica pierde rapidez, y esa

energía cinética que “se pierde” se va transformando en energía potencial de nuevo, al

tiempo que la canica hace trabajo en contra de la fuerza de gravedad, hasta recuperar

su altura inicial. Sin embargo, no todo es tan sencillo. Te habrás dado cuenta también

de que, después de algunos desplazamientos de la canica bajando y subiendo, ésta

ya no recupera su altura inicial; cada vez alcanza menos altura.

• Reflexiona y contesta, ¿a qué se debe esto?

A continuación podrás verificar cómo la energía potencial se transforma en energía

cinética, con la siguiente actividad.

Page 137: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 137/276

13

B2

Verifica: ¿Cuánta energía potencial se transforma en cinética?

Material

• Mismo dispositivo de la actividad anterior

• Cronómetro

Procedimiento

a. Den a la manguera una forma de L, como se muestra

en la figura, procurando que la región baja de la

manguera de longitud d quede bien alineada al nivel

de la superficie de la mesa o el suelo.

Forma en que debe colocarse la manguera.

b. Midan la altura h y la distancia d .

c. Suelten la canica y midan el tiempo en que la canica

recorre la distancia d .

d. Repitan el paso C cinco veces para obtener un promedio

de la medida del tiempo t que tarda la canica en recorrer

recorre la distancia d .

e. Calculen la rapidez media de la canica al recorrer ladistancia d.

f. Varíen la altura h y repitan los pasos anteriores.

Análisis cualitativo de las observaciones

1. Anoten los resultados en su cuaderno completando la tabla

que se muestra abajo.

• ¿Cómo adquirió la canica su energía potencial inicial?

• ¿Por qué pierde energía potencial la canica conforme cae?

2. A partir de los cálculos que han presentado en la tabla,

respondan:

• ¿Cómo es la relación entre la altura inicial de la canica y

la rapidez que alcanza en la parte baja de la manguera?

Nota: Para contestar a esta pregunta se les sugiere

construir una gráfica de rapidez contra altura.

3. Compartan sus resultados con sus compañeros y maestro

y elaboren conclusiones finales.

Experimenta

h (m) d (m)– t (s) v (

m—s ) ∆EP (J) ∆EC (J)

1. Imagina un objeto de 10 kg de masa que se mueve con

una rapidez de 1 m/s, y de repente se le aplica una fuerza

de 100 N de manera constante, en una distancia sobre la

misma línea recta en que se mueve de 10 m.

• ¿En cuánto cambia su energía cinética?

2. Si un cuerpo se encuentra en reposo, tiene energía cinética.

¿Por qué?

3. Un péndulo se suelta a una altura de 30 cm, como se

muestra en la figura de la derecha. ¿A qué altura llegará

el péndulo del lado derecho de la línea? ¿Por qué?

4. Explica en términos de energía cinética y potencial, ¿por

qué si sueltas el péndulo se va deteniendo después de

algunos movimientos de ida y vuelta?

Evalúo mi avance

h

d

30 cm

Page 138: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 138/276

136

S3

•Principio de la conservación de la energía

Has descubierto que mediante un trabajo la energía potencial se transforma en ciné-

tica y viceversa, y que este proceso continuaría infinitamente si no hubiera fricción o

rozamiento. Pues bien, si se aplica este hecho, es posible establecer un principio unpoco más general. Considera de nuevo la situación que se muestra en la figura 21.

Como hemos visto, la energía potencial que va perdiendo el objeto al ir cayendo,

la recupera como energía cinética, es decir:

– ∆ EP = ∆ EC

desde luego se despreciarán las fuerzas de rozamiento. Por lo tanto se tiene:

–(mgh f – mgh

i ) =

1 — 2 mv 2

f –

1 — 2

mv 2i

mghi – mghf =1

— 2

mv 2 f –

1 — 2

mv 2i .

Se reescribirá esta última ecuación colocando los términos con subíndice i del ladoizquierdo de la ecuación y los de subíndice f del lado derecho, obteniéndose:

mghi +

1 — 2

mv 2i = mgh

f +

1 — 2

mv 2 f . (9)

Date cuenta que la cantidad mgh + 1 —

2 mv 2 se mantiene constante; es la misma al inicio

y al final. Por esta razón se define la energía mecánica EM como EM = mgh + 1 —

2 mv 2, de

tal modo que mghi + 1

2 mv 2

i es la energía mecánica inicial EM i , y el término mgh

f + 1

2 mv 2

f

es la energía mecánica final EM f . Tomando esto en cuenta se tiene una ecuación equi-

valente a la ecuación (9) más compacta.

EM i = EM

f .

La energía mecánica de un objeto que cae se mantiene constante. Este es el principio

de conservación de la energía mecánica. La ecuación (9) te permitirá resolver una gran

cantidad de problemas de mecánica s iempre y cuando las fuerzas de rozamiento, que

también suelen llamarse fuerzas disipativas, se puedan despreciar.

FIGURA 21. Un objeto de masa m

está ubicado inicialmente a una

altura hi , y se supondrá que ya

está en movimiento con rapidez

v i , y al caer la distancia hi – hf

alcanza una rapidez v f .

hi

v i

v f

hi – h

f

hf

m

m

Page 139: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 139/276

13

B2

Desarrolla tu habilidad matemática en ciencias.

1. Analiza paso a paso la solución al problema junto con tu

maestro:

Valora la importancia de hacer una representación o modelo del problema

para poderlo estudiar mejor.

En este tipo de problemas hay que elegir primero un par de

puntos en función de los datos de que dispongas, en esta

ocasión se elegirán primero los puntos A y B ya que se busca

la rapidez en B. Se aplicará en estos puntos la ecuación de

conservación de la energía mecánica; ecuación (9).

mgh A + 1—

2 mv 2

A = mgh

B + 1—

2mg2

B

Observa que matemáticamente m es un término que multipli-

ca a todos los elementos que intervienen en la ecuación, por

ello, se puede dividir toda la ecuación entre m y quitarla de la

ecuación. Por lo tanto, se obtiene:

gh A +

1—2 v 2

A = gh

B +

1—2

v 2B

Como la canica se encuentra en reposo en A, su rapidez en ese

punto es cero v A = 0. Por otra parte, el punto B se encuentra en

la zona más baja del riel,y por lo tanto su altura, al estar a nivel

del suelo, es cero hB = 0. Regresando a la ecuación anterior se

obtiene:

gh A +

1—2 v 2

A = gh

B +

1—2

v 2B

Finalmente la ecuación de conservación se reduce a:

gh A =

1—2

v 2B.

Multiplicando esta ecuación por 2, o lo que es lo mismo, como

el 2 del factor1—2

se puede entender como que está dividiendo

del lado derecho, se pasa multiplicando al lado izquierdo, y en

consecuencia se tiene:

2 gh A = v 2

B.

Con esta ecuación se calculará primero la rapidez en B al cua-

drado y posteriormente se extraerá su raíz cuadrada.

v 2B = 2 gh A = 2(9.8m—s2) (1 m) = 19.6 m

2

—s2

v B = 19.6— = 4.43

m—s

v B = 4.43

m—

s.

Para calcular la rapidez en C se debe elegir otro par de puntos

que involucre precisamente a C . Pueden ser A y C o B y C ,

ya que ahora conoces la rapidez que alcanza la canica en B. No

obstante se considerarán los puntos del primer par. La ecuación

de conservación de la energía mecánica se plantea como sigue:

mgh A +1

—2 mv 2 A = mghC +1

—2 m

De nuevo se elimina la masa m, obteniéndose:

gh A +

1—

2v 2 A = gh

C +

1—

2 v 2

C

En esta ocasión sólo se anula el término de la rapidez en A,

ya que es el único igual a cero, v A = 0. Es preciso despejar el

término que contiene a v C . Para lograrlo, se debe pasar

el término ghc restando al lado izquierdo, obteniendo:

gh A – gh

C =

1—2 v 2

C .

Se factoriza g del lado izquierdo de la ecuación y enseguida se

pasa el 2 que divide del lado derecho multiplicando al ladoizquierdo, y se tiene:

2 g(h A – h

C ) = v 2

C .

Se procederá a calcular el cuadrado de la rapidez en C y poste-

riormente se extraerá la raíz cuadrada.

v 2C = 2 g(h

A – h

C ) = 2 (9.8

m—

s2) (1 m – 0.8 m) =

= 19.6m—

s2 (0.2 m) = 3.92m2

s2

v C = 3.92— = 1.98

m—s

v C = 1.98

m—

s.

Para calcular las energías bastará con calcular la energía po-

tencial en A y en C . La energía potencial en A es:

EP A = mgh

A = (0.1 kg) (9.8

m—

s2) (1 m) =

0.98 kgm—

s2 (1 m) = 0.98 N (1 m) = 0.98 Nm

EP A = 0.98 J.

Elabora modelos y comunica tus avances en ciencias

m2

s2

m2

s2

Una canica de 100 g (0.1 kg) se encuentra en reposo en

el punto A del riel. Se le da un ligero empujón a la canica

y ésta avanza por el riel. Calcula la rapidez de la canica

en los puntos B y C y finalmente completa la tabla de

energías.

> Continúa en la página siguiente

A

C

B

1 m

0.8 m

Page 140: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 140/276

138

S3

Como la canica está en reposo en A, carece de energía

cinética en dicho punto, así que toda su energía mecánica

en A es puramente potencial:

EM A = EP

A + EC

A = 0.98 J + 0 = 0.98 J

La energía mecánica se conserva, y por lo tanto debe ser

la misma en los puntos B y C . En particular en el punto B la

canica no tiene energía potencial ya que está en el punto

más bajo del riel y la altura correspondiente es cero, así que

por la conservación de la energía mecánica, la totalidad de la

energía potencial que tenía la canica en A, se ha convertido en

energía cinética en B, así que EC B = 0.98 J. La canica vuelve a

subir y en C adquiere de nuevo una energía potencial igual a:

EP C = mgh

C = (0.1 kg) (9.8

m—

s2) (0.8 m) =

= (0.98 N) (0.8 m) = 0.78 J.

Como de nuevo la energía mecánica en C debe ser la misma

que en A y en B, se tiene:

EMC = EP

C + EC

C

0.98 J = 0.78 J + EC C

Por lo tanto, tomando la diferencia entre la energía mecánica

y la energía potencial de la canica en C , se puede obtener la

energía cinética en C .

EC C = 0.98 J – 0.78 J = 0.20 J.

Por último se presentarán los resultados en lo que respecta a

la energía en la siguiente tabla:

2. Verifica los valores de la energía cinética en los puntos B y C

que se dan en la tabla, considerando los valores de la rapi-

dez que se calcularon para los puntos B y C ,

v B = 4.43

m—

s

v C = 1.98

m—

s

haciendo uso de la fórmula:

EC =1—2 mv 2.

3. Revisa este procedimiento con un par de compañeros,

resuelvan sus dudas y si lo requieren, consulten con su

maestro.

1. Contesta las siguientes preguntas.

• ¿Qué condición o condiciones son necesarias para que

se conserve la energía mecánica?

La conservación de la energía mecánica se aplica adiversos problemas en los que se requiere conocer

una rapidez o una altura en un determinado punto, si

es que se conocen de antemano la rapidez y altura en

otros puntos. En todos los casos no se toman en cuenta

ni la masa de los objetos ni la trayectoria que describen

¿Por qué se puede hacer esto?

2. Resuelve el siguiente problema: un bloque de 10 kg se en-

cuentra en reposo en el punto A, y después se desliza por

el plano inclinado para llegar al punto B. Si se desprecia el

rozamiento, ¿qué rapidez alcanza el bloque en el punto B?

3. Completa la tabla de energías.

Puntos EP (J) EC (J) EM (J)

A

B

Evalúo mi avance

Modelo que describe el problema del plano inclinado.

5 m

A

B

»

Puntos EP (J) EC (J) EM (J)

A 0.98 0 0.98

B 0 0.98 0.98

C 0.78 0.20 0.98

Page 141: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 141/276

13

B2B2

Autoevaluación Al completar esta tabla podrás saber si lograste dominar, a lo largo de los contenidos, los aprendizajes señalados. Rellena el cuadroque corresponda a tu propia evaluación y comenta, en la última columna, la tarea necesaria para que logres el aprendizaje y compártela con tu maestro.

I N D I C A D O R D E L L O G R O

L O S É

(Tengo el

conocimiento)

L O S É H A C E R

(Desarrollé las habilida-des para representar yseguir procedimientos)

V A L O R OE S T E

A P R E N D I Z A J E

C O M E N T A R I O S

Sí Aún no Sí Aún no Sí No ¿Cómo lo lograré?

¿Interpretas y aplicas las Leyes de Newton paradescribir y predecir los efectos de las fuerzasen experimentos y situaciones cotidianas?

¿Valoras la importancia de las Leyes de Newtonpara explicar el movimiento?

¿Estableces relaciones entre: gravitación,caída libre y peso de los objetos?

¿Describes la relación entre distancia y fuerzade atracción gravitacional y sabesrepresentarla gráficamente?

¿Identificas el movimiento de los cuerposdel Sistema Solar como efecto de la fuerza deatracción gravitacional?

¿Puedes argumentar la importancia de la aportaciónde Newton para el desarrollo de la ciencia?

¿Describes la energía mecánica a partirde las relaciones: movimiento,

posición y velocidad?

¿Identificas e interpretas esquemas del cambiode la energía cinética y potencial en objetosen caída libre?

¿Utilizas las expresiones algebraicas de la energíapotencial y cinética para describir algunosmovimientos que identificas en elentorno y en situaciones experimentales?

Page 142: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 142/276

S1

Evaluemos lo aprendido

Selecciona la respuesta correcta.

1. Observas que un objeto se mueve en línea recta con

velocidad constante, por lo tanto:

a. Una fuerza neta constante está actuando sobre él.

b. Una fuerza neta variable en el tiempo actúa sobre él.

c. No actúa ninguna fuerza sobre él.

d. Un par acción-reacción actúa sobre él.

2. Cuando se aplica una fuerza neta sobre un cuerpo, su

cambio de velocidad está:

a. Dirigido en sentido contrario al de la fuerza aplicada.b.

un nutrimento

b. Dirigido en el mismo sentido que la fuerza aplicada.

c. Dirigido en un sentido aleatorio con respecto a la

fuerza aplicada.

d. Dirigido en un sentido que depende de la magnitud de

la fuerza aplicada.

3. Lo que impulsa a un cohete hacia arriba es:

a. La fuerza que proviene de los motores del cohete

b. El movimiento turbulento de las corrientes de aire.

c. La salida de los gases debajo del escape del cohete.

d. La fuerza que se opone a la caída libre del cohete.

Explica.

4. Usando las leyes de Newton explica las situaciones

siguientes.

a. La razón por la cual un niño que empuja una caja llena

de juguetes no logra moverla.

b. ¿Qué harías para hacer avanzar hacia el frente a un

niño montado en un carrito de juguete? Analiza los

pares de fuerza acción-reacción. Haz un dibujo que

muestre de manera esquemática el niño, el carrito,

a ti, y el suelo.

5. Considera dos cuerpos de diferente masa y constitución.

Si uno de ellos se lanza hacia el frente al mismo tiempo

que otro se suelta desde la misma altura, ¿por qué

ambos tocan el suelo al mismo instante? Desprecia la

fricción del aire.

• ¿Por qué pesas menos sobre la superficie de la Luna

que sobre la superficie de la Tierra?

• ¿Por qué hay ligeras variaciones en el valor de laaceleración de la gravedad sobre la superficie de la

Tierra. Por ejemplo, la aceleración de la gravedad es

menor sobre el monte Everest (altura de 8848 m) que

al nivel del mar?

• ¿Por qué orbitan los planetas alrededor del Sol, y éste

puede considerarse fijo?

• ¿Te atraerías gravitacionalmente con un compañero

sentado a un metro de ti? ¿Por qué no lo notas?

6. Cuando efectúas un trabajo para levantar un cuerpo

desde el suelo hasta cierta altura, ¿qué tipo de energía

posee el cuerpo al final del proceso?

7. Imagina que viajas a la Luna dentro de una nave espacial.

Allí mismo observas que una caja está flotando, ¿tiene

esta caja energía potencial? Justifica tu respuesta.

8. Un bloque se encuentra en la parte superior de un plano

inclinado. Según la conservación de la energía mecánica,

¿de qué depende la rapidez que va adquiriendo el

bloque a medida que se desliza por el plano?

Resuelve los siguientes problemas.

9. En todos los casos, desprecia las fuerzas de rozamiento ofricción. Pon atención a las direcciones y sentidos de las

fuerzas. Maneja las unidades y simplifica.

a. Se aplica una fuerza de 50 N sobre un bloque de

madera de 10 kg, horizontalmente y hacia la izquierda.

Calcula la aceleración del bloque.

b. Un cuerpo de 20 kg acelera de manera constante

horizontalmente hacia la derecha, ¿qué fuerza actúa

sobre el cuerpo?

140

Page 143: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 143/276

B2

Puntos EP (J) EC (J) EM (J)

A

B

c. Se aplica una fuerza constante de 50 N a un bloque de

aluminio de 25 kg de masa durante 10 s. Si el bloque

inicialmente se encontraba en reposo, calcula la magnitud

de su velocidad final (justo después de los 10 s).

10. Si la distancia media de la Tierra al Sol es de 150

millones de kilómetros, r = 1.5 × 1011 m. Calcula la

aceleración centrípeta de la Tierra al ser atraída por el

Sol. Considera la órbita de la Tierra circular y recuerda

que la Tierra tarda 365.25 días en dar la vuelta al Sol.

11. ¿Cuál sería tu peso sobre la superficie de Júpiter, si la

masa del planeta es de aproximadamente MP = 1.9 × 1027

kg y su radio interno de R = 71.4 × 106 m?

12. Una masa de 1 kg cuelga de una cuerda (péndulo). Si

se suelta desde el reposo en el punto A, ¿qué velocidad

alcanzará la masa en el punto B?

a. Con los datos del problema anterior completa la tabla de

energías.

13. En un parque de diversiones en EUA, existe una

montaña rusa que alcanza los 139 m de altura, te suben

por una cuesta a 90° y te sueltan, se dice que es posible

alcanzar una rapidez máxima de 206 km/h.

• ¿En que lugar de la montaña se alcanzaría esta

rapidez? Calcula la rapidez que lleva el tren ahora.

Observa la imagen.

141

1.5 m

1 m

A

B

Page 144: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 144/276

142

PROYECTO 1

El cinturónde seguridad

P1 ¿Cómo se relaciona el movimiento y lafuerza con la importancia del uso delcinturón de seguridad para quienesviajan en algunos transportes?

El cinturón de seguridad está incluido en el sistema de seguridad pasiva de losautomóviles (figura 1), este sistema tiene como única función minimizar los efectosde un accidente de colisión para el ocupante. Algunos automóviles cuentan conotros elementos de seguridad pasiva, por ejemplo las bolsas de aire y el habitáculode seguridad.

El único elemento de seguridad pasiva que es obligatorio en México es elcinturón de seguridad, esto quiere decir que todos los automóviles que salen almercado en nuestro paísdeben tenerlo, pa ra todos los ocupantes del vehículo.

Toda la seguridad adicional desarrollada con la tecnología disponible tieneun costo adicional, y se ofrece en paquetes promocionales de distintos precios.

Los gobiernos de las distintas ciudades del país han hecho campañas deinformación acerca de la importancia del uso del cinturón, no obstante, enalgunos estudios elaborados a través de encuestasse destacan las siguientesentre las principales excusas para evitar el uso del cinturón de seguridad:“es que me aprieta mucho”, “siento que me ahogo”, “es muy incómodo”, “sichoco y se incendia el auto voy a quedar atrapado”, entre otras. Por ello, esimportante seguir realizando campañas que fomenten el uso del cinturón deseguridad, ya que se estima que 60% de las muertes que se registran en losaccidentes automovilísticos se relacionan directamente con la falta del uso delcinturón de seguridad.

Para informar de manera eficaz y pertinente a la población en general, es

necesario conocer la tecnología que está detrás del cinturón de seguridad y losprincipios físicos que la sustentan su funcionamiento y aplicación.

FIGURA 1. Aunque todos los automóviles que circulan en México deben tener cinturón

de seguridad y se debe usar desde el momento en que se ingresa al auto, no todas

las personas lo usan pues no son realmente conscientes de los riesgos.

PROYECTOS

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR O INNOVAR. INTEGRACIÓN Y APLICACIÓN

• Plantearás situaciones

problemáticas relacionadas

con la alimentación y la

nutrición y elegirás una para

resolverla en el proyecto.

• Planearás estrategias

diferentes y elegirás la más

conveniente de acuerdo con

tus posibilidades para el

desarrollo del proyecto.

• Organizarás y analizarás la

información derivada de tu

proyecto utilizando dibujos,

textos, tablas y gráficas.

• Comunicarás los resultados

de tu proyecto por medios

escritos, orales y gráficos.

Aprendizajes esperados

ACT IVIDAD PREVIA

1. Expliquen qué significan los siguientes conceptos clave que forman

parte central de la investigación que deberán desarrollar junto con tu

equipo en esta propuesta de proyecto.

• Inercia.

• Las tres leyes del movimiento de Newton.

2. Averigüen por qué se le llama al cinturón de seguridad“dispositivo de

seguridad pasivo para el pasajero”.

Page 145: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 145/276

B1T1 B2P1

14

• A par ti r de la Segunda ley de Newton ,¿cómo protege el cinturón de seguridad alos pasajeros?

• Los órganos internos de los pasajeros pre-sentan su propia inercia, ¿ayuda el cinturónde seguridad a proteger contra daños inter-nos? ¿cómo protege el cinturón de seguri-dad a los pasajeros?

• ¿Qué pruebas se realizan para estimar losdaños que podrían sufrir los pasajeros queno usan el cinturón de seguridad, si t uvie-ran un accidente? (Figura 2).

Consulten las diversas fuentes de informa-ción elegidas.

Reúnan los datos recabados en cuadros,tablas, fichas, gráficas u otros formatos que

consideren pertinentes.

Analicen los datos , discutan qué indican ydecidan si se confirmó la hipótesis planteadaen la etapa de planeación.

Formulen conclusiones sobre los resultadosde la investigación. Para ello, pueden discutircuáles son las ventajas de incorporar en lacultura de la población mexicana el uso delcinturón de seguridad, ya que sus datos re-portan que un gran porcentaje de la muestrade la población que encuestaron no lo usa.

Elaboren el informe de la i nvestigación.

3. Difusión

Elijan el medio de difusión adecuado paracomunicar los resultados de su investigación.

Trabaje n y preparen el medio de difusión.

Expongan el resultado de su proyecto yreflexionen en qué personas podrían estar in-

teresadas en el tema.

1. Planeación

Seleccionen el tema del proyecto. Para ello,elijan un título a manera de pregunta; porejemplo: ¿Cuántas vidas puede salvar un cin-turón de seguridad? ¿Cómo podemos sobrevivir

en un accidente automovilístico? Si eligieronun proyecto de tipo ciudadano determinen si-podría formar parte de un curso de prevenciónde accidentes.

Analicen si el proyecto es viable, es decir, sitiene las características necesarias para quepuedan llevarlo a cabo en el tiempo estableci-do, y con los recursos con los que cuenten.suequipo y su escuela. Por ejemplo, un proyectoque tenga como objetivo analizar los daños quesufre un muñeco bajo condiciones de impactocontrolado, no sería viable, porque los muñecos

sólo se usan para la investigación profesional y van acompañados de equipamiento de altaprecisión que es excesivamente costoso.

Determinen cuáles son los principales as-pectos relacionados con el tema elegido parael proyecto. Pueden hacerlo en forma de pre-guntas que guíen la investigación.

Establezcan la hipótesis de trabajo. De acuer-do con esta propuesta, una hipótesis podríaser: El uso del cinturón de seguridad contra-rresta los efectos de la inercia de los pasajerosde un vehículo, durante un choque o volcadu-ra del mismo; no usarlo pone en riesgo la vidade los pasajeros.

Elaboren un planificador para organizar eltrabajo.

• Prevean los medios y los materiales necesa-rios para el desarrollo del proyecto.

• Distribuyan las tareas del proyecto entre losintegrantes del equipo.

• Ant icipen dif icultades y prevean posibl essoluciones.

2. Desarrollo

Elaboren una guía para la investigación do-cumental, sin perder de vista el objetivo de suproyecto y la hipótesis formulada. Algunos delos puntos a incluir podrían ser:

• ¿Cómo se aplica la primera ley de Newtonal momento de un choque, ¿los pasajerospueden detenerse instantáneamente?

• Salir proyectado fuera del auto y detener-se chocando contra un poste, equivaldría a

caer, ¿de cuántos pisos de un edificio?

FIGURA 2. En los laboratorios que diseñan autos

se hacen pruebas de impacto que permiten

mejorar los dispositivos de seguridad para los

automovilistas.

• ¿Por qué no lo usa o por qué sí lo usa?

• ¿Usa el cinturón de seguridad?

Hagan clasificaciones para acotar las respuestas,por ejemplo, para quienes no lo usan, pidan quese indique algunas de las siguientes opciones.

• Por incomodidad.

• Porque mi auto no tiene cinturones.¿Usa elcinturón de seguridad?

• Por miedo a quedar atrapado en el auto sise incendia.

Difundan su producto en el grupo, la escue-la o su comunidad. Entreguen al maestro unasíntesis de su proyecto (aproximadamente deuna o dos cuartillas) donde expliquen: quéhicieron, para qué lo hicieron, cómo lo hi-cieron y qué resultados obtuvieron. De estaforma, el maestro ayudará en su difusión ycontará, además, con un acervo de proyectosque pueda tener disponible para enriquecer eltrabajo con otros grupos.

4. Evaluación

Evalúen su desempeño evalúen su desem-peño individual y el de los integrantes de suequipo en el proceso de trabajo del proyecto.Tengan en cuenta los siguientes rubros: me-

todología de trabajo, objetivos del proyecto,producto de difusión, difusión, y actitud indi- vidual y del equipo en su conjunto.

Griffit, Thomas W., Física Conceptual ,

MacGraw-Hill, México, 2010.

Halliday, Resnick, Walker, Fundamentos

de física, vol. 1, México, CECSA, 2006.

Hewit, Paul G., Física conceptual , México,

Pearson Educación, 2004.

Lee más...

www. inta .es/descubreaprende/htm/hechos2.htm(Importancia del uso del cinturón deseguridad)

http://aplicaciones.dgt.es/enterate/noticias/campana_cinturon.htm(Campañas en España sobre el usodel cinturón de seguridad)

Page 146: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 146/276

144

PROYECTO 1

144

PROYECTO 2

Puente colgante ¿Cómo intervienen las fuerzas en laconstrucción de un puente colgante?

ACT IVIDAD PREVIA

1. Explica qué significan los siguientes conceptos clave que forman

parte central de la investigación que deberás desarrollar junto con tu

equipo en esta propuesta de proyecto.

• Fuerza de tracción y fuerza de compresión.

• Segunda ley de Newton.

• Equilibrio mecánico.

• Estática de traslación sin rotación.

2. cuáles son los materiales más utilizados para construir las partes más

importantes del puente

1. Planeación

Integren su equipo y seleccionen el tema delproyecto de entre los que han elegido a lolargo de este bloque. Para ello, argumentenporqué puede ser interesante y propongan

un título a manera de pregunta, por ejemplo:

• ¿Cómo soporta el peso del tráfico vehicularun puente colgante?

• ¿Cómo se mantiene en pie un puente col-gante? (figura 2).

Analicen si el proyecto es viable, es decir, sitiene las características necesarias para quepuedan llevarlo a cabo en el tiempo esta-blecido, y si cuentan con los recursos pararealizarlo.

Los puentes colgantes son estructuras que permiten comunicar a dos ciudadeso poblaciones separadas por un paso de agua muy grande o grandes cañones.En su diseño intervienen principalmente dos torres y una serie de cables flexi-bles pero que al mismo tiempo, son capaces de soportar grandes tensiones(figura 1). Los puentes colgantes tienen entre otras ventajas, que permitenel paso a la navegación, además de soportar el embate de vientos severos yterremotos, lugares donde un puente rígido tendría necesariamente que ser

mucho más fuerte y en consecuencia más grande. Las fuerzas principales quese ejercen sobre un puente son de tracción en los cables principales y de com-presión en los pilares.

FIGURA 1. Puente Golden Gate en San Francisco, California, está suspendido de dos

torres de 227 metros de altura.

P2

Page 147: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 147/276

B1T1 B2P1

14

B1T1 B2P2

Determinen cuáles son los principales aspec-tos relacionados con el tema elegido para elproyecto. Pueden hacerlo en forma de pre-guntas que guíen la investigación. Establezcan la hipótesis de trabajo. De acuer-

do con esta propuesta, una hipótesis podríaser: Los pilares del puente deben soportarfuerzas verticales únicamente, mientras quelos cables deben soportar fuerzas de tracción y tr ansmi tir las a las torres.

Propongan una metodología de trabajo yelijan las fuentes de información para la in- vest igac ión documental y cual itat iva.Enlisten las principales actividades que de-berán llevar a cabo en el proyecto y, si loconsideran necesario, elaboren un planifica-dor para organizar el trabajo.

• Prevean los medios y los materiales necesa-rios para el desarrollo del proyecto.

• Distribuyan las tareas del proyecto entre losintegrantes del equipo.

• Ant icipen dif icultades y prevean posiblessoluciones.

2. Desarrollo

Elaboren una guía para iniciar la investiga-ción documental y cualitativa, sin perder de vista el objetivo de su proyecto y la hipótesisformulada. Algunos de los puntos a incluirpodrían ser:

• ¿Cómo se aplica la Segunda ley de Newtonen la estática?

• ¿Cómo calcular dos tensiones que soportanun peso?

Consulten las diversas fuentes de informa-ción elegidas.

Reúnan los datos recabados en cuadros,tablas, fichas, gráficas u otros formatos queconsideren pertinentes.

Anali cen los dat os, discutan qué indican ydecidan si se confirmó la hipótesis planteadaen la etapa de planeación.

Formulen conclusiones sobre los resultadosde la investigación. Para ello, pueden discutircuáles son las ventajas y las desventajas delos puentes colgantes, en su diseño y en sufuncionamiento

Elaboren el informe de la investigación.

3. Difusión

Elijan el medio de difusión con el que darána conocer los resultados de la investigación.Si enmarcaron el tema de su proyecto en elámbito tecnológico sorprendan a su públicoelaborando un modelo o dispositivo que expli-que el tema del proyecto y usen su creatividad.

Trabajen y preparen el medio de difusión.

Expongan el resultado de su proyecto en elgrupo y ante su comunidad escolar invitandoa sus padres y vecinos. Consideren incluir ensu exposición diagramas de fuerzas sencillos ydibujos que indiquen los componentes princi-pales que constituyen el puente, y como actúacada una de las partes para soportar peso y almismo tiempo ser flexible.

FIGURA 2. Elementos principales de un puente colgante.

Tensores

Torre

Tablero Pilar

4. Evaluación

Evalúen su desempeño individual y el delos integrantes de su equipo en el proceso detrabajo del proyecto. Tengan en cuenta los

siguientes rubros: metodología de trabajo, ob-jetivos del proyecto, producto de difusión, y l aactitud durante el trabajo individual así comola del equipo en su conjunto.

Agrega l as que encontraron:

Agrega l as que encontraron:

Griffit, Thomas W., Física Conceptual ,

MacGraw-Hill, México, 2010.

Halliday, Resnick, Walker, Fundamentos

de física, vol. 1, México, CECSA, 2006.

Hewit, Paul G., Física conceptual , México,

Pearson Educación, 2004.

Lee más...

14

http://publiespe.espe.edu.ec/academicas/

memoria/memoria11/puentes/puentes02.htm

(Construcción de un puente colgante, principios

básicos bien ilustrados.)

Page 148: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 148/276

146

Un modelo para describirla estructura de la materia

BLOQUE 3

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

Los modelos en la ciencia

• Identificarás las características de los modelos y los reconocerás como una parte fundamentaldel conocimiento científico y tecnológico, que te permitirán describir, explicar o predecir

el comportamiento del fenómeno estudiado.

Características e importanciade los modelos en la ciencia.

• Reconocerás el carácter inacabado de la ciencia a partir de las explicaciones acerca

de la estructura de la materia, surgidas en la historia, hasta la construccióndel modelo cinético de partículas.

Ideas en la historia acerca de lanaturaleza continua y discontinuade la materia: Demócrito, Aristótelesy Newton; aportaciones de Clausius,Maxwell y Boltzmann.

• Describirás los aspectos básicos que conforman el modelo cinético de partículas

y explicarás el efecto de la velocidad de éstas.

Aspectos básicos del modelo cinéticode partículas: partículas microscópicasindivisibles, con masa, movimiento,interacciones y vacío entre ellas.

La estructura de la materia a partir del modelo cinético de partículas

• Describirás algunas propiedades de la materia: masa, volumen, densidad y estados

de agregación, a partir del modelo cinético de partículas.

Las propiedades de la materia: masa,volumen, densidad y estados deagregación.

• Utilizarás el modelo cinético de partículas para explicar la presión, en fenómenos

y procesos naturales y en situaciones cotidianas.

Presión: relación fuerza y área; presiónen fluidos. Principio de Pascal.Temperatura y sus escalas de medición.

• Describirás la temperatura a partir del modelo cinético de partículas con el fin de explicar

fenómenos y procesos térmicos que identifiques en el entorno, así como a diferenciarla del calor.

Calor, transferencia de calor y procesostérmicos: dilatación y formas depropagación.

• Describirás los cambios de estado de la materia en términos de la transferencia de calor

y la presión, con base en el modelo cinético de partículas, e interpretarás la variación de lospuntos de ebullición y fusión en gráficas de presión-temperatura.

Cambios de estado; interpretaciónde gráfica de presión-temperatura.

a b c

S1

S2

Page 149: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 149/276

14

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturales desde la perspectiva científica.

• Comprensión de los alcances y limitaciones de la ciencia y del desarrollo tecnológico

en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambiente y la promoción

de la salud orientadas a la cultura de la prevención.

B3

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

Energía calorífica y sus transformaciones

• Describirás cadenas de transformación de la energía en el entorno y en actividadesexperimentales, en las que interviene la energía calorífica.

Transformación de la energía calorífica.

• Interpretarás la expresión algebraica del principio de la conservación de la energía,

en términos de la transferencia del calor (cedido y ganado).

Equilibrio térmico.

Transferencia del calor: del cuerpo demayor al de menor temperatura

• Argumentarás la importancia de la energía térmica en las actividades humanas

y los riesgos en la naturaleza implicados en su obtención y aprovechamiento.

Principio de la conservación de la energía.

Implicaciones de la obtencióny aprovechamiento de la energía en lasactividades humanas.

PROYECTO: Imaginar, diseñar y experimentar para explicar o innovar (opciones)*Integración y aplicación

• Plantearás y delimitarás un proyecto derivado de cuestionamientos que surjande tu interés y buscarás solución.

• Utilizarás la información obtenida mediante la experimentación o investigación bibliográfica

para elaborar argumentos, conclusiones y propuestas de solución a lo planteado en tu proyecto.

• Diseñarás y elaborarás objetos técnicos, experimentos o modelos con creatividad,

que te permitan describir, explicar y predecir algunos fenómenos físicos relacionados con lasinteracciones de la materia.

• Sistematizarás la información y organizarás los resultados de tu proyecto y los comunicarás

al grupo o a la comunidad, utilizando diversos medios: orales, escritos, modelos, interactivos,gráficos, entre otros.

¿Cómo funcionan las máquinasde vapor?

¿Cómo funcionan los gatoshidráulicos?

* Revisa la introducción al bloque 5 antes de trabajar con los proyectos.

d e f

(a) Los tres estados de la materia. (b) Tecnología para el deporte. (c) Vapor que emana como fuente. (d) Cristales en la mina de Naica. (e) Calor aprovechado

para volar. (f) Tecnología para modelar la estructura de la materia.

S3

Page 150: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 150/276

Page 151: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 151/276

B3

Los modelos en la ciencia

Fue el astrónomo Edmund Halley quien convenció a su amigo Newton de publicarsus Principia que es, como ya sabes, una de las obras científicas más importantes de todos

los tiempos. En uno de los capítulos de esta obra se plantea una expresión matemática

que permite explicar, calcular y predecir las causas del movimiento. Se trata de la relaciónentre la fuerza, la masa y la aceleración: F = ma. ¿Te resulta conocida? Esta fórmula,

es un ejemplo de un modelo matemático.

Características e importancia de los modelosen la ciencia.

Ideas en la historia acerca de la naturalezacontinua y discontinua de la materia: Demócrito,Aristóteles y Newton; aportaciones de Clausius,Maxwell y Boltzmann.

Aspectos básicos del modelo cinético de partículas:partículas microscópicas indivisibles, con masa,movimiento, interacciones y vacío entre ellas.

149

Aprendizajes esperados

S1

• Identificarás las

características de

los modelos y los

reconocerás como una

parte fundamental delconocimiento científico

y tecnológico, que

permiten describir,

explicar o predecir el

comportamiento del

fenómeno estudiado.

• Reconocerás el carácter

inacabado de la ciencia a

partir de las explicaciones

acerca de la estructura

de la materia, surgidasen la historia, hasta la

construcción del modelo

cinético de partículas.

• Describirás los aspectos

básicos que conforman

el modelo cinético de

partículas y explicarás el

efecto de la velocidad de

éstas.

Page 152: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 152/276

150

S1

•Características e importancia de los modelosen la ciencia

Explora

Una representación del cometa de Halley, en1066, y una fotografía del mismo tomada en1910. Se sabe que este cometa fue registradopor los observadores chinos desde el año 240antes de nuestra era. El Halley fue visto desdela Tierra en 1986 y volverá a pasar en el 2062.¿Cuántos años tendrás entonces?

Al igual que Halley (figura 1), Newton o Galileo, los científicos de la actualidad buscan

la forma de estudiar las propiedades de los cuerpos y fenómenos de la naturaleza. Anti-

guamente no había calculadoras ni computadoras, de manera que los científicos debían

tener enorme habilidad matemática (y mucha paciencia) para realizar cálculos con lápiz

y papel, lo cual consumía una gran cantidad de tiempo. Si bien ahora las máquinas

calculan por nosotros, la paciencia y el rigor metodológico al estudiar un fenómeno

siguen siendo actitudes deseables en los científicos modernos, al igual que sus habili-

dades para medir, interpretar y representar las características de aquello que estudian.

FIGURA 1. Edmund Halley(1665-1744) estudió fenómenosmagnéticos a bordo de barcosde la armada inglesa en losMares del Sur.

1. Explora con una pareja las imagenes de lafigura y respondan las siguientes preguntas.

• ¿Cuál de estas imágenes es una represen-tación del cometa?

• ¿Qué aspectos o elementos del cometaestán tomados en cuenta en dicharepresentación?

• Si ustedes quisieran modelar o represen-tar este cometa en tres dimensiones¿qué materiales emplearían y cómo

sería su representación?

• Con ayuda de su maestro, organicenuna puesta en común con las respuestasde todos.

2. Elaboren una lista con las ventajas ydesventajas de representar un objeto.

Habían transcurrido ya 16 años desde la muerte del astrónomo inglés Edmund Halley,

cuando la gente comenzó a escudriñar el cielo. Eran los primeros meses de 1758. ¿Qué

buscaban? Resulta que poco antes de morir, Halley expresó: “Esperen mi cometa”.

El científico no tenía duda alguna de que el viajero celeste observado cuando tenía

26 años de edad pasaría de nuevo por la Tierra aproximadamente 76 años después.

Halley tuvo mucho interés en anotar cuidadosamente las posiciones que el cometa

iba ocupando sucesivamente con respecto a las estrellas del fondo, y el tiempo que

tardaba en moverse desde un punto de referencia a otro.

Cuando el cometa se alejó, Halley había recopilado muchos datos sobre su movimiento

que comparó con la información disponible sobre cometas, aplicando sus conocimientos

GLOSARIO

Cometa: cuerpo celeste formadode rocas, hielo y polvo que orbita el

Sistema Solar. Sus componentes se

subliman al acercarse al Sol, formando

una especie de cola brillante.

Si algún integrante del equi-

po tiene discapacidad visual,

puede elaborar su represen-

tación del cometa con la

plastilina y los materiales

disponibles, partir de la defi-

nición del glosario.

Sé incluyente

Page 153: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 153/276

151

Elabora modelos

de física y de geometría para calcular la velocidad y la longitud de la órbita del cuerpo

que había observado. Los resultados obtenidos le llevaron a suponer que los registros

anotados sobre cometas en 1531 y 1607, eran apariciones de este mismo cometa. Si

la hipótesis de Halley era correcta, entonces el cometa regresaría al Sistema Solar y pa-

saría por nuestra bóveda celeste en 1758, pues asignó a este objeto una órbita elíptica

alargada alrededor del Sol, con un periodo de traslación de 76 años, aproximadamente.

Poco después de la muerte del astrónomo inglés, la matemática Madame Le Pauté,

junto con sus colegas franceses Lalande y Clairaut tomaron el modelo de Halley y

volvieron a calcular la órbita del cometa, con lo que pudieron establecer una fecha

más exacta de su regreso.

La predicción tan extraordinaria de Halley fue producto de un modelo matemático

que no requirió de alta tecnología, sino del trabajo sistemático de un ser humano

que se hizo preguntas y se puso a trabajar para encontrar respuestas utilizando sus

conocimientos, aplicando razonamientos lógicos y, desde luego, una gran pasión por

los fenómenos del Universo.

Analiza un modelo antiguo y elabora tu propio modelo sobre la forma de la Tierra.

1. Reúnete con un equipo y realicen la actividad en el salón de claseso en el Aula de medios.

MaterialSalón de clases

• Cartulina• Plumones• Plastilina• Pegamento• Dibujos de carabelas

o barcos de juguete

Aula de medios

• Software disponible parahacer presentaciones

• Cañón para proyectar• Impresora

2. Lean el texto en voz alta.

E l griego Era tós tenes (Cirene,

2 76 a.n.e- A lejandría, 194

a.n.e. ) ca lc u ló e l tamaño de

la Tierra con una precisión

m u y apro ximada a l va lor q ue

ho y conocemos a par tir de

o bser vaciones, mediciones y

cá lc u los geomé tricos so bre la

dif erencia en tre las som bras

pro yec tadas por dos varas en

dos ci udades bas tan te

a lejadas, una a l nor te y o tra

a l s ur de Egip to, medidas e l

21 de j unio de dos años

consec u ti vos. Era tós tenes

pensó q ue si la Tierra f uese

p lana, las som bras serían

ig ua les, y como és tas no lo

f ueron, conc l u yó q ue la

Tierra de bería ser una esf era.

Para hacer s us cá lc u los midió

la dis tancia en tre las ci udades

y rea lizó cá lc u los geomé tricos

para o b tener e l radio

terres tre. No o bs tan te es tas

pr ue bas conc l u yen tes so bre la

esf ericidad de la Tierra, la

ma yoría de los e uropeos

con temporáneos de Cris tó ba l

Co lón pensa ba q ue la Tierra

era p lana, a no ser q ue f ueran

na vegan tes e xperimen tados,

as trónomos o es t udiosos de

los griegos.

¿A qué idea sobre la forma de laTierra corresponde esta imagen?

3. Junto con un compañero observa la figura y expliquenpor qué esta imagen se relaciona con las ideas quepredominaban entre los europeos del siglo XV acercade la forma de la Tierra.

4. Elaboren, utilizando los materiales disponibles, un parde esquemas o diagramas que representen la forma dela Tierra:

a. Desde el punto de vista de los contemporáneosde Colón.

b. Desde el punto de vista de todos los integrantesdel equipo.

5. Compartan su trabajo y atiendan los comentarios yexplicaciones de sus demás compañeros.

6. ¿Por qué la idea de la Tierra plana era tan convincentepara muchas personas? Traten de ubicarse en esa época.

7. De acuerdo con lo que han estudiado definan qué esun modelo y concluyan si las representaciones sobre laforma de la Tierra pueden ser modelos.

Lalande y Clairaut presenta-

ron su trabajo en la Acade-

mia de ciencias francesa sin

compartir el crédito con Ma-

dame Le Pauté, quien fue

discriminada injustamente

por ser mujer.

Sé incluyente

B3

Page 154: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 154/276

152

S1

Lo que acabas de realizar resulta muy útil para comprender cómo las personas que

se dedican a la ciencia elaboran representaciones de fenómenos físicos a partir de

los datos que registran de ellos , o bien, representan las leyes de una teoría elaborada

para explicar algo que no siempre está a nuestro alcance.

Estas representaciones de objetos y procesos que muestran algunos aspectos sim-

plificados de la realidad, mas no la realidad misma, reciben el nombre de modelos

(figura 2). Para efectos prácticos, consideraremos un objeto como cualquier porción

de materia, ya sea viva o inerte, de modo que los seres vivos pertenecen a esta cate-

goría. Dado que los modelos son representaciones imperfectas de la realidad, debe

tomarse en cuenta que son limitados, es decir, que muestran sólo algunas de las ca-

racterísticas del objeto o fenómeno que representan. Así, un modelo será mejor que

otro en función de su aproximación a la realidad. Los modelos surgen del trabajo, la

experiencia y la imaginación creativa de quienes se dedican a la ciencia, con el fin de

explicar lo que les interesa y, fundamentalmente, para predecir su funcionamiento.

A lo largo de la historia de la ciencia existen numerosos e jemplos que demuestrancómo los modelos no deben ser considerados como verdades absolutas, ni tampoco

como la realidad misma. Baste recordar diferentes modelos en torno a la caída libre

de los objetos (Aristóteles vs. Galileo), entre muchas otras.

Dependiendo del objeto de estudio en una investigación cient ífica, de la experien-

cia del investigador, y aun de los recursos disponibles, los modelos son una síntesis

de la explicación que se tiene del fenómeno, pero también pueden limitar la visión

de un problema, como ocurrió durante muchos siglos con la visión geocéntrica del

Universo hasta que Copérnico desarrolló su modelo heliocéntrico.

Los modelos pueden ser objetos físicos (figura 3), es decir,

entidades materiales que muestran ciertas características de unobjeto más complejo. Por ejemplo, la maqueta de un sistema

hidráulico que va a construirse, un cerebro de plástico para

estudiar las funciones de los hemisferios, el diagrama de un

puente que va a demolerse, un carrito de madera, un muñeco

para practicar primeros auxilios, en fin. Los modelos de objetos

físicos cumplen una función muy importante para la investiga-

ción, al igual que para la enseñanza de la ciencia y la tecnología,

y muchos de el los se hacen a escala .

Por otra parte, cuando dos objetos o procesos comparten entre sí características que

se consideran relevantes para poder explicar cómo funciona cualquiera de ellos, se tiene

un modelo analógico. Por ejemplo, aunque el sonido y la luz son manifestaciones de

diferentes tipos de energía, podemos decir que la reflexión es a la luz lo que el eco es al

sonido. Esta analogía resulta muy útil para comprender que las ondas sonoras al despla-

zarse “rebotan” en forma similar a los rayos de luz que se reflejan en algunas superficies,

como el agua o los espejos.

Los modelos también pueden ser objetos ficticios o idealizados, es decir, entidades

no materiales o abstractas que representan razonamientos sobre características ideales de

objetos y procesos reales. Por características ideales entendemos los atributos o condi-

ciones deseables que no siempre se cumplen en la realidad, pero a las que es necesario

FIGURA 2. Modelo de una célulavegetal (a) y fotografía micros-cópica de un virus (b).

Córnea

Músculo

Retina

Esclerótica

Nervio óptico

Cámara anterior

Cámara posterior

Cristalino(lente)

FIGURA 3. Representación dealgunas partes del ojo humano.

a

b

Page 155: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 155/276

Page 156: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 156/276

154

S1

• Ideas en la historia acerca de la naturaleza continuay discontinua de la materia: Demócrito, Aristóteles yNewton; aportaciones de Clausius, Maxwell y Boltzmann

Para indagar cómo está constituido un cuerpo cualquiera, existen actualmente dispositivoscomo microscopios poderosos, con los cuales podemos escudriñar detalles minúsculos

de la estructura de la materia. Sin embargo, aun con imágenes muy aumentadas, no

es fácil saber con exactitud cómo son los constituyentes esenciales de la materia. Es

por ello que se ha recurrido a los modelos para describirla y explicarla.

Explora

1. Explora con tu equipo lasimágenes y respondan las

siguientes preguntas.• ¿De qué materiales están

formados un clip y un cristalde Naica?

• ¿Cuáles son las semejanzasy las diferencias más evi-dentes entre estos objetos?

• ¿Cómo te imaginas la es-tructura de estos objetosen el nivel microscópico?Elabora un dibujo de cadauno.

2. Con ayuda de su maestro,compartan sus respuestascon los demás equipos.

Los cristales de yeso más grandes del mundo, considerados comouna maravilla natural, se encuentran en Naica, Chihuahua. Estonos muestra que la materia se presenta en una enorme variedad

de formas. FUENTE: Minera Maple, S.A. de C.V. Naica, Chihuahua, Depar-

tamento de Geología. FOTOGRAFÍA: Ing. Édgar González Venegas.

Existen diferentes tipos de clips,pero la mayoría están elabo-rados de acero, o de alguna

aleación con aluminio. Comosea, tienen un aspecto brillantey son flexibles.

Las ideas de Demócrito, Aristóteles y Newton

En la actividad previa, pudiste apreciar que los cristales y los clips están formados por

materiales diferentes que les dan ciertas propiedades, pero que también comparten

el hecho de ser cuerpos sólidos, entre otras cosas. Desde las primeras civilizaciones,

las personas han propuesto explicaciones en torno a la naturaleza de los materiales

que forman a los objetos que conocemos, con base en la percepción que tenemos de

ellos, es decir, de su forma, tamaño, olor, sabor, peso o textura, por ejemplo.

En la antigua China se pensaba que todo cuanto existe es una estructura formada

por cinco materiales fundamentales: agua, madera, fuego, metal y, al centro (y, por

tanto, en contacto con los demás), la tierra. La idea básica era que estos elementos

estaban en perpetuo cambio, en ciclos donde unos generaban a otros, o bien unos

dominaban a los otros.

Por su parte, los filósofos griegos elaboraron explicaciones acerca de la compo-

sición de los objetos, o por qué son sólidos, líquidos y gaseosos. Tales de Mileto

pensaba que el agua estaba presente en toda la materia del Universo, pero fue Empé-

García, Horacio, Naturaleza

discontinua de la materia,México, SEP-Santillana, 2002

(Colección Libros del Rincón).

Lee más...

Page 157: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 157/276

155

docles quien elaboró un modelo explicativo más completo al señalar que había cuatro

raíces que componían a toda la materia: agua, aire, fuego y tierra. Para llegar a esta

conclusión, Empédocles experimentó con un dispositivo llamado clepsidra (figura 5),

que es un reloj de agua y que consistía en un tubo conectado a una vasija esférica

con agujeros. Cuando vertía agua por el tubo, ésta salía por los orificios esparciéndose

igual que una regadera. Esta fragmentación del agua le pareció un fenómeno curioso,

pero lo que llamó su atención fue observar que al tapar con su dedo el orificio, el agua

dejaba de caer. En cuanto destapaba el tubo, el agua caía de nuevo. Esto le llevó a

pensar que el aire era otro elemento que formaba parte de las cosas, pero era invisible.

El experimento de la clepsidra tuvo una interpretación distinta para Leucipo y su

eminente discípulo Demócrito, quienes señalaron que el agua, el aire y los objetos

sólidos pueden fragmentarse, pero que debe haber un momento en que la división

de cualquier porción de materia es imposible porque se ha llegado a una partícula

original e indivisible a la que denominaron átomo, palabra griega que significa jus-

tamente “sin división”.Demócrito llegó más allá al afirmar: “Nada existe, aparte de los átomos y el vacío”,

imaginando los átomos como partículas invisibles e indestructibles que se movían en

el vacío. Este es el primer modelo de materia discontinua o indivisible que se conoce

en la historia de la ciencia.

Muchos años después, Aristóteles rechazó las ideas de Demócrito, porque pensaba

que la materia era continua , es decir, en que todo podía dividirse aun cuando los

instrumentos ya no lo permitieran y, siendo así, no podía haber espacio vacío entre las

partículas indivisibles. En cambio, retomó el modelo de Empédocles al que denominó

Teoría de los cuatro elementos, y a la que agregó el éter como un quinto elemento,

ya que esto explicaba por qué los mortales podemos respirar el aire pesado, mientrasque los dioses respiran una materia más sutil, como el éter.

Después de casi dos mil años, las personas interesadas en esta temática estaban con-

vencidas de que el vacío no podía existir, hasta que Evangelista Torricelli, un alumno de

Galileo, demostró que podía tener un recipiente sin contenido al extraer de él el aire.

Años después, este hallazgo resultó muy útil para Newton, pues estaba convencido

de que si un gas encerrado podía comprimirse al aplicársele alguna fuerza, la materia

debía estar formada por partículas o corpúsculos con un cierto volumen, aunque

fuera mínimo, y que las partículas podían moverse donde no hubiera materia para

ocupar esos espacios.

Newton pensó en los gases como partículas que en

algún instante se encontraban en reposo e interactuaban

mediante una repulsión que era inversamente propor-

cional a la distancia que las separaba ( figura 6). Sin

embargo, Newton no desarrolló una teoría a partir del

modelo de partículas, que explicara, por ejemplo, la ex-

pansión de un gas al ser calentado. ¿Acaso las partículas

se movían por causa de otra fuerza diferente a la gravita-

toria? Hubo que esperar hasta el siglo XIX para encontrar

una explicación más satisfactoria.

FIGURA 5. ¿Se pueden obtenerpartes de agua cada vez máspequeñas?

FIGURA 6. Isaac Newton, consideró a la materia y a la luz constituidas

por partículas y construyó un modelo de partículas para los gases.

B3

Page 158: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 158/276

156

S1

1. Completa en tu cuaderno o en un archivo electrónico, el siguiente cuadro con el fin de comunicar las ideas sobre la materiay los personajes abordados en el contenido. Observa los ejemplos.

Demócrito Aristóteles Newton

¿De quién o de quiénestomó ideas paradesarrollar su explicación?

¿De qué está formadala materia?

De partículas indivisiblesy espacio vacío.

¿Cómo llegó a esaconclusión?

La idea del vacío le parecía absurda.Apoyó y completó la Teoría de loscuatro elementos, agregando eléter como quinto elemento.

Comunica tus avances en ciencias

Reconoce algunas explicaciones acerca de la naturaleza de la materia.

2. Explica la diferencia entre continuidad y discontinuidad de lamateria.

3. En la actividad Explora escribiste algunas de las propiedadesde dos objetos sólidos y dibujaste su estructura microscópica,

¿a cuáles de estas ideas sobre la materia se parecen tusrespuestas? Explica.

4. Comparte tu cuadro con otros compañeros y con tu maestro,mejóralo a partir de las diferencias y de contrastarlos con lainformación.

Las aportaciones de Clausius, Maxwell y Boltzmann

Más de un siglo después de la muerte de Newton, el físico alemán Rudolf Clausius

(figura 7a ) propuso que, en efecto, los gases estaban formados por partículas, pero si

los gases podían dilatarse o comprimirse, como es evidente en un globo o una llanta,

entonces las partículas deberían estar en continuo movimiento y, además, en forma

azarosa o desordenada. Por ejemplo, al apretar con las manos un globo lleno de aire, sen-timos una oposición, que es mayor entre más materia gaseosa tenga el globo (figura 8).

Podemos sentir la diferencia al apretar un globo bien inflado y uno medio inflado. Si

las partículas siempre estuvieran ordenadas, no habría manera de deformar el globo con

tanta facilidad, como tampoco lo podemos hacer con un pedazo de metal o de concreto.

Clausius estaba convencido de que este fenómeno era una prueba de las leyes de

Newton, pues si una fuerza modificaba el estado de inercia del gas contenido, el gas

ejercía una reacción de la misma magnitud ante esta fuerza. Pero Clausius agregó

que esta reacción opuesta era producida por los choques de las partículas contra las

paredes del material del globo.

Poco después, el físico escocés James Clark Maxwell (figura 7c) y el físico aus-

triaco Ludwig Boltzmann (figura 7b) se dieron a la tarea

de describir las propiedades de los gases, a partir de un

modelo que contemplaba el promedio de la velocidad de

las partículas, ya que es imposible medir la velocidad de

cada una de ellas.

Boltzmann y Maxwell desarrollaron al máximo el mo-

delo de partículas en movimiento o modelo cinético de

partículas, contribuyendo en forma importante a lo que

ahora conocemos como teoría cinética de los gases y

FIGURA 7. Los artífices del modelocinético de partículas: (a) Clausius(1822-1888): los gases tienenpartículas en movimiento que no seatraen por fuerzas gravitacionales.(b) Boltzmann (1844-1906):las partículas se mueven al azar yse puede calcular el promedio desus velocidades. (c) Maxwell(1831-1879): desarrolló el modelomatemático para calcular la

velocidad de las partículas.

a

b

c

Page 159: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 159/276

Page 160: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 160/276

158

S1

•Aspectos básicos del modelo cinético de partículas:partículas microscópicas indivisibles, con masa,movimiento, interacciones y vacío entre ellas

Explora

1. Al inicio de este bloque, pudiste leer que Robert Brown observó que los granos de polen sus-pendidos en un líquido en reposo se movían aleatoriamente en diferentes direcciones, comosi estuvieran agitados.

• ¿Cuál de los modelos acerca de la naturaleza de la materia puede explicar este hecho?

Material

• 1 globo

• 1 parrilla eléctrica

• 1 recipiente metálico de sección circular(aproximadamente de 20 cm dediámetro, con una capacidadde 2 l o más)

• 1 litro de agua

• 10 cubos de hielo

• Pinzas de sujeción

Procedimiento

a. Viertan el agua en el recipiente metálicoy caliéntenla durante 10 minutos en

la parrilla. Es preferible que el aguano hierva; así que, cuando comience aburbujear, apaguen la parrilla.

b. Inflen moderadamente el globo, es decir,que no quede a punto de reventar.

c. Introduzcan el globo en el agua calienteutilizando las pinzas y consérvenlo ahídurante algunos minutos. Anoten susobservaciones.

d. Retiren el globo del agua caliente.

e. Con cuidado vacíen el recipiente metáli-co, y pongan en él los cubos de hielo.

f. Metan el globo al recipiente, procurandoque quede cubierto con los cubos dehielo. Anoten sus observaciones.

Análisis de resultados

1. Nos interesa observar el aire contenido enel globo, que es materia gaseosa. A partir

de sus observaciones contesten las siguien-tes preguntas en su cuaderno.

• ¿Qué ocurre con el aire contenido en elglobo cuando se introduce en el aguacaliente?

• ¿Qué ocurre con el aire contenido en elglobo cuando se introduce en el recipien-te con hielo?

• ¿Cuál o cuáles de los modelos estudiadospueden explicar esto?

Experimenta

Superficie caliente.

Relaciona el comportamiento de un gas con el modelo cinético de partículas

El movimiento Browniano puso en evidencia que las partículas que componen al agua

golpean a los granos de polen y por esta razón se mueven, dado que hay espacios vacíos entre ellas.

Page 161: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 161/276

159

Si pensamos en el movimiento de las partículas de un gas, que se mueven a gran

velocidad y rebotan una y otra vez contra las paredes del recipiente que las contie-

ne, percibimos un estado de caos en el sentido de que no parecen existir reglas que

nos predigan cómo va a moverse cada una de las partículas. Pero con el movimiento

conjunto de las partículas desde fuera del recipiente percibimos orden. Es decir,

podemos hacer algunas predicciones del comportamiento del gas si asociamos una

variable que considere, en promedio, la contribución de todas las partículas. Una de

estas predicciones es que el aire caliente dentro de un globo hará que éste se eleve,

sin duda (figura 9).

Descartando el cuarto estado de agregación de la materia, el plasma, que no es-

tudiaremos por ahora, la energía cinética de los gases es mayor en comparación con

la de los líquidos y los sólidos, ya que la velocidad promedio de sus partículas es

mayor. Los líquidos poseen menos energía cinética que un gas, pero más que los

sólidos, pues sus partículas se desplazan con cierta velocidad para ocupar la forma

del recipiente que los contiene. Las partículas de los sólidos vibran prácticamente enun mismo lugar, por lo que su velocidad es muy pequeña.

FIGURA 9. Representaciónde un líquido, un sólidoy un gas con el modelo

cinético de las partículas.

Un sólido, por ejemplo la roca, posee una forma

determinada, que no varia fácilmente. Esto, porque

las partículas del sólido están unidas fuertemente

entre si para formar una estructura firme.

Sólido

Un gas llena el espacio que lo encierra

y no posee formas ni volumen propios, adopta

la forma de su recipiente, como el helio

contenido en el globo de la imagen.

Gas

El líquido toma la forma del vaso que lo contiene.

Así, si el agua del vaso se derrama sobre una

superficie, la forma del líquido cambia, pero su

volumen permanece constante.

Líquido

Estados de la materia

Beltrán, Faustino, La culpa

es de las moléculas, México,

SEP-Lumen, 2006 (Colección

Libros del Rincón).

Wolke, Robert L., Lo que

Einstein le contó a su coci-

nero, México, SEP-Ediciones

Robinbook, 2004 (ColecciónLibros del Rincón).

Lee más...

B3

Page 162: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 162/276

160

S1

Las partículas se representan con pequeñas esferas. En un sólido

las partículas interactúan intensamente entre sí y se encuentran prác-

ticamente unidas, de manera que se mueven cerca de su posición de

equilibrio con muy baja velocidad. En un líquido la interacción entre

las partículas es menos intensa que en los sólidos, de tal forma que

éstas pueden desplazarse con mayor velocidad. En un gas, la interac-

ción entre sus partículas es débil; de hecho, en un gas perfecto o ideal,

esta interacción se considera inexistente y las partículas alcanzan gran

velocidad y por tanto el gas se expande muy fácilmente.

Analicemos un proceso por el cual pasa una porción de materia y

expliquémoslo en términos de velocidades de partículas.

Material

• 1 matraz de Erlenmeyer (o frasco de 500 ml)

• 5 cubos de hielo que quepan por la boca del matraz

• 1 parrilla eléctrica o mechero de Bunsen con rejillay trípode

• 1 cronómetro

Procedimiento

a. Pongan los cubos de hielo en el matraz y cubran la boqui-lla del matraz con el globo.

b. Pongan a calentar el matraz en la parrilla o el mechero yactiven el cronómetro.

c. Registren el tiempo que tardan todos los cubos de hielosen derretirse y prosigan con el calentamiento.

d. Registren el tiempo que tarda el agua en hervir.

e. Registren el tiempo que tarda en evaporarse toda el agua.

Resultados

1. Copien esta tabla en su cuaderno o en un archivo electrónico.

Actividades Tiempo (s)

Fusión de los hielos

Ebullición del agua

Evaporación de toda el agua

Describan lo sucedido con el globo.

Experimenta

Compara la velocidad promedio de las partículas en diferentes estados de agregación

Análisis de resultados

1. Reflexionen por equipos sobre lo siguiente.• ¿En qué estado de agregación (sólido, líquido o gas)

es mayor la velocidad de las partículas? ¿Cuál es la pruebade ello?

• ¿Cómo explican lo sucedido con el globo?

• ¿Qué pasa con la velocidad de las partículas que constitu-yen el hielo cuando éste se calienta?

2. Con la ayuda del maestro, comparte tus resultados yelaboren una conclusión vinculada al modelo cinético departículas.

Superficie caliente.

Para observar el comportamiento de lasmoléculas en los diferentes estados de lamateria, consulta los recursos ubicados en:

www.lamanzanadenewton.com/materiales/aplicaciones/ltc/La_Teoria_Cinetica.html

http://conteni2.educarex.es/mats/14342/contenido/

Page 163: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 163/276

161

La estructura de la materia a partirdel modelo cinético de partículas

No podemos percibir, sólo con nuestros sentidos, cómo está estructurada la materia,pero es posible lograr acercarse a través de los avances en ciencia y tecnología.

En la imagen se muestra un modelo tridimensional de la molécula de DNA.

161

Las propiedades de la materia: masa, volumen,densidad y estados de agregación.

Presión: relación fuerza y área; presión en fluidos.Principio de Pascal.

Temperatura y sus escalas de medición.

Calor, transferencia de calor y procesos térmicos:dilatación y formas de propagación.

Cambios de estado; interpretación de gráfica depresión–temperatura.

Aprendizajes esperados

S2

• Describirás cadenas

de transformación

de la energía en el

entorno y en actividades

experimentales, en las

que interviene la energía

calorífica.

• Interpretarás la expresión

algebraica del Principio

de la Conservación de la

Energía, en términos dela transferencia del calor

(cedido y ganado).

• Argumentarás la

importancia de la energía

térmica en las actividades

humanas y los riesgos en

la naturaleza implicados

en su obtención y

aprovechamiento.

B3

Page 164: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 164/276

162

S2

•Las propiedades de la materia: masa, volumen,densidad y estados de agregación

Explora

• ¿Qué entiendes por materia?

• ¿Qué propiedades de la materiaconoces?

• ¿Cómo pueden medirse las propieda-des que se conocen?

• ¿Qué características te permitiríandistinguir cada estado de la materiaen la figura?

2. Con la ayuda del maestro, compartansus respuestas y seleccionen entretodos las mejores explicaciones a loscuestionamientos.

En la Tierra se puede encontrar al agua en tresestados de agregación simultáneamente.

1. En esta sección abordaremos algunas propiedades de la materia. Para comenzar, explora contus compañeros de equipo lo que sabes acerca del tema, respondiendo las siguientes preguntas:

La materia es la sustancia física del Universo, es cualquier cosa que tiene masa y ocu-

pa un espacio. Con esta noción intuitiva podemos identificar a la materia en diferentes

estados de agregación o estados físicos a partir de sus características perceptibles. Por

ejemplo, al tocar un sólido rígido, como una piedra, notamos sin ninguna dificultadque su forma no cambia por más que lo apretemos. Por otra parte, nos damos cuenta

también de que un líquido adquiere la forma del recipiente que lo contiene y al in-

troducir en él un objeto, éste es rodeado por el líquido. Nos cuesta más trabajo iden-

tificar a un gas, como el aire que respiramos, pero al observar un balón inflado con

aire, un globo llenado con helio o las llantas de un auto percibimos claramente que

los gases adoptan, al igual que los líquidos, la forma del recipiente que los contiene.

Conforme se calientan los cubitos de hielo las partículas que los constituyen au-

mentan su energía cinética y se mueven cada vez más rápido. Por lo tanto, aumentan

su velocidad, se aceleran y vencen las fuerzas que las mantenían prácticamente unidas

entre sí, con lo cual el hielo pasa al estado líquido. La velocidad que adquieren las

partículas en este estado es relativamente baja, pero mucho mayor en comparación

con la que tenían en el estado sólido.

Las partículas que conforman un gas chocan repetidamente contra las paredes del

recipiente que las contiene (figura 10). Entonces el gas se expande. Como estas partí-

culas se mueven con gran velocidad, golpean constantemente las paredes del recipiente

manteniendo, en conjunto, una fuerza resultante contra ellas (como cuando soplas para

formar una burbuja de jabón, el aire trata de escapar en todas direcciones empujan-

do esa delgada pared en formación). Por esta razón, es necesario aplicar una fuerza

externa mayor que la que ejercen las partículas sobre las paredes para obligarlas a

Page 165: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 165/276

163

B3

retraerse y quedar confinadas en un volumen; por ejemplo, si soplas con mucha fuerza

la película de jabón no resiste y se rompe; debes soplar lentamente para no vencerla.

Sin embargo, al mismo tiempo la fuerza externa acelerará las partículas y aumentará su

velocidad (la burbuja de jabón “baila” hasta hacerse redonda, o reventarse).

Aunque aumente la velocidad de las par tículas de un gas , si hay suf iciente espa-

cio, es probable que éstas se muevan en todo el volumen disponible

sin que se acerquen tanto que se presenten interacciones entre ellas, y

como una posible consecuencia de ello, el gas pase al estado líquido

(como sucede, por ejemplo, en una cacerola tapada en la que hay sopa

muy caliente: como el vapor (gas) no escapa, vemos que en la tapa se

condensan gotas de agua).

Existe otra propiedad que es común a todos los cuerpos, que son por-

ciones delimitadas de materia. Esta propiedad se asocia con su extensión:

largo, ancho y altura. Por lo tanto, todos los cuerpos ocupan una cierta

región del espacio, es decir, tienen volumen.El volumen de un cuerpo puede calcularse. Por ejemplo, el volumen

de un cubo se calcula multiplicando su largo por su ancho y por su al-

tura. Por lo tanto, si nuestro cubo de referencia tiene un metro de largo,

uno de ancho y uno de altura, su volumen, V , es:

V = 1 m × 1 m × 1 m = 1 m 3

Como ya sabes, el metro es la unidad fundamental de longitud en el Sistema Inter-

nacional, y la unidad de volumen en este sistema es el m3 (metro cúbico), el volumen

es, entonces, una unidad derivada* del Sistema Internacional.La idea que está detrás de una medida de volumen es la de poder determinar

cuántos de estos cubos caben en un cuerpo que ocupa cierto espacio. No obstante,

el metro cúbico es una unidad relativamente grande de volumen para aplicarla a cual-

quier cuerpo. Por ello, se define como unidad de volumen el lit ro (l),* que es mucho

más pequeña que el m3; en 1 m3 caben 1 000 l. El litro se utiliza sobre todo para medir

el volumen de líquidos y gases. Por ejemplo, cuando vamos a la tienda nunca pedimos

la leche diciendo: “Por favor, ¿me da tres milésimos de metro cúbico de leche?”; lo

más común es pedir tres litros (3 l) de leche, o bien, tres cartones de leche, sabiendo

que cada cartón corresponde a un litro; así también, pedimos medio vaso de agua.

Notemos que en los casos de los líquidos y gases nos referimos al volumen delrecipiente que los contiene y se lo adjudicamos al líquido o al gas, según sea el caso,

pues se trata de una unidad de medida.

1 l = 1 m3 / 1000 = 1 m3 (1/1000) = 1 × 10 -3 m3

Veamos qué ocurre con el volumen de un cuerpo, que es una porción de materia,

cuando se le somete a un cambio físico. Para ello realicen la siguiente actividad.

FIGURA 10. La imagen representalas partículas que conforman ungas. Las partículas se concibencomo esferas pequeñas quese mueven a gran velocidad yrebotan continuamente contra

las paredes del recipienteque las contiene y colisionanentre sí. El hecho de que laspartículas de un gas estén muyseparadas entre sí permiteexplicar por qué un gas sepuede comprimir, y ocupar asíun volumen menor.

* Para conocer estas y otras medidas fundamentales y derivadas del Sistema Internacional, consulta el Apéndice de este libro.

Page 166: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 166/276

164

S2

Reconoce algunas propie-dades de la materia comoel volumen, la masa y elpeso, trabajando con lossiguientes recursos interac-tivos, disponibles en:

http://conteni2.educarex.es/mats/14344/contenido/

http://conteni2.educarex.es/mats/14341/contenido/

Una de las propiedades de la materia que se manifiesta en cualquier estado de agre-

gación y a cualquier escala es la masa, que se define como la cantidad de materia que

forma un cuerpo. En el Sistema Internacional la masa se mide en kilogramos (kg) y elpatrón de esta magnitud es una pesa formada de una aleación de platino e iridio, que

se conserva en la Oficina Internacional de Pesos y Medidas en París, Francia.

Otra propiedad de la materia que se manifiesta en el nivel macroscópico es la den-

sidad, que se denota generalmente con la letra griega rho (ρ ). Matemáticamente, la

densidad se define como el cociente de la masa (m) de un objeto entre su volumen (V ):

Experimenta y comunica tus avances en ciencias

Mide el volumen de un fragmento de materia

Material

• 1 barra de plastilina• 1 espátula• 1 regla

Pr ocedimiento

a. Midan el largo, el ancho y la altura –o grosor– de la barrade plastilina.

b. Deformen la barra de plastilina y transfórmenla en unaesfera, moldeándola con las manos.

c. Corten con la espátula la esfera a la mitad y midan sudiámetro con la regla.

d. Calculen el volumen que ocupaba la plastilina con forma debarra. Utilicen sus mediciones en centímetros (cm).

e. Calculen el volumen de la plastilina en forma de esfera

usando la siguiente ecuación:

donde V es el volumen de la esfera y d es su diámetro.

f. Conviertan los volúmenes de centímetros cúbicos a metroscúbicos (m3).

Resultados

1. Anoten los volúmenes calculados en cm3 y en m3 en sucuaderno. Esta tabla puede servirles.

Forma de laplastilina

Volumenen cm3

Volumenen m3

Barra

Esfera

Análisis de resultados

1. Reflexionen por equipos sobre lo siguiente.

• ¿Coinciden los volúmenes calculados en ambas formas?¿Por qué?

• ¿Es el volumen una propiedad común para toda la materia? Justifiquen su respuesta.

• ¿Cómo podrían cambiar la plastilina de estado sólido alíquido? Planteen un experimento para lograrlo.

2. Compartan sus resultados con los compañeros de otrosequipos.

V = π

d 3

6

Al reducir el volumen que ocupa un gas, ocurre un cambio en su densidad, pues se

conserva la misma cantidad de materia o masa, que corresponde a la suma de las masas de

todas las partículas, pero ocupando un volumen menor, por lo que el gas es más denso.

Por ejemplo, es posible contener un gas en un volumen menor y provocar que su

estado de agregación cambie al de líquido, como ocurre con el del gas butano que

se utiliza cotidianamente. Mediante la tecnología esta sustancia es comprimida para

almacenarla en cilindros, y en estos recipientes el gas se encuentra “licuado”, en es-

tado líquido y su costo se mide por litros.

Físicamente podemos entender la densidad como la concentración de la materia

en un volumen específico. De hecho, la densidad es una propiedad que permite di-

ferenciar físicamente dos porciones de materia. Comparemos las densidades de dos

líquidos en la siguiente actividad.

m

V

Page 167: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 167/276

165

B3

Experimenta y comunica tus avances en ciencias

Mide la densidad del agua y del aceite y otras propiedades

Material

50 ml de agua• 2 probetas graduadas de 250 ml• 50 ml de aceite• 1 balanza

Procedimiento

a. Coloquen una probeta vacía sobre el plato de la balanza ymidan su masa.

b. Viertan el agua en la otra probeta .

c. Coloquen la probeta con el agua sobre el plato de la balanzay midan la masa: agua más probeta.

d. Repitan los pasos anteriores en el caso del aceite.

e. Resten a la masa más agua más probeta la masa de la pro-beta vacía. De esta manera se obtiene sólo la masa del agua.

f. Repitan el paso anterior, para obtener la masa del aceite.

g. Dividan la masa del agua entre su volumen para obtener sudensidad.

h. Repitan el paso anterior, para obtener la densidad del aceite.

Resultados

1. Anoten los resultados en su cuaderno en una tabla como lasiguiente.

Materia Masa (m)(g)

Volumen (V)(ml)

Densidad (ρ)(g/ml)

Agua

Aceite

2. Repitan la tabla anterior y expresen sus resultados en lasunidades correspondientes del Sistema Internacional.

Análisis de resultados

1. ¿La densidad sirve para distinguir, como en este caso, la ca-racterística de dos líquidos? Expliquen.

2. Además de la densidad, qué otras propiedades físicas y dife-rencias perciben entre el agua y el aceite.

3. Investiguen los nombres de otras propiedades que aparte

de la densidad hayan percibido en los casos del el agua y elaceite, enumérenlas en la tabla siguiente y den una breveexplicación de ellas, como se muestra en el ejemplo:

Características observablesen el agua y el aceite

Explicación de la diferenciasentre el agua y el aceite

4. Compartan sus resultados con los compañeros de otros equipos.

Evalúo mi avance

1. Si una masa de 50 g ocupa un espacio de 0.2 cm3, ¿cuál es su densidad?

2. Explica la diferencia entre masa y volumen.

3. ¿Cuál es la relación entre la rigidez de los sólidos y la disposición de sus partículas?

4. Describe cuatro cuerpos diferentes con base en sus propiedades físicas. Comparte tu lista conun compañero, identifica las semejanzas y enriquécela con las diferencias.

A lo largo de la historia, quienes han buscado conocer la realidad se han pregun-tado por qué hay diferencias entre las propiedades de la materia. Para explicarlas

han imaginado a la materia constituida por pequeños fragmentos, tan pequeños que

incluso se les compara con puntos matemáticos (sin volumen, longitud o área). Si

dibujas un punto en tu libreta o en el pizarrón y te le acercas lo suficiente, notarás

que sigue teniendo un tamaño; los objetos puntuales son tan pequeños que ocupan

el mínimo lugar posible en el espacio, y ni siquiera alcanzan a tener forma, aunque

estos fragmentos tienen masa y, en algunos casos, carga eléctrica u otras propiedades.

A estos “puntos de materia” se les dio el nombre de partículas.

En el bloque 4 verás que el modelo cinético de las partículas es insuficiente para

explicar todas las propiedades de la materia y avanzarás en el estudio de nuevas ex-

plicaciones que dieron lugar a los modelos atómicos.

Tagüeña, Julia; Carmen Ta-

güeña y Jorge Flores, Sólidos

y fluidos, México, SEP-Santi-llana, 2002 (Colección Libros

del Rincón).

Lee más...

Page 168: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 168/276

Page 169: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 169/276

167

B3

área; en el segundo, las huellas serán más profundas, pero ocuparán un área más

pequeña. La fuerza, entonces, se distribuye en la superficie de contacto o de apoyo,

en este caso de nuestros cuerpos, con el suelo, produciendo su deformación, como

observaste en la figura de la actividad Explora.

La fuerza aplicada sobre el suelo, y por lo tanto la profundidad de las huellas,

dependerá también de si caminamos o corremos; de la misma manera las huellas no

serán iguales si soportamos nuestro peso con un solo pie que si lo repartimos al pa-

rarnos con ambos pies en el suelo o ejercemos una fuerza adicional con los músculos

de una sola de nuestras piernas.

Experimenta

Analiza la presión empleando cuerpos sólidos.

Material

• 1 bloque de hule espuma blando (no compacto)de al menos 20 cm de grosor

• 5 ladrillos o tabiquesiguales

• 3 etiquetas adheriblesnumeradas del 1 al 3

• 1 balanza

• 1 regla graduada enmilímetros

Procedimiento

Experiencia A

a. Coloquen el bloque de hule espuma sobre una mesa.

b. Midan en la balanza la masa de uno de los ladrillos. Regis-tren el dato en la tabla correspondiente.

c. Marquen cada cara del ladrillo con su número, como seindica en la figura.

d. Midan con la regla el largo, el ancho y el alto del ladrillo.Registren las medidas en la tabla correspondiente.

e. Coloquen el ladrillo sobre su cara 1 encima del bloque dehule espuma.

f. Midan con la regla qué tanto se hunde.

• ¿Qué pasaría si colocaran el ladrillo sobre las otras caras?

h. Realicen la misma experiencia colocando el ladrillo sobrelas caras 2 y 3; efectúen la medición de cuánto se hundeen el bloque de hule espuma.

i. Anoten las mediciones en la tabla que corresponde a laExperiencia A.

Experiencia B

j. Elaboren una predicción:

• ¿Qué sucederá si, en estas condiciones, apilan dos ladrilloso más sobre el bloque de hule espuma?

k. Coloquen dos ladrillos apilados, cada uno sobre su cara 1 ymidan con la regla qué tanto se hunden.

l. Realicen la misma experiencia apilando un ladrillo máscada vez, hasta tener los cinco juntos.

> Continúa en la página siguiente

Siempre que midas debes colocar correctamente los ins-trumentos y registrar cada dato. Observa con atención.

Sostén el ladrillo con cuidado para que no secaiga, pero evita hacer fuerza sobre él, mientras tucompañero sigue midiendo. Para evitar errores enlas mediciones, dispongan los elementos cerca deuna esquina o muro en el que se pueda recargar elladrillo cuando éste es más inestable.

Page 170: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 170/276

168

S2

»

m. Anoten las mediciones en la tabla que corresponde a laExperiencia B.

Resultados

Experiencia A

1. Copien esta tabla en su cuaderno y registren en milímetroslas dimensiones del ladrillo que emplearon.

Dimensiones del ladrillo en milímetros

Alto

Largo

Ancho

2. Ahora calculen en milímetros cuadrados el área de cada caracomo se indica en la tabla y anoten en su cuaderno cuántosmilímetros se hundió el ladrillo en el bloque de hule espuma.

Área en milímetros cuadrados Hundimientoen milímetros

Área de la cara 1 = largo por ancho

Área de la cara 2 = largo por alto

Área de la cara 3 = alto por ancho

Experiencia B1. Registren en gramos la masa de un ladrillo. Multipliquen este

valor por 2, 3, 4 y 5 para obtener la masa de varios ladrillos.

Número de ladrillos Masa en gramos

1

2

3

4

5

Análisis de resultados

• ¿Qué magnitud se mantuvo constante en la Experiencia A, lamasa o el área?

• ¿Y cuál fue constante en la Experiencia B?

• ¿Qué tan cercanas a los datos medidos fueron sus prediccio-nes en cada caso?

1. Elaboren una gráfica en su cuaderno por cada experienciacomo se indica.

2. Discutan en el grupo las siguientes cuestiones.

• En la Experiencia A, ¿cómo varía el hundimiento del ladrilloen el bloque de hule espuma cuando aumenta el área de lacara sobre la que se coloca?

• En la Experiencia B, ¿cómo varía el hundimiento del ladrilloen el bloque de hule espuma cuando aumenta la masa delo que se coloca sobre él?

• ¿Qué fuerza produce el hundimiento o deformación del blo-que de hule espuma? Expliquen mediante la representaciónvectorial.

• ¿Cómo cuantificarían esta fuerza?

• Si eliminaran el bloque de hule espuma y colocaran el o losladrillos directamente sobre la mesa, ¿cambiaría la fuerzaque ejercen éstos? ¿Por qué? ¿Por qué entonces la mesa nose deforma como el bloque de hule espuma? Expliquen.

3. Compartan sus resultados con los demás equipos del grupo,resuelvan sus dudas y si éstas persisten, consulten al maestro.

H u n d i m i e n t o ( m m )

Área ( mm2 )

H u n d i m i e n t o ( m m

Masa ( )

Experiencia A: gráfica de hundimiento contra área.

Experiencia B: gráfica de hundimiento contra masa.

Page 171: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 171/276

169

B3

Habrás notado que en la definición de la presión sólo consideramos las fuerzas

que son perpendiculares a la superficie. Ahora bien, si la fuerza ejercida no es sólo

perpendicular, podemos considerar la suma de dos fuerzas, una de las cuales es per-

pendicular y la otra paralela a dicha superficie. La situación se ilustra en la figura 11.

En cuanto a las unidades en que se mide la presión, tenemos que:

[N]/[m2] = [ Pa]

Es Pa la abreviatura de “ pascal ”. Así como la unidad de fuerza es el newton en el

Sistema Internacional de Unidades, en honor de Isaac Newton, el pascal se denomina

así en honor del físico y matemático francés Blaise Pascal, cuya imagen aparece en la

figura 12, quien, entre muchos otros temas, abordó el estudio de la presión, específi-

camente en el caso de fluidos y cuyos resultados veremos más adelante. El pascal sedefine como la presión que ejerce una fuerza perpendicular de 1 newton sobre una

superficie de 1 metro cuadrado de área.

¿Qué sucede cuando se aplica una fuerza a un fluido? A diferencia de los sólidos (en

especial a los sólidos rígidos o indeformables), los fluidos se deforman fácilmente

ante cualquier fuerza, incluso si es de muy poca intensidad (débil). Se les llama fluidos

precisamente por su capacidad de fluir, lo que significa que unas partes del cuer-

po se desplazan sobre las otras partes.

Una consecuencia de esto es que, como

sabes, los fluidos no tienen una forma

definida, y adoptan la del recipiente

que los contiene. La resistencia a fluir

se llama viscosidad . Hay fluidos muy

viscosos, como la miel o la cajeta; en

cambio, líquidos como el agua o el al-

cohol son muy poco viscosos. Los gases

prácticamente no presentan resistencia

al flujo. En lo sucesivo, consideraremos

a todos los fluidos como no viscosos, o

bien como “fluidos ideales”.

FIGURA 11. La fuerza F 1 esperpendicular a la superficie en

la que se distribuye. La fuerzaF 2, en cambio, es oblicua, perose puede considerar como lasuma de las fuerzas F A y F B.Para el cálculo de la presión enla misma superficie, debemosconsiderar sólo la fuerza per-pendicular, en este caso F A. Lafuerza F B no influye para nadaen la presión, pues es paralela ala superficie.

N

m2 P = = Pa

F A

P = ,

F 1

F 2

F A

F B

FIGURA 12. (a) Retrato anónimode Blaise Pascal (1623-1662). Susinvestigaciones se dirigieron atemas como el sonido producidopor membranas vibrantes y lapresión en líquidos, así comoa relaciones de la geometríay las matemáticas; diseñó unacalculadora mecánica llamada“Pascalina” (b), capaz de efectuarsumas y restas, e inclusohizo avances en el cálculo de

probabilidades.

a

b

Page 172: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 172/276

170

S2

Para el estudio de los fluidos, en especial de las fuerzas in-

ternas que actúan en ellos, así como su comportamiento cuando

están sometidos a fuerzas externas, es frecuente imaginarlos divi-

didos en secciones o capas. Las fuerzas internas en un fluido en

reposo son siempre perpendiculares a la superficie del mismo, así

como a las paredes del recipiente que los contiene. Estas fuerzas

provienen de las porciones contiguas del fluido, que empujan a la

porción en la que fijamos nuestra atención, como se muestra en

la figura 13. De no cumplirse esta condición, el fluido no estaría

en reposo.

Ahora bien, cuando se aplica una fuerza externa a un fluido, al

igual que a un cuerpo sólido, esta fuerza se distribuye en todos

los puntos del fluido. Ya sea que se trate de un gas o un líquido,

la fuerza producirá deformación del fluido, pero, ¿qué diferencia

hay entre un líquido y un gas?

FIGURA 13. Fuerzas perpendiculares queactúan sobre un fluido en reposo.

Experimenta

Investiga la compresibilidad en líquidos y gases

Material

• 2 globos pequeños

• Agua

Procedimiento

a. Llenen el globo A con agua y anúdenlo perfectamente.b. Inflen con aire el globo B, de manera que quede del mismo

tamaño que el globo A, y anúdenlo. Hagan un dibujo decómo se ven los globos.

c. Observen la superficie de los globos cuando están llenos.

d. Formulen una predicción acerca de qué pasará en cadaglobo al apretarlo para intentar reducir el volumen delfluido contenido en él.

e. Aprieten cada globo con sus manos, procurando reducir sutamaño.

f. Observen el comportamiento del fluido contenido en cadaglobo.

Resultados

1. Dibujen el aspecto de cada globo después de apretarlo ycomparen esto con los dibujos que hicieron al llenarlos.

2. Anoten sus observaciones acerca de cómo se comportaron losfluidos al comprimirlos.

Análisis de resultados

1. Discutan en el grupo y contesten las siguientes cuestiones:

• ¿Cuál de los dos globos se notó más estirado al estar lleno,el que contiene aire o el que contiene agua?

• ¿Es igual el volumen que ocupa el fluido en cada globo?

• ¿Cuál de los fluidos tiene mayor densidad?

• ¿Cómo se relaciona la densidad del fluido contenido encada globo con el estiramiento del globo en sí?

• ¿Cómo se relaciona tu respuesta anterior con el conceptode presión?

¿Cuál de los globos disminuyó su volumen al aplicarle unafuerza de compresión?

• ¿Son compresibles los gases? ¿Y los líquidos?

• ¿Cómo varían las densidades del aire y del agua, respecti-vamente?

2. Expliquen verbalmente por equipos lo observado con base enel modelo cinético de las partículas. Comenten entre todos yredacten en su cuaderno una explicación.

Si aprietas estos globos con mucha fuerza, ¿cuál de ellos sereventaría con más facilidad, el que está lleno de agua o el quecontiene aire? ¿Por qué?

Globo A Globo B

Page 173: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 173/276

171

B3

Como se evidenció en la actividad anterior, hay una diferencia fun-

damental entre los líquidos y los gases: al aplicarles una fuerza externa,

los gases se comprimen con relativa facilidad, ocupando un volumen

menor y aumentando, por consiguiente, su densidad; por su parte, los

líquidos son prácticamente incompresibles , es decir, no puede ocupar

un volumen menor, ni variar su densidad, al aplicarles una fuerza.

Antes de realizar la act ividad, comentamos que las fuerzas que ac-

túan en los fluidos en reposo son perpendiculares a las paredes del

recipiente que los contiene, por lo que satisfacen el requerimiento

para ser fuerzas que generan presión. Decimos entonces que un fluido

ejerce presión sobre las paredes del recipiente que lo contiene, sin

importar la forma de dicho recipiente. En ausencia de fuerzas externas,

incluida la gravedad, la presión ejercida por un fluido sobre las paredes

de un recipiente cerrado es igual en cualquier punto.

A partir de sus observaciones, Pascal concluyó que, dado que los l í-quidos son incompresibles, si se ap lica una fuerza externa a un líquido

la presión que produce se transmite homogéneamente, es decir, con

la misma intensidad y en todas las direcciones dentro de dicho líquido

(figura 14). Esta afirmación se conoce como Principio de Pascal .

Una aplicación importante del principio de Pascal es la prensa hidráu-

lica , como la que se muestra en la figura 15. Consta de dos cilindros de

diferente diámetro conectados entre sí como vasos comunicantes, cuyo

interior está completamente lleno de un líquido que puede ser agua

o aceite. Cada cilindro tiene un émbolo de diámetro diferente. Cuando

sobre el émbolo de menor diámetro (y por consiguiente menor área) A1 se ejerce una fuerza F 1, la presión P 1 que se origina en el líquido en

contacto con él se transmite íntegramente a todo el resto del líquido;

por lo tanto, la presión P 2 que el líquido ejerce sobre el émbolo mayor

(de área A2) es igual a la presión P 1. La presión P 2 origina una fuerza F 2

que es mayor que la fuerza F 1 que aplicamos al émbolo de menor área.

En términos matemáticos, tenemos que la presión que se genera en

el émbolo pequeño es:

P 1 = F 1 —

A1

(1)

La presión en el émbolo grande es, por supuesto,

P 2 = F 2 —

A2

(2)

Por el principio de Pascal, la presión en todos los puntos del líquido

es igual, por lo que:

P 1 = P 2 (3)

y, sustituyendo los valores de P 1 (de la ecuación 1) y P 2 (de la ecuación

2) en la ecuación 3, tenemos que, en consecuencia:

F 1 —

A1

= F 2 —

A2

(4)

FIGURA 14. La jeringa de Pascal es una compro-bación experimental de que los líquidos son

incompresibles. Consiste en una esfera con orificiosen todas partes, obturados con tapones de cera,conectada a un émbolo y totalmente llena deagua. Al empujar el émbolo, los tapones se botany sale el líquido con la misma presión por todoslos orificios, siempre en dirección perpendicular ala superficie de la esfera.

FIGURA 15. La prensa hidráulica es un dispositivoque devuelve una fuerza mayor a la aplicada; unaespecie de máquina multiplicadora de fuerza. ¿Porqué puede elevarse un automóvil aplicando esteprincipio?

A2

A1

F 1

F 2

Page 174: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 174/276

172

S2

Si despejamos F 2 de la ecuación, que es la fuerza que nos “devuelve” la prensa

hidráulica en el émbolo de mayor área, sabremos por qué es mayor que la fuerza F 1

con que empujamos el émbolo pequeño, pues

F 2 = A2 —

A1

F1 (5)

La razón entre las áreas ( A2/ A1) es necesariamente mayor a 1, pues A2 > A1, por lo

que la fuerza F 2 siempre será mayor a la fuerza F 1.

Además de los gatos hidráulicos, la prensa hidráulica tiene muchas aplicaciones. Los

controles de dirección de autos pesados, embarcaciones y aviones son hidráulicos; el

ser humano no tiene la fuerza suficiente para moverlos manualmente. En la industria

se ocupan regularmente prensas hidráulicas para doblar, cortar, moldear o troquelar

todo tipo de piezas de materiales maleables, como los metales. Las grúas que levantan

objetos muy pesados suelen utilizarlas, así como los elevadores. El principio de Pascal

es válido para los líquidos y los gases siempre y cuando los fluidos se encuentren

confinados en un espacio completamente cerrado.Como ya has visto en tu curso de Geografía de México y el mundo, la presión

atmosférica es la presión ejercida perpendicularmente por los gases de la atmósfera

sobre cualquier cuerpo en la superficie terrestre. A mayor altitud, menor es la presión

y viceversa (figura 16).

Para medir la presión atmosférica se utiliza un barómetro, semejante en su funcio-

namiento al que construyera Torricelli (figura 17). Puede hablarse indistintamente de

presión atmosférica o p resión barométrica. También hay unidades especiales como

la atmósfera de presión, que equivale, justamente, a la presión barométrica al nivel

del mar. Se abrevia como “atm”. Otra unidad común son los milímetros de mercurio

(pueden abreviarse como “mm Hg”, ya que Hg es el símbolo del mercurio). A niveldel mar, naturalmente, tendremos que 1 atm = 760 mm Hg.

Por otra parte, 1 atm de presión equivale a 101 325 Pa.

De acuerdo con el modelo cinético, desarrollado muchos

años después de la muerte de Pascal, la presión a nivel

microscópico puede explicarse como el resultado de las

colisiones de las partículas entre sí y con las partículas de

cualquier cuerpo con el que esté en contacto.

En términos del modelo cinético, la presión atmosférica

es producida por el movimiento de las partículas que con-

forman el aire, la presión que ejercen también contribuye

a que interactúen más entre ellas conforme menor sea la distancia del suelo, pues

soportan una enorme columna de otras partículas chocantes. Por ello es dist inta la

presión a nivel del mar que sobre una montaña o superficie que se encuentre, por

ejemplo, a 2 000 msnm (metros sobre el nivel del mar).

De estás comparaciones ya podrás deducir que la temperatura interfiere con los

cambios de presión, por lo que es importante que sepas que los valores de presión

atmosférica, antes citados, se han determinado a una temperatura de 4°C. Más adelante

veremos cómo la altitud t iene efectos en la presión atmosférica, lo cual también puede

determinar la temperatura de fusión y de ebullición de la materia.

FIGURA 16. La presión atmos-férica es originada por el pesodel aire y es uno de los factoresque determina el clima de unaregión.

FIGURA 17. El experimento ori-ginal de Torricelli fue efectuadoen su cuidad natal, Florencia,que está prácticamente al niveldel mar. La columna de mercu-rio se elevó a 760 mm Hg.

A

l t i t u d

La columna de mercurio se eleva 760 mmsi el experimento se hace al nivel del mar

7 6 0 m m Fuerza ejercida por la columna

de aire por su peso

Mercurio

Page 175: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 175/276

173

B3

Reflexiona con un último ejemplo. El corazón de muchos seres vivos, incluido

el tuyo, es una bomba que funciona bajo estos mismos principios ( figura 18):

los componentes de la sangre son empujados por los músculos de este órgano

vital, con sufic iente fuerza para que el flu ido circule por todo el cuerpo, desde

tu cabeza hasta los dedos de cada extremidad. Hay factores asociados a la salud

que pueden afectar la presión sanguínea; cuando una persona padece de presión

baja, siente mareos y sufre desmayos pues no llega suficiente sangre a todas par-

tes. (No te asustes, no son los únicos síntomas, también puedes marearte al dar

demasiadas vueltas.) La explicación es que el corazón no bombea la sangre con

la fuerza suficiente o aumenta el volumen de las arterias y aunque se mantenga

la fuerza de bombeo, la presión disminuye; en el caso contrario, un exceso de

flujo sanguíneo o presión sanguínea alta, ocurre cuando el corazón bombea con

más fuerza o bien cuando nuestras arterias se encuentran obstruidas (debido a la

ingesta excesiva de sal o de grasas), y entonces el volumen de las arterias dismi -

nuye y la presión aumenta.La presión es una magnitud presente en cualquier estado de agregación de la

materia, y su intensidad puede determinar cada estado, entre otros factores que

estudiarás más adelante en este bloque.

FIGURA 18. La circulación de la sangreen cualquier vertebrado funcionagracias a la fuerza de presión queejerce el corazón.

Evalúo mi avance

El elefante está parado sobre elémbolo mayor de una prensahidráulica, este dispositivo estaprensa hidráulica es el resultadode la aplicación de la ciencia a latecnología.

1. Calcula en newtons la fuerza que obtendremos en una prensa hidráulica si el émbolo menor tiene un áreade 0.2 m2 y el mayor tiene un área de 2 m2, considerando que aplicamos una fuerza de 3 924 N.

2. Observa las imágenes y explica tu respuesta en cada caso:

Este tapete está hechocon aproximadamente625 clavos.

Las presas requieren paredes de concreto que se vanengrosando conforme aumenta la profundidad, como seobserva en esta imagen.

• ¿Será esta fuerza suficiente para levantar a un elefante de

4 toneladas? (Recuerda que una tonelada tiene 1 000 kg). Justifica tu respuesta.

• ¿Por qué una persona se pararía en una cama de clavos sintemor a dañarse, pero no caminaría sobre ella?

• ¿Por qué las presas se construyen con paredes muygruesas en su base? Explica.

2. ¿Qué pasaría si una prensa hidráulica se llenara con un gasen vez de un líquido? Justifica tu respuesta utilizando elprincipio de Pascal.

3. En equipo intenten representar con el modelo cinético departículas, que puede ser un esquema, lo que ocurre cuandouna persona padece de presión alta.

Page 176: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 176/276

174

S2

•Temperatura y sus escalas de medición

Explora

1. Reúnanse por parejas y reflexionen sobrelo siguiente.

Galileo construyó un dispositivo llamadotermoscopio, que se considera elantecedente del termómetro de mercurio.El termoscopio se formaba con un recipienteque contenía agua y alcohol, y un tubo devidrio sin graduación con un extremo enforma esférica y el otro extremo con unaentrada de diámetro pequeño, como seobserva en la fotografía. Al calentarse labola de vidrio con las manos o con la flama

de una vela, el aire interior se dilataba yempujaba el agua del tubo.

• ¿Cuál era la función del termoscopio?

• ¿Qué semejanzas y diferencias tiene conrespecto a los termómetros que conocen?

• ¿Qué es lo que mide un termómetro?

Termoscopio de Galileo.

Fue el científico escocés Joseph Black (1728-1799) quien demostró en 1720 la diferen-cia entre calor y temperatura mediante un experimento. Puso un recipiente con agua

en una hornilla y junto al recipiente colocó un disco metálico. Puso a calentar estos

cuerpos con el mismo fuego durante casi 5 minutos, y decidió tocar con su mano el

agua y el disco. Black sintió como el disco le quemaba la mano, mientras que el agua

no. Después midió la temperatura con un termómetro, que Gabriel Daniel Fahrenheit

(1686-1736) había construido apenas cuatro años antes, y se dio cuenta de que los

cuerpos tenían diferentes temperaturas, como se puede probar en un laboratorio es-

colar (figura 19). Black dedujo entonces, que si la misma cantidad de calor, incluso

con objetos de la misma masa, producía diferente temperatura, entonces cada objeto

requería diferente cantidad de calor para aumentar su temperatura. Años después Benjamin Thompson (1753-1814), también conocido como el conde

de Rumford, observó cómo se quemaba la mano un obrero después de tocar una

pieza de bronce sobre la que había estado taladrando. Luego de mandar al obrero

a la enfermería para que le curaran la ampolla que se le había formado, Thompson

tomó una cubeta con agua y pidió a algunos de sus trabajadores que levantaran con

pala los restos del metal que quedaban en el suelo y los echaran en el agua. Rumford

observó que las virutas de metal hacían hervir el agua y sospechó que éstas se habían

calentado, no por algún fluido calórico que existiera dentro del metal, sino debido a

la fricción (roce) del taladro con el bronce.

FIGURA 19. Si se aplica el mismocalor de la hornilla a un litro deagua y a un litro de limonada,los valores de temperatura enambos cuerpos serán distintos.

Page 177: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 177/276

175

B3

Experimenta

Construye tu propio termómetro.

Materiales para experimentar

Material

• 1 popote rígido. Si consigues un tubo de vidrio, mejor.

• 1 botella de plástico con taparrosca horadado(con un orificio)

• 1 plumón con tinta indeleble

• 3 vasos: uno de agua con hielo, otro con agua al tiempoy el último con agua caliente.

• Colorante vegetal (en frasco con gotero)

• 1 palangana

• 1 regla de 30 cm

• 1 termómetro de escala Celsius o Fahrenheit (opcional)

Procedimiento

a. Introduzcan agua en la botella hasta un1—

4 de su capacidad

y viertan el colorante. Agiten la botella para que se mezclemás rápidamente el colorante.

b. Pasen el popote por el orificio de la tapa y enrósquenlaperfectamente en la botella.

c. Viertan el vaso de agua con hielo en la palangana eintroduzcan el dispositivo que han construido. Dejen queentre aire durante un rato y cuando el líquido coloreado seestabilice, midan esta altura con la regla.

d. Retiren su dispositivo y saquen el popote para hacer unamarca con el plumón a la altura que midieron por fuera dela botella. Luego, dejen listo el dispositivo para hacer lasiguiente medida. Si cuentan con un termómetro adicional,midan la temperatura del agua de la palangana y regístrenla.

e. Sustituyan el agua fría de la palangana por agua al tiempo.Midan la altura del líquido cuando se estabilice y hagan lamarca correspondiente en el popote. Midan la temperaturasi cuentan con otro termómetro.

f Sustituyan el agua al tiempo con el agua caliente y midanla tercera altura del líquido cuando se estabilice. Hagan lamarca correspondiente en el popote. Midan la temperaturasi cuentan con otro termómetro.

g. Coloquen su dispositivo sobre una mesa y esperen a que se

estabilice el líquido. Midan la altura y la temperatura am-biental haciendo una marca en el popote para esta altura.

h. Para graduar todo el termómetro, hagan marcas en el popo-te a intervalos regulares. Esa es su escala de temperatura.Si cuentan con un termómetro adicional, pueden obtener laequivalencia entre su propia escala con la del termómetro.

Resultados

1. Copien esta tabla en su cuaderno para registrar sus mediciones:

Materiales amedir

Temperatura(cm de agua

coloreda)

Temperatura(OC) (opcional)

Agua con hielo

Agua al tiempo

Agua caliente

Aire ambiental

Análisis de resultados

• ¿Cómo funciona su termómetro?

• ¿Por qué el líquido tiene diferentes alturas según los distintosmateriales?

El dispositivo que construiste con tu equipo funciona gracias a uno de los efectos del

calor: la dilatación. Los materiales con mayor temperatura provocan que el aire de

la botella se dilate y ejerza presión sobre el líquido. Para poder equilibrarse con la

presión atmosférica exterior el líquido sube por el popote. Cuando se enfría ocurre

lo contrario. Esto se debe a un mecanismo de transferencia de calor que abordaremos

en el siguiente contenido.

El calor no es un fluido o una sustancia material, como sostenía la teoría del

calórico. Pero, ¿entonces qué es? El calor es una forma especial de la energía ciné-

Explora las escalastermométricas en:

www.educaplus.org/gases/con_temperatura.html

Page 178: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 178/276

176

S2

tica porque tiene que ver con el movimiento de los cuerpos, pero se manifiesta en

partículas muy pequeñas de orden microscópico que se desplazan caóticamente, es

decir, en distintas direcciones. El calor es energía en tránsito o en movimiento que

se transmite de los cuerpos que se encuentran a mayor temperatura a los que tienen

menor temperaturade manera espontánea. Esta magnitud física depende, entre otros

factores, de la cantidad de masa de un cuerpo y de su composición molecular. Por

ejemplo, sabemos que si ponemos al fuego una olla con 1 litro de sopa, y al mismo

tiempo colocamos otra olla del mismo material y tamaño con ½ litro de sopa, la pri-

mera tardará más en calentarse porque contiene más materia.

Aunque no podemos observar directamente las moléculas que forman la masa del

líquido del termómetro, o el agua que hay en una olla hirviendo, sí podemos ver

claramente que el agua se mueve produciendo choques contra las paredes y entre

las burbujas de la superficie. Si el recipiente es transparente podemos apreciar muy

bien que el mayor movimiento ocurre en la parte cercana al fuego ( figura 20), que

es la fuente de calor que ha logrado transferir esta energía al material de la olla yluego al agua.

La temperatura es una medida de la energía ci-

nética promedio de las partículas que conforman un

sistema, que es un efecto de los choques entre las

moléculas. La diferencia de temperatura entre dos

cuerpos que interactúan, indica la cantidad de calor

transferido entre ambos, como ocurrió con tu termó-

metro. Los choques tienen efecto en el líquido que

se desplaza por el tubo capilar. Cuanto más intensos

son los choques en el cuerpo cuya temperatura seestá midiendo, las moléculas del vidrio exterior del

termómetro transmiten la energía al tubo capilar y

éste, a su vez, la transmite al líquido, como el mer-

curio. Al adquirir esta energía, el líquido se mueve

hacia el espacio que tiene libre, es decir, hacia arriba

por el tubo capilar.

El calor y la temperatura son magnitudes físicas distintas y, por lo tanto, tienen dife-

rentes unidades. Los físicos miden el calor en calorías y en joules, que son unidades de

energía, y la temperatura se mide en grados de acuerdo con diferentes graduaciones

en la escala figura 21.

FIGURA 20. El calor de la flamaaumenta la energía cinéticade las moléculas del vidrio.Éstas transmiten su energía alagua del fondo, más cercanaal fuego. Las moléculas delfondo se mueven y transmitencaóticamente su energía al

resto de las moléculas del agua,hasta que finalmente se formauna corriente.

FIGURA 21. En esta imagenpuedes ver tres escalas detemperatura diferentes: Celsius,Kelvin y Fahrenheit.

Evalúo mi avance

1. ¿Qué evidencia sirvió a Rumford para inferir la transferenciade calor entre los cuerpos?

2. ¿Por qué la temperatura es una manifestación de la energíacinética?

3. Explica por qué el calor se transmite de los cuerpos calientesa los fríos y no al revés.

4. ¿Con qué experimento demostrarías la diferencia entre calor ytemperatura?

5. Observa la figura 21 y determina el equivalente de 20°C, engrados Fahrenheit y grados Kelvin.

6. ¿Cuál es la equivalencia de tu propia escala termométrica concualquiera de las que aparecen en la figura 21?

Page 179: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 179/276

177

B3

•Calor, transferencia de calor y procesos térmicos:dilatación y formas de propagación

Explora

1. Observa la figura. Existe una diferencia de temperaturas entre lacharola que sale del horno y los guantes del panadero. Respondelas preguntas con tus compañeros de equipo:

• ¿Cuál sería el sentido de la transferencia de calor en este caso?

• ¿Cuál es la función de los guantes que usa el panadero?

2. Elabora una hipótesis: ¿cómo se realiza la transferencia de calor?

Existen tres formas de transferencia del calor. Una de ellas es la conducción, que con-

siste en la transmisión de la energía cinética por la fricción que se genera entre una

molécula y otra al tener contacto entre sí. Si el panadero no usara los guantes, cuyo

material tiene una estructura tal que dificulta este contacto, se quemaría las manos con

el metal de la charola. La conducción es un tipo de transferencia de calor característica

de los sólidos, cuyas moléculas vibran sin desplazarse transmitiendo energía a las ve-

cinas, en una reacción en cadena. Este mecanismo ocurre de manera eficiente en losmetales, considerados excelentes conductores térmicos.

Otro mecanismo de transferencia de energía calorífica es a través de corrientes en

fluidos y se denomina convección. Como sabes, las moléculas de líquidos y gases

pueden desplazarse ocupando el espacio del recipiente que los contiene, de manera

que, cuando se incrementa la temperatura, las moléculas cercanas a la fuente de calor

comienzan a moverse más rápidamente desplazando a las moléculas vecinas. Entonces

éstas se alejan, y al chocar con las paredes acaban por regresar, en un proceso cíclico

que da como resultado corrientes que ascienden y descienden ( figura 22). Esto se pue-

de apreciar muy bien si colocas un poco de aserrín o polvo en un vaso transparente,

con agua hirviendo. Observarás cómo el aserrín se mueve en una trayectoria circular.

La tercera forma de transferencia de calor, conocida como radiación, se realiza

porque todos los cuerpos absorben o emiten radiación infrarroja, la cual puede trans-

portarse sin necesidad de un medio material, es decir puede darse en el vacío. Cuando

acercamos la mano al horno abierto se pueden sentir al mismo tiempo el cosquilleo

de las corrientes de convección del aire calentado por el fuego del horno, y también

se puede sentir la radiación infrarroja en diferentes partes del cuerpo, sin necesidad de

acercarse demasiado. (Gracias a esta forma de transferencia el Sol nos provee calor,

a pesar de encontrarse tan lejos.) Es importante aclarar que estos tres mecanismos de

transferencia pueden combinarse en diferentes fenómenos naturales.

FIGURA 22. Los cardúmenesaprovechan las corrientes ma-rinas, corrientes de convección,que se producen por diferenciasde temperatura en un fluido:

el agua.

Para sacar el pan del horno,este panadero emplea guantes.

Explora más aplicacionesde la transferencia de caloren los siguientes recursos:

www.hdt.gob.mx/new_ media/secundaria_2/

ciencias2_b3/oda_5136_0/recurso/

http://sined.mx/sined/aprendiendo/CURSO-34.htm

Page 180: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 180/276

178

S2

Experimenta

Explica la transferencia de calor entre distintos cuerpos.

Registren las mediciones y sigan las instrucciones de seguridad enel laboratorio.

Material

• 1 parrilla eléctrica• 2 vasos de precipitado de 200 ml

• 1 gotero

• 2 cucharas

• 2 termómetros (pueden emplear los termómetros queconstruyeron en la actividad anterior)

• ¼ de taza de agua

• ¼ de taza de aceite

• 1 reloj o cronómetro

Procedimiento

a. Extraigan agua con un gotero y viértanlo en uno de los

vasos. Etiquétenlo como el Vaso 1.b. Extraigan aceite con otro gotero y viértanlo en el otro vaso.

Etiquétenlo como Vaso 2.

c. Midan la temperatura de cada vaso y regístrenla. (Si usansus propios termómetros, necesitarán vaciar los líquidos enun plato cada uno para poder introducir la botella y hacer lamedición.)

d. Pongan a calentar juntos los vasos durante 5 minutos,cuidando que el área expuesta al calor sea igual para cadauno. Mientras lo hacen, elaboren una predicción: ¿Llegaránlos líquidos a la misma temperatura?

e. Apaguen la parrilla y midan la temperatura en ambos vasos.

f. Esperen 5 minutos y midan la temperatura de los vasossobre la parrilla apagada.

g. Vuelvan a calentar el tiempo necesario para llegar a latemperatura que registraron en el punto e.

h. Al llegar a esta temperatura, apaguen la parrilla y sumerjanuna cuchara en cada vaso.

i. Esperen 5 minutos y midan la temperatura. ¿Será la mismaque en el punto f?

j. Combinen el agua y el aceite y midan la temperatura de lamezcla después de 5 minutos.

Resultados

1. Registren sus resultados en las tablas de datos:

Temperaturadel agua

(°C)

Temperaturadel aceite

(°C)

Al inicio

Tras calentar 5 minutos

Tras enfriar 5 minutos

Al volver a calentar

Al dejar enfriar concuchara adentro

Al combinar agua yaceite

Análisis de resultados

• ¿Se cumplió su predicción?

• ¿Por qué una sustancia se calienta más que otra?

• ¿Por qué se enfrían más rápido los líquidos cuando se lesintroduce la cuchara?

• ¿Por qué la temperatura de la mezcla es diferente a la decada líquido por separado?

Superficie caliente.

En la actividad anterior se mostró que los líquidos se enfrían más rápido cuando en

ellos se sumergieron las cucharas porque las moléculas de cada líquido chocan con

las del metal. Esta fricción aumenta la energía cinética de las partículas metálicas,

de manera que el calor ganado por las cucharas es igual al calor cedido al metal por

cada líquido.

Los líquidos transmiten esta energía térmica al vidrio del vaso, el vidrio al agua y

al aceite y éstos al material del termómetro y a las cucharas. Esta energía se trans-

mite del cuerpo más caliente al menos caliente, hasta llegar un punto de estabilidad

Tagüeña, Julia; Jorge Flores,

y Carmen Tagüeña, Calor y

temperatura, México, SEP-

Santillana, 2002 (Libros del

Rincón).

Lee más...

Page 181: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 181/276

179

B3

mejor conocido como equilibrio térmico. Cuando se combinaron los dos líquidos a

diferente temperatura, el más caliente transfirió su energía hasta que ambos lograron

equilibrarse, lo cual se evidencia cuando el termómetro se estabiliza.

Como hemos visto a lo largo de este bloque la materia se presenta en tres estados

de agregación: sólido, líquido y gaseoso; pero, ¿cómo puede pasar la materia de un

estado de agregación a otro? Para ello se requiere energía.

Sin embargo, es posible suministrar energía a un sistema sin que se incrementen su

temperatura y su presión. En esta situación las partículas “aprovechan” la energía para

vencer las fuerzas que las mantienen en interacción con partículas vecinas y, como

consecuencia de esto, se da una transición de fase o, lo que es lo mismo, se produce

un cambio en el estado de agregación del sistema, ya que aumentan la distancia de

separación entre las partículas que lo conforman y su libertad de movimiento. Las

transiciones de fase se presentan a una presión y temperatura específicas.

Hay varias maneras de lograr transiciones de fase en un sistema: mantener la presión

constante y aumentar o disminuir la temperatura del sistema; mantener la tempera-tura constante y cambiar la presión a la que se somete el sistema; o bien modificar la

presión y temperatura del sistema simultáneamente. Por ejemplo, podemos evaporar una

cantidad de agua calentándola en un recipiente (figura 23),

aumentar la temperatura y mantener constante la presión.

Podemos suavizar el hielo con la fricción de los patines para

avanzar, ejerciendo, cada vez con un pie, gran presión sobre

el hielo, con temperatura constante (figura 24).

Los patines que se usan para practicar el patinaje sobre

hielo tienen en su parte inferior una cuchilla muy delgada.

Cuando el patinador pisa el hielo con los patines puestos,apoya todo su peso sobre un área muy pequeña, por lo

que ejerce gran presión sobre el hielo. Esto provoca una

transición de fase, pasa del estado sólido al líquido. No

obstante la temperatura suele ser tan baja que el agua se

congela inmediatamente en la zona donde el patinador deja

de ejercer presión.

Al agregar el peso ejercido con un pie, más la fuerza de

los músculos al patinar, la presión sobre el agua provoca

que ésta pase al estado gaseoso venciendo aún más la fric-

ción, y el patinador viaja así sobre una delgada capa de

vapor de agua.

FIGURA 23. Cuando el agua llegaa 100 °C al nivel del mar en unrecipiente destapado, comienzaa hervir, y no aumentará más sutemperatura hasta que toda elagua del recipiente se haya con-vertido en vapor. Si se tapa, elagua hierve a una temperaturamenor, que tampoco aumentahasta que se haya convertidotoda el agua en vapor. Esta es la

razón por la cual el agua tardamenos tiempo en hervir cuandose encuentra en un recipientecerrado herméticamente.

FIGURA 24. Para patinar sobre hielo son necesarios patines especialesque tienen una cuchilla muy delgada en la suela. El patinadorapoya todo su peso en ella, ejerciendo una gran presión sobre elhielo, y éste momentáneamente se transforma en agua líquidapermitiendo el deslizamiento del patinador. No obstante, como

la temperatura a la que se encuentra el hielo que coexiste conel agua líquida es tan baja, el agua líquida se vuelve a congelarinmediatamente, quedando el h ielo rayado al paso del patinador.

Evalúo mi avance

1. Si dos líquidos a diferentes temperaturas se mezclan en unrecipiente, ¿cómo puedes saber que han alcanzado el equili-brio térmico después de algún tiempo?

2. Proporciona dos ejemplos de transferencia de calor por con-vección y otros dos por radiación.

3. Elabora un experimento con el que puedas explicar cómolograr las transiciones de fase de varias maneras.

4. Explica por qué los alimentos se cuecen más rápidamente enuna olla exprés que en una cacerola sin tapa.

Page 182: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 182/276

180

S2

•Cambios de estado; interpretación de gráficade presión – temperatura

Explora

¿Por qué es diferente el alcancede cada chorrito de agua?

1. Observa la imagen de la botella y responde lassiguientes preguntas en tu cuaderno:

• ¿Cómo varía la intensidad de la fuerza de los chorrosa diferentes alturas de la botella?

• ¿En qué zona de la botella se tiene mayor presión?

• ¿Qué relación existe entre la presión y la altura?

2.Compara tus respuestas con las de tus compañeros.

En contenidos anteriores estudiaste que, de acuerdo con Pascal, en ausencia de

fuerzas externas, la presión ejercida por un fluido sobre las paredes de un recipiente

cerrado es homogénea en toda el área. Sin embargo, en la actividad anterior puede

observarse cómo influye la acción de una fuerza externa, como la de gravedad, en la

presión de un fluido.

Este experimento es muy ilustrativo para explicar por qué la presión atmosférica

disminuye con la altura, y este hecho t iene efectos en los puntos de fusión y de ebu-

llición de la materia, como veremos en esta sección.

Experimenta

Representa gráficas de tiempo-temperatura.

> Continúa en la página siguiente

Material

• 1 vaso de precipitado de 1 l de capacidad, o un frasco

• 10 cubos de hielo iguales

• 1 parrilla eléctrica

• 1 balanza

• 1 termómetro

• 1 cronómetro

• 1 hoja de papel milimétrico

Pr ocedimiento

a. Midan la masa del vaso de precipitado con la balanza.

b. Coloquen los cubos de hielo en el vaso y midan la masa:vaso de precipitado con los 10 cubos de hielo.

c. Resten la masa del vaso de precipitado con hielo menos lamasa del vaso sin hielo. Anoten en su cuaderno la masa delos 10 cubos de hielo.

d. Anoten en su cuaderno a qué potencia máxima trabaja laparrilla (todas las parrillas eléctricas tienen este dato escri-to en su caja o grabado en algún costado).

e. Coloquen el vaso con los cubos de hielo y el termómetro –haciendo contacto con ellos– sobre la parrilla y enciéndanla

Parrilla estándar; funciona a una potencia de740 W. Los valores de potencia pueden variarun poco dependiendo de la parrilla.

Pide la supervisión

del maestro.

Page 183: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 183/276

181

B3

»

a la máxima potencia. Simultáneamente pongan en funcio-namiento el cronómetro.

f. Tomen la temperatura cada 30 s, sin parar el cronómetro.

g. Anoten con precisión a qué tiempo se convierte todo elhielo en agua líquida, y a qué tiempo se transforma toda elagua líquida en vapor.

h. Cuando se haya evaporado toda el agua líquida, termina elexperimento.

Resultados

1. Tomando en cuenta la siguiente explicación, realicen loscálculos.

Para calcular aproximadamente el calor suministrado al agua,primero en joules y luego en kilocalorías, se multiplica lapotencia en watts, que es energía consumida por unidad

de tiempo, por el tiempo transcurrido en segundos. Estevalor corresponde a la energía suministrada en joules. Paratransformar a kilocalorías se multiplica por el factor deconversión: (1 kilocaloría/4 200 J). Por ejemplo, supongamosque ya esperaron dos minutos y todavía tienen hielo. Laenergía suministrada sería:

Calor = (740 W)(120 s) = (740 J/s) (120 s) = 88 800 J

Luego se transforma a kilocalorías multiplicando por el factorde conversión:

1 kilocaloríaCalor agregado = 88800 J (————————) = 21.14 kilocalorías

4200 J

2. Anoten sus resultados en la siguiente tabla.

Tiempo(s)

Temperatura(°C)

Energíao calor

agregado (J)

Energía o caloragregado

(kilocalorías)

30

60

90

3. Representen en una gráfica la temperatura contra el caloragregado en kilocalorías con los datos de la tabla, en el papelmilimétrico.

4. Comparen su gráfica con la que se muestra a continuación:

5. Iluminen con colores las regiones correspondientes a: agua

líquida coexistiendo con hielo y agua líquida coexistiendo convapor.

Análisis de resultados

1. Reflexionen en equipo sobre lo siguiente:

• ¿A qué temperatura se encuentra el punto de fusión delagua? Es decir, la temperatura a la cual el hielo se transfor-ma en agua líquida; esta temperatura no varía hasta quetodo el hielo se convierta en agua líquida.

• ¿A qué temperatura se encuentra el punto de ebullición del

agua? Es decir, la temperatura a la cual el agua líquida setransforma en vapor; esta temperatura no varía hasta quetoda el agua líquida se evapora.

• ¿En qué se gasta el calor agregado cuando el agua cambiade fase? Expliquen con base en el modelo cinético de partí-culas.

• ¿Por qué son diferentes los puntos de fusión, 0 °C , y deebullición, 100 °C, que han obtenido con respecto a los dela gráfica mostrada?

• Serían diferentes las gráficas de temperatura contra caloragregado de otras sustancias con respecto a la del agua.¿Por qué?

Gráfica de temperatura contra calor agregado, en kilocalorías, en

una sustancia hipotética.

V a p o r d e a g u a T e

m p e r a t u r a

( º C )

Calor agregado en kilocalorías (kcal)Hielo y agua

líquida

120

100

80

60

40

20

0

100 200 300 400 500 600 700 800

Agua líquida y vapor

Temperatura como función del calor agregadopara llevar 1 kg de agua con hielo desde 0 ºC

a vapor sobre 100 ºC.

V a p o r d e a g u a

A g u a l í q u i d a

Verifica la relación entre el movimiento delas moléculas de agua con la temperatura.Consulta los recursos.

www.hdt.gob.mx/new_media/secundaria_2/ciencias2_b3/oda_5135_0/recurso/

www.educaplus.org/play-259-Cambios-de-estado-del-agua.html

Las gráficas de presión contra temperatura de una sustancia proporcio-

nan información acerca de los cambios en los estados de agregación

por los cuales pasa un sistema. A partir de ellas se puede saber el

intervalo de temperaturas en el cual es estable una fase a una presión

determinada. Generalmente, los diagramas de fase presentan tres cur-

vas, y en cada par de curvas coexisten dos fases; por ejemplo, sólido-

líquido y líquido-gas. Sin embargo, existe un punto de intersección de

las tres curvas, al cual se le llama punto triple, porque en este punto

coexisten las tres fases: sólido, líquido y vapor.

Page 184: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 184/276

182

S2

En la figura 25 se muestra el diagrama de fase del agua.

Notemos, a partir del diagrama, que el punto triple del

agua a una presión de 1 atm o 100 000 Pa se da a una

temperatura de 0.01 °C. A una temperatura de 0 °C y a una

presión de 1 atm, coexiste la fase sólida con la líquida, y

a una temperatura de 100 °C a una atmósfera de presión

coexiste la fase líquida con la fase gaseosa.

La presión de 1 atm se tiene a nivel del mar, pero en

otras latitudes, por ejemplo, en la ciudad de México, don-

de la presión atmosférica es de alrededor de 0.98 atm, la

temperatura a la que hierve el agua es de 92 °C, apro-

ximadamente. Esto también se deduce del diagrama de

fase. Precisamente, la línea azul horizontal de la figura 25

señala una presión menor a 1 atm, y las temperaturas de fu-

sión (coexistencia sólido-líquido) y ebullición (coexistencialíquido-vapor) cambian. Por ejemplo, si seguimos la línea

azul hasta la curva de coexistencia líquido vapor –que es la

que se encuentra más a la derecha–, y desde el punto donde

la cruza bajamos una vertical, vemos que la temperatura de

ebullición es menor que 100 °C.

FIGURA 25. El diagrama de fase del agua muestra la forma de lascurvas de coexistencia de sus fases: sólido, líquido y gas. Estediagrama es una representación de la gráfica de presión contra

temperatura. El diagrama no es exactamente la gráfica, debido aque es muy difícil representar la escala de temperatura y de presiónreales y apreciar la totalidad de la curva. Notemos que de 611pascales (611 Pa) de presión a una atmósfera de presión (1 atm)hay 99 389 pascales de diferencia, ya que la atmósfera equivale aun poco más de 100 000 pascales.

100 000(1 atmósfera)

611 Pa

0 0.01 100

Sólido

Líquido

Vapor

Temperatura (ºC)

Presión(pascales)

Comunica tus avances en ciencias

1. Analiza la siguiente tabla que muestra los puntos de ebullición y de fusión del agua en diferentes condiciones de presión atmosférica.

Presión (atm) Temperatura de ebullición (°C) Temperatura de fusión (°C)

1.00 100 0

0.870 97 0.001

0.850 96 0.002

0.790 94 0.003

0.410 77 0.021

0.006 0.1 0.1

2. Elabora una gráfica de presión contra temperatura de ebullición y de fusión.

3. Si a mayor altitud menor es la presión atmosférica, ¿cuál de los datos corresponde a la mayor y menor altitud?

Verifica la relación entre la presión y los cambios de estado.

Evalúo mi avance

1. Si se tiene hielo a menos de 0 °C a 1 atm de presión, ¿qué sedebe hacer para que el hielo se evapore sin pasar por la faselíquida?

2. ¿Qué se entiende por punto triple?

3. A partir de la gráfica de actividad Experimenta (temperatura

contra calor agregado), para una sustancia hipotética, deter-mina lo siguiente.

a. Los intervalos de temperatura en los cuales son estables lasfases: sólido, líquido y vapor.

b. Las temperaturas de fusión y de ebullición.

Page 185: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 185/276

183

B3

Energía caloríficay sus transformaciones

Un géiser expulsa periódicamente una buena cantidad de agua y vapor.

Transformación de la energía calorífica.

Equilibrio térmico.

Transferencia del calor: del cuerpo de mayor

al de menor temperatura.

Principio de la conservación de la energía.

Implicaciones de la obtención y aprovechamientode la energía en las actividades humanas.

183

Aprendizajes esperados

S3

• Describirás cadenas de

transformación de laenergía en el entorno

y en actividades

experimentales, en las

que interviene la energía

calorífica.

• Interpretarás la expresión

algebraica del principio

de la conservación de la

energía, en términos de

la transferencia del calor

(cedido y ganado).

• Argumentarás la

importancia de la

energía térmica en las

actividades humanas

y los riesgos en la

naturaleza implicados

en su obtención y

aprovechamiento

Page 186: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 186/276

184

S3

•Transformación de la energía calorífica

Explora

1. Reúnete con una pareja para buscarinformación y responder estas preguntasen su cuaderno:

• ¿Qué un géiser?• ¿Qué manifestaciones de energía están

presentes en un géiser?

• ¿Cómo podría aprovecharse la energíade un géiser en beneficio de los sereshumanos?

2. Elabora un esquema con lastransformaciones de energía que podríanaprovecharse.

Así como los géisers, las aguas termales o la lava volcánica, existen diversos fenó-

menos naturales vinculados con el calor. Por ejemplo, el calor del Sol tiene efectos

en el clima y como consecuencia, en los ecosistemas, en donde ocurre transferenciacontinua de materia y energía que regula la existencia de los seres vivos.

El aprovehamiento del calor ha estado siempre presente en la historia huma-

na. El descubrimiento del fuego es uno de los grandes episodios de la humanidad,

pues sin duda el desarrollo de las primeras civilizaciones estuvo acompañado de la

transformación de materias primas empleando calor para preparar alimentos, fabri-

car herramientas y dar forma a diversos utensilios que se convirtieron en objetos

indispensables de la vida cotidiana. En la siguiente actividad describirás algunas

transformaciones de energía que involucran al calor.

Comunica tus avances en ciencias

Identifica algunos fenómenos relacionados con la transformación de la energía.

1. En forma individual, elabora en tu cuaderno una lista de 5 fenómenos u objetos cotidianos enlos cuales exista una o varias transformaciones de energía, y en donde esté involucrado elcalor. Puedes usar un cuadro como el siguiente:

Objetos/

fenómenos

Energíatransformada

2. Reúnete en equipos y compartan sus listas para enriquecerlas.

3. Elaboren un esquema en el que presenten las cadenas de transformación de energía. Enfati-cen la intervención de la energía calorífica.

4. Con la ayuda de su maestro, compartan sus esquemas sobre las cadenas de transformaciónde energía.

GLOSARIO

Géiser: fuente geotermal que emite

erupciones de agua líquida muy ca-

liente y vapor en forma periódica.

Si tienen compañeros con

capacidad visual diferente,

pueden optar por un es-

quema con relieve para re-

presentar las cadenas de

transformación de energía.

Sé incluyente

Page 187: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 187/276

Page 188: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 188/276

186

S3

Explora

1. Observa la fotografía junto con tu equipo, comenten y respondan en sucuaderno las siguientes preguntas:

• ¿Qué es lo que mide un termómetro clínico?

• ¿Se tiene la misma temperatura en todo el cuerpo?

• ¿Cuál es el rango de temperatura ideal del cuerpo humano?

• ¿Qué indica una temperatura fuerade este rango?

La fiebre es un síntoma de muchasenfermedades. El termómetro es

de gran ayuda para valorar algunasacciones en su tratamiento.

•Equilibrio térmico

Experimenta

Identifica el cambio en la temperatura de los cuerpos.

> Continúa en la página siguiente

¿Qué pasará si mezclas el agua de estos dosvasos? Uno de ellos tiene agua caliente y elotro agua fría.

Material

• 1 vaso con agua caliente

• 1 vaso con agua fría

• 1 recipiente

• 1 cronómetro

• 1 termómetro (puede ser el que ustedesconstruyeron)

Un termómetro clínico de mercurio se conforma de un tubo graduado en una escala

muy acotada que en algunos casos puede ir de 32 °C a 42 °C y en otros tiene una esca-

la más amplia, de 30 °C a 45 °C, dependiendo del fabricante. El tubo puede colocarse

en diferentes partes del cuerpo y se deja unos cinco minutos para que registre con

precisión la temperatura corporal . Si se coloca en la boca, se espera una temperatura

promedio normal de 37 °C, que puede ser aceptable si oscila entre los 35.9 °C y 37.

2 ºC. Si es en las axilas, los valores normales pueden ser un poco menores y andar

entre 35.3 °C y 36.4 ºC.

Si la temperatura ambiente sobrepasa los 39 °C, un caso muy extremo que ocurrepor ejemplo en el verano en regiones al norte de nuestro país, el cuerpo regula su

temperatura mediante el sudor.

Cuando un paciente tiene fiebre, el mercurio se dilata y ocupa más espacio en el

tubo. El rango de temperatura que el organismo soporta sin trastornos es 36.25 ºC

a 39.0 ºC. La temperatura arriba de 41 ºC puede provocar daño cerebral, y si llega a

43 ºC la persona puede presentar muerte cerebral y caer en estado de coma.

Page 189: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 189/276

187

B3

Procedimiento

a. Introduzcan el termómetro en el agua caliente y registren la temperatura.

b. Introduzcan el termómetro en el agua fría y registren la temperatura.

c. Viertan el agua de los dos vasos en el recipiente.d. Traten de predecir cuál será la temperatura del agua después de 5 minutos.

e. Esperen 5 minutos y registren la temperatura

Resultados

1. Este cuadro puede ser útil para registrar sus datos; reprodúzcanlo en el cuaderno.

Agua caliente Agua fría Agua del recipiente

Temperatura (°C)

Análisis de resultados

• ¿Verificaron su hipótesis? Expliquen por qué no se verificó.• ¿Cómo sabrían que la mezcla ha llegado a un equilibrio térmico?

• ¿Cuál será el sentido en que se transfiere el calor?

1. Compartan sus respuestas con todo el grupo y elaboren conclusiones acerca de por qué cam-bia la temperatura del agua.

»

Como ya sabes, cuando un t ermómetro se introduce en un material más caliente

que el del propio instrumento, las moléculas que forman el vidrio empiezan a vibrar

y transmiten esta energía a las del mercurio, las cuales “ganan” energía provocando

que el mercurio se dilate, pues las moléculas se mueven con mayor rapidez y ocupa

más del reducido espacio disponible, capilar, dentro del tubo de vidrio.Una idea fundamental que te permitirá comprender el concepto de temperatura es

entender también el concepto de equilibrio térmico, que ocurre cuando deja de haber

transferencia de calor debido a que ambos cuerpos han alcanzado la misma energía

cinética promedio, y por tanto, la misma temperatura. En el caso del termómetro que

se utiliza en mediciones de tipo clínico, la estabilidad del mercurio indicará que se

llegó a un equilibrio térmico y, entonces, la lectura de la escala corresponderá con

la temperatura corporal.

Evalúo mi avance

1. Un termómetro se introduce en una cubetacon hielos.

• ¿Cómo sabrías que se ha logrado el equi-librio térmico entre los hielos y el termó-metro?

• ¿Cuál podría ser la lectura esperada deltermómetro? Haz una estimación.

• ¿Cuál es el sentido de la transferencia decalor? Explica cómo se gana y cede caloren este caso.

2. Supongamos que en el experimento de losvasos, el agua caliente tiene colorante rojoy el agua fría tiene colorante verde.

• ¿Qué piensas que ocurra al mezclarlos enel recipiente?

• ¿Cuál de los colores nos mostraría el sen-tido de la transferencia de calor?

• ¿Qué esperarías observar con los coloresen el equilibrio térmico?

Explora el siguiente recursoy explica la relación entre elequilibrio térmico y la gráficade temperatura en el puntode ebullición:

http://sined.mx/sined/aprendiendo/CURSO-32.htm

Page 190: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 190/276

188

S3

•Transferencia de calor: del cuerpo de mayor al demenor temperatura

Explora

Ya se definieron los tres mecanismos de transferencia de calor. Ahora podrás experimentar yprofundizar sobre ellos.

1. Para comenzar, reúnanse por equipos y respondan las siguientes preguntas.

• ¿Qué es la conducción térmica? Defínela con tus palabras y da un ejemplo de ella.

• ¿En qué fase del ciclo del agua ocurre la transferencia por convección? Argumenten su respuesta.

• ¿Qué mecanismo explica el calentamiento de una moneda expuesta al Sol? Expliquen.

Experimenta y elabora modelos

Identifica la transferencia de calor por conducción.

Material

• 1 alambre o barra de cobre de 20 cm de longitud.

• 1 regla de 30 cm

• 1 cronómetro

• 1 vela

• 1 encendedor

• 1 barrita de plastilina

• 1 hoja de papel

Procedimientoa. Coloquen la hoja de papel sobre una superficie plana.

b. Enciendan la vela y dejen caer gotas de parafina sobre elpapel para fijarla.

c. Apaguen la vela. Después fijen la plastilina a 20 cm de distan-cia sobre la misma hoja de papel.

d. Ahora fijen un extremo del alambre a la parte superior de laplastilina y el otro a la parte cercana al pabilo de la vela, paraque quede como un travesaño, como en la figura.

e. Enciendan la vela y activen el cronómetro.

f. Observen lo que sucede a los 5 y 10 minutos. Mientras es-peran, escriban dos hipótesis que permitan responder las

siguientes preguntas:• ¿Cómo se hará la transferencia de calor?

• ¿Cuál será la evidencia o prueba de esto?

Resultados

1. Registren sus observaciones en el cuaderno. Esta tabla puedeserles útil.

Tiempo (min) Registro de observaciones

5

10

Análisis de resultados

• ¿Se verificaron sus dos hipótesis? Expliquen.

• ¿Cuál fue el sentido de la transferencia de calor?

• ¿Cuál o cuáles son los indicios o evidencias más contundentespara afirmar que hubo transferencia de calor?

1. Saquen conclusiones a nivel grupal y con el apoyo de sumaestro.

Maneja con precaución el fuego.

Arma este dispositivo para verificar la conducción de calor.

Siguiendo el modelo cinético molecular, cuando cierta zona de un objeto sólido es

calentada, sus moléculas vibran con mayor rapidez pero sin desplazarse, golpean a

las moléculas vecinas y éstas a su vez golpean a otras provocando una reacción en

cadena, como un “efecto dominó”. Este mecanismo, característico de los sólidos es,

precisamente, la conducción térmica y puede explicar por qué en la actividad previa

se transfirió energía desde el extremo del cobre cercano a la flama hasta el otro extremo.

Page 191: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 191/276

189

B3

Para evitar que te quemaras, lo cual sería una evidencia dolorosa de la conducción por

el alambre, se colocó un pedazo de plastilina que al cabo de 10 minutos se deformó y

se fundió notoriamente en la región cercana al cobre, lo cual es, también, una prueba

o evidencia contundente de la transferencia de calor en los sólidos.

Una aplicación cotidiana de este fenómeno es la siguiente: para evitar quemarte, si

sostuvieras por el mango metálico una sartén caliente que estuviera sobre el fuego,

utilizarías un pedazo de tela gruesa, y seca, entre tu mano y el mango metálico. Nunca uti-

lizarías una tela húmeda, ¿por qué?

Por otra parte, retomemos la experiencia con el rehilete para abordar otro meca-

nismo de transferencia de calor que estuvo presente en el vapor que produjo trabajo

mecánico sobre las aspas. La corriente que sale por el orificio del tapón se debe a la

diferencia de temperaturas entre el vapor y el aire circundante. Las moléculas del agua

en fase gaseosa se mueven hacia arriba y chocan con las moléculas del aire que tienen

menos energía, las cuales comienzan a descender formando una corriente paralela en

sentido contrario, en un proceso similar al de una chimenea o a la del ciclo del agua.Este mecanismo de transferencia de calor característico de los fluidos es precisamente

la convección (figura 26).

El conocimiento del sentido en el que se desplazan las corrientes de convección es

muy importante, entre otras razones porque permite construir aparatos de clima artifi-

cial que cumplan mejor con su función. Si el aire caliente es menos denso y tiende a

subir, entonces es lógico que el calentador de una habitación se ubique sobre el suelo

para ser más eficiente en la transferencia de calor. Por el contrario, los equipos de aire

acondicionado se ponen en el techo porque el aire frío es más denso y t iende a bajar.

Puedes apreciar otra aplicación interesante al observar los carteles de precaución

para casos de incendio. Verás que una de las recomendaciones es la de alejarse delas llamas manteniéndose lo más cerca que se pueda del suelo. Las llamas y el as-

fixiante humo empiezan a cubrir las partes superiores de los lugares cerrados debido

a la convección, dejando abajo una pequeña área con menos concentración de humo.

FIGURA 26. En esta imagen seaprecia cómo el agua calientecon colorante azul se sale delrecipiente pequeño desplazán-dose hacia arriba y transfiriendosu energía a las moléculas delagua fría del recipiente grande.Esto puede explicar el desplaza-

miento de los vientos, las nubesy las corrientes oceánicas,que son masas de agua conmayor temperatura que el aguacircundante.

Experimenta

Identifica la transferencia de calor por radiación.

¿Cómo se transfiere el calor con estalámpara?

Material

• 1 moneda

• 1 lámpara deescritorio con foco de80 a 100 watts

• 1 termómetro

• 1 cronómetro

• 1 vaso con poca agua(1/4 de su capacidad)

• 1 servilleta

>

Continúa en la página siguiente

Procedimiento

a. Coloquen la moneda dentro del agua y esperen30 segundos antes de introducir el termómetro.

b. Midan la temperatura inicial del sistema agua-moneda.

c. Sequen la moneda con la servilleta y colquenlabajo el foco de la lámpara.

d. Enciendan la lámpara y activen el cronómetro.

e. Mientras esperan 10 minutos, escriban dos hipó-tesis relacionadas con:

• ¿Cómo se hará la transferencia de calor?

• ¿Cuál será la evidencia de esto?

Page 192: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 192/276

190

S3

»

En el bloque 4 abordarás con cierto detalle la naturaleza electromagnética de distintos

tipos de radiación que no pueden explicarse ni con la mecánica clásica, como ocurre con

el sonido que viaja por ondas mecánicas, ni con el modelo de partículas.Por ahora nos interesa señalar que todos los objetos emiten radiación infrarroja (IR)

a temperatura ambiente y, desde luego, los objetos calientes emiten mayor

radiación que los objetos fríos. Por ejemplo, los mamíferos emitimos más

IR que los reptiles pues nuestra temperatura corporal es mayor (figura 27)

La tecnología actual ofrece cámaras que detectan esta radiación, de manera

que se puede conocer la temperatura corporal de una persona o la presen-

cia de seres vivos durante la noche por el calor que emiten, o incluso es

posible tomar fotografías en infrarrojo del Sol, otras estrellas o regiones del

Universo. Las cámaras normales requieren luz visible para detectar objetos

en la oscuridad, ya sea del Sol o de una lámpara o un flash muy potente.Reflexionemos un poco sobre la actividad anterior. Es evidente que la

lámpara emite gran cantidad de radiación IR en comparación con la que emite la moneda.

Siguiendo el principio según el cual el calor es la transferencia de energía a nivel mo-

lecular de los cuerpos calientes a los fríos, el foco de la lámpara es el objeto que emite

mayor radiación, de manera que calienta el aire y, por convección, éste calienta la mo-

neda. Suponiendo que se pudiera

generar un vacío extrayendo todo

el aire de esa habitación (con lo

cual debería quedar perfectamen-

te aislada del exterior), la lámpara

habría calentado la moneda por

radiación térmica de todas mane-

ras, aunque jamás hubiera estado

en contacto con ella, de la mis-

ma manera en que la radiación

infrarroja proveniente del Sol ca-

lienta nuestro planeta al viajar en

el vacío. Gracias a este fenómeno

existe vida en la Tierra.

FIGURA 27. Desde los satélitesartificiales y mediante fotogra-fías tomadas con cámara IR, seha podido detectar la tempera-tura de la superficie terrestre.

Evalúo mi avance

1. Regresa a las preguntasde la actividad Explora deeste contenido y verificasi tus respuestas inicialesson correctas, o biencomplétalas con explica-ciones mejor fundamen-tadas, considerando loque has aprendido.

2. Un calentador se en-cuentra funcionando enla habitación 1, y en lahabitación 2, que es con-tigua, está funcionando el

aire acondicionado. Si unapersona abre la puerta:

• ¿Hacia dónde se reali-zará la transferencia decalor?

• ¿Qué mecanismo puedeexplicar esto?

3. Con base en el modelocinético, elabora un es-quema en el que expli-ques cómo se da la trans-ferencia de calor entredos sólidos con diferentestemperaturas.

4. Una medida de salubri-dad que se toma en losaeropuertos de muchospaíses es hacer pasar alos pasajeros por un apa-rato detector de radiacióntérmica, especialmenteen las épocas de influen-za estacional. Explica quéinformación de los pasa-

jeros se busca obtenercon este método.

f. Después de 10 minutos apaguen la lámpara e introduzcanla moneda en el agua.

g. Esperen 30 segundos y midan la temperatura final delsistema agua-moneda

Resultados

1. Registren sus observaciones en su cuaderno en una tablacomo ésta:

Temperatura inicial (°C) Temperatura final (°C)

Análisis de resultados

• ¿Se verificaron sus dos hipótesis? Expliquen.

• ¿Cuál fue el sentido de la transferencia de calor? Describan la

cadena de transferencia.• ¿Cuál o cuáles son las evidencias (manifestaciones) más con-

tundentes para afirmar que hubo transferencia de calor?

• ¿Por qué fue necesario medir la temperatura del sistemaagua-moneda y no directamente de la moneda?. Considerenel modelo cinético de partículas en su explicación.

Page 193: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 193/276

191

B3

•Principio de la conservación de la energía

Explora

1. Observa la figura y escribe qué otras transformaciones de energía ocurren al emplear un taladro.

La energía eléctrica que hace funcionar este taladrose transforma en movimiento. ¿Existen otras formasde energía que deban considerarse al taladrar?

• ¿Por qué no debes tocar las brocas de un taladro después deestar perforando la pared?

• El taladro produce un ruido que puede ser ensordecedor.¿Si se redujera el sonido podría decirse que el taladro es máseficiente para transformar la energía?

Experimenta

Material

• 1 batidora o licuadora eléctrica• 1 termómetro• 1 recipiente con agua• 1 cronómetro• 1 cuchara de plástico

Procedimiento

a. Midan la temperatura inicial del agua y regístrenla.

b. Coloquen el agua en el vaso de la licuadora o en el recipientede la batidora.

c. Agiten el agua con la cuchara durante un minuto. Háganlo lomás rápido que puedan.

d. Midan la temperatura del agua y regístrenla.

e. Agiten el agua encendiendo la licuadora o la batidoradurante un minuto.

f. Midan la temperatura del agua y registren el dato.

g. Registren de nuevo el tiempo.

Resultados

1. Registren sus datos en una tabla como ésta.

Temperaturainicial (°C)

Temperaturaal agitar con la

cuchara (°C)

Temperaturaal mover el aguacon la batidora o

licuadora (°C)

Análisis de resultados

• ¿En qué recipiente la temperatura del agua fue más alta?• ¿Cómo explicas las diferencias de temperatura en el agua

de cada recipiente?• ¿Qué transformaciones de energía se llevaron a cabo?

1. Compartan sus respuestas con el grupo y elaborenconclusiones.

Algunos años después de que Rumford afirmara que el calor no es un fluido sino una

forma de energía, el británico James Prescott Joule (1818-1889), un entusiasta de los

novedosos motores eléctricos, se dio a la tarea de elaborar experimentos para demos-

trar la hipótesis de Rumford y obtener medidas precisas. De esta manera, comprobó

nuevamente que la fricción del taladro con una pieza de metal transfiere calor a ambos

objetos; también encontró en un famoso experimento (figura 28) que podía calentar

agua haciendo girar ruedas con paletas, y se dio cuenta de que la corriente eléctrica

provocaba un aumento en la temperatura de las piezas de los motores.

Reflexiona sobre los procesos de transformación de energía y analízalos.

Page 194: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 194/276

192

S3

Mediante cuidadosas mediciones, Joule registró que

siempre había un incremento en la cantidad de calor de

los objetos cuando se manifestaba la energía mecánica,

aunque ésta se obtuviera como producto del trabajo de

los motores eléctricos o directamente de fuerzas me-

cánicas. Fue así como Joule estableció el equivalente

mecánico del calor como la cantidad de energía mecá-

nica que debe consumirse para producir una unidad de

energía térmica.

En la actualidad esta equivalencia es:

1 cal = 4.186 J,

donde cal representa una caloría y J, un joule. Recuerda

que el joule es la unidad de energía mecánica, descritacomo el producto de la fuerza de un newton aplicada a

lo largo de un metro de longitud.

Las conclusiones de sus experimentos y la sospecha

de que la energía eléctrica debía ser producto de una transformación en el interior de los

componentes químicos de las pilas, llevaron a Joule a concluir que la energía no se

crea de la nada y cambia de una forma a otra constantemente y que jamás se acaba,

es decir, se conserva.

Las máquinas grandes de su tiempo, t renes y barcos, podían transformar una parte

de la energía térmica del vapor en energía mecánica y otra en el sonido ensordecedor de

sus silbidos, pero buena parte de esa energía no se aprovechaba porque el calor del vapor también se t ransmitía a las piezas de las calderas.

Imagina una lámpara incandescente (un foco normal) que tiene una potencia de

100 W. Según los cálculos en una hora transformaría 360 000 J de energía eléctrica en

luz (sólo luz, si fuera 100% eficiente) y calor. Pero estos focos son tan ineficientes,

que convierten 90% de esta energía en calor y sólo el 10% en luz. Es decir, del total

de energía utilizan 36 000 J para generar luz y el resto, 324 000 J, en generar calor,

que equivale a 77 400.86 calorías.

Si por otro lado recuerdas el experimento de la vela, el alambre y la barra de

plastilina, notarás que el calor transmitido por el alambre realizó un trabajo, deshizo

la plastilina y además aumentó su temperatura, pero sin llegar a tener la misma del

alambre. ¿A dónde se fue el calor restante?

La otra “porción” de calor se transformó en la energía mecánica necesaria para

derretir la barra de plastilina; si llamamos ΔU al cambio en la energía cinética de las

partículas que constituyen la plastilina, tenemos:

ΔU = Q – W,

donde Q es el calor suministrado (el de la vela) y W el trabajo para deshacer la

barra.

FIGURA 28. El modelo muestra el experimento de Joule. La masa que

cuelga (m) produce pérdida de energía potencial (mgh) conforme vadescendiendo. La fricción de las paletas con el agua hace que éstase caliente.

Page 195: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 195/276

193

B3

Este resultado es consistente con el principio de conservación de la energía me-

cánica que estudiaste en el bloque 2, en el cual se establece, por ejemplo, que la

energía cinética que posee un objeto en el ins tante previo a su impacto con el suelo,

es equivalente al valor de la energía potencial que poseía en el instante previo a su

caída desde una cierta altura, despreciando el efecto del rozamiento del aire, es decir:

−Δ EP = Δ EC

−mgh= 1 — 2 mv 2

Donde:

−Δ EP representa la pérdida de energía potencial (mgh)

Δ EC representa la ganancia en la energía cinética (1 — 2 mv 2 ).

Pero si el efecto del rozamiento no se desprecia, encontraríamos una diferencia entre

los valores inicial y final de la energía mecánica. ¿Acaso se perdió una parte de laenergía? En realidad no, el valor que falta podría at ribuirse al calentamiento del objeto

debido a la fricción con el aire, que disminuye su velocidad de caída.

El trabajo de Joule contribuyó enormemente al desarrollo de la termodinámica, rama

de la física que estudia a nivel macroscópico los cambios de temperatura, presión y

volumen en los sis temas fís icos. Sus experimentos dieron lugar a la Primera ley de

la Termodinámica , que señala que el calor puede transformarse en otras formas de

energía y que éstas, a su vez, pueden transformarse en calor, de manera que la energía

no se crea ni se destruye.

Comunica tus avances en ciencias

Describe la cadena de transformación de energía en las que interviene el calor.

1. Elabora, en equipo, un cartel que explique lo siguiente.

• La relación entre la actividad de la licuadora y el experimento de Joule. Piensa también si unamezcla de agua con frutas tiene la misma temperatura antes y después de ser licuadas.

• ¿Se puede aplicar la misma energía cinética al agitar con la cuchara que al hacerlo con unaparato eléctrico que transforme la energía?

Nota: No olviden incluir las mediciones de temperatura.

Evalúo mi avance

1. Regresa a las preguntas de la actividad Explora de este contenido y verifica si tus respuestasiniciales son correctas, o bien complétalas con explicaciones más fundamentadas y basadasen lo que has aprendido.

2. Explica con tus palabras qué significa que la energía se conserve.

3. Menciona un ejemplo que cumpla con la primera ley de la termodinámica.

Noreña, Francisco y Juan

Tonda, La energía, México,

SEP-Santillana, 2002 (Colec-

ción Libros del Rincón).

Lee más...

Page 196: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 196/276

Page 197: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 197/276

195

B3

los muros de tu casa o el abrigo que usas en los

días fríos.

¿Qué sucede cuando hay muchas personas en un

cuarto cerrado sin ventilación? Aumenta la tempe-

ratura, así que lo más sano es abrir las ventanas

y puertas para que, como se dice coloquialmente,

“entre aire”, aunque en realidad lo que ocurre es

que sale el calor.

Al quemar combustibles mezclamos en el aire

de la atmósfera partículas que absorben también el

calor, con lo que estamos provocando que aumen-

te la temperatura de la Tierra más allá de lo que

puede soportar el funcionamiento normal de esa

“ventana automática”. Entonces ocurre el calenta-

miento global, producimos más calor del que laatmósfera puede liberar. Si el calor no escapa, se

distribuye por convección en toda la superficie

de la Tierra, aumentando la temperatura incluso

en los polos, y provocando el deshielo de glacia-

res. Pero este fenómeno puede también produci r

sequías (figura 30).

Nula

Baja

Alta

Muy alta

Severa

Muy severa

240 km

Hernández, M. E., et al ., 1995.

Simbología

FIGURA 30. Las sequías ocurren cuando el total de precipitaciones esperadasen determinada zona disminuyen durante uno o más años. Generalmente sonrecurrentes y se deben a factores como altas temperaturas, baja humedadrelativa y deforestación, pero se han incrementado al alterar el clima terrestre.Tienen un fuerte impacto en las actividades agropecuarias y, si se repiten porvarios años, generan un proceso de desertificación progresiva. Al igual quepara los huracanes y tormentas eléctricas, se elaboran modelos que predicenla probabilidad de sequía en ciertas regiones. El mapa indica la severidad de lasequía en el año 1997 (Semarnat).

Material

• 1 caja cuadrada de 10 cm de alto (como la de un pastelo una pizza)

• Pegamento

• Tijeras

• 1 pliego de cartoncillo negro

• Plástico para forrar libros

• Papel aluminio grueso

• Cinta adhesiva

• 1 termómetro

Procedimiento

a. Forma un marco en la tapa superior de la caja. Recorta tresde las cuatro partes de la tapa, dejando espacio para formarun marco. No recortes la parte trasera de la tapa.

b. Dobla hacia atrás la parte de la tapa que has recortado. Colocapegamento sobre su parte interna y cúbrela con papel aluminio.

c. Sobre la parte interior del marco que formaste, vierte pega-mento y coloca el plástico necesario para hacer una ventana.

d. Coloca pegamento en el fondo y en las partes internas de lacaja. Cubre perfectamente toda el área con cartoncillo negro.

e. Prueba tu horno al aire libre en un día soleado o, en su defecto,coloca una lámpara directamente. Antes de meter diversosobjetos que quieras calentar, como una pequeña taza con agua,una torta, un sándwich, un pedazo de pizza, etcétera, mide sutemperatura inicial (y coloca la tapa recortada de tal maneraque refleje la mayor cantidad de luz en dirección al contenido).Espera unos 10-15 minutos y verifica la temperatura final delalimento o bebida que quepa en su interior.

Resultados

1. Registra los datos del experimento en tu cuaderno. Puedesemplear una tabla como ésta.

Alimentoo bebida

Temperaturainicial (°C)

Temperaturafinal (°C)

Análisis de resultados

1. Explica si se logró el propósito de calentar los alimentos.

2. Explica cómo funciona tu horno.

• ¿Qué mejoras harías a tu horno para que tuviera un funciona-miento óptimo?

• ¿En qué se parece tu horno al efecto invernadero?

Experimenta

Utiliza energía sin contaminar el ambiente. Construye un horno solar.

Page 198: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 198/276

196

S3

Como pudiste observar en este experimento, la radiación solar queda atrapada

dentro del horno-caja, pues al ingresar en el dispositivo los rayos son reflejados por

el papel aluminio y se dirigen hacia la ventana de plástico pero no escapan del todo

por causa de otros procesos de transferencia que ocurren en el interior:

a. La conducción en los sólidos internos, además de la capacidad de absorción

de calor del cartoncillo negro en el fondo del horno, y

b. La convección generada a partir del calentamiento del aire interno.

Estos procesos pueden llegar a aumentar considerablemente la energía interna del

sistema haciendo al horno muy eficiente. En un día muy soleado puede obtenerse

una temperatura considerable.

El dispositivo que construiste está basado en el empleo de una energía alternativa

que has aprovechado para satisfacer una necesidad cotidiana tan simple como calentar

los alimentos. Si bien ya existen calentadores y estufas de este tipo, su empleo aún

no es muy extendido entre la población mundial por diferentes razones, como puede

observarse en la gráfica (figura 31), en donde se observa que el aprovechamientodel Sol como fuente de energía apenas comienza ser una realidad en nuestro siglo.

Puede observarse que en la mayor parte de la historia, la gente ha empleado el

agua, el viento, la fuerza de los animales y la quema de combustibles provenientes de la

biomasa , como el carbón y la madera. En la actualidad, tanto el petróleo y el gas natural

son empleados en forma masiva por la población mundial. En la actualidad las fuentes de

energía no renovables como el petróleo y el aceite son utilizadas con mayor frecuencia,

pero en su empleo se ha contaminado seriamente el ambiente. La energía proveniente del

Sol puede ser convertida en electricidad a través de procesos físicos que estudiarás en el

bloque 4. La electricidad es la manifestación de energía más generalizada en la actualidad

y para generarla se emplea en mayor medida el combustóleo proveniente del petróleo,

aunque también se emplea la fuerza del agua, combustibles como el uranio, y en menor

medida, aerogeneradores. El uso de la energía cinética del viento mediante aerogenerado-

res apenas empieza a ser extendido entre la población mundial y, junto con la luz solar,

es una de las energías alternativas o limpias (pues no agregamos calor a la atmósfera, no

generamos residuos materiales de manera directa y son fuentes renovables) que debemos

usar en el futuro para poder sobrevivir antes de agotar los recursos del planeta.

Fuentes de energía a través del tiempo

Sol

Uranio

Gas natural

Aceite

Agua y viento

Animales de carga

Petróleo

Biomasa

2000 1000 0 1000 (a.n.e.) 2000 (a.n.e.) 3000 (a.n.e.) 4000 (a.n.e.)

Años

FIGURA 31. La gráfica muestracuándo fueron incorporándose

diferentes fuentes de energía ytecnologías en forma amplia alo largo de la historia humana.

Sierra, Jordi; Ignacio Fer-

nández y Antonio Calvo,

¡Enchúfate a la energía!,

México, SEP Ediciones de

educación y cultura, 2003

(Colección Libros del Rincón).

Lee más...

Page 199: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 199/276

197

B3

Comunica tus avances en ciencias

Valora las implicaciones de saber aprovechar la energía.

1. Después de reflexionar sobre lo que se pregunta, reúnete enequipos y respondan lo siguiente.

• ¿Si tuvieras una cubeta de agua al día para toda tu familia,cómo aprovecharían esa agua para sus actividades cotidianas?

• ¿Cómo se puede captar agua de lluvia para emplearla enlas actividades domésticas?

2. Busca noticias en periódicos y revistas sobre el uso del aguadel río Conchos, ubícalo en un mapa y responde:

• ¿Consideras que la ciencia puede ayudar a dar solucionesante la escasez de un recurso natural como el agua?

3. Si se requiere madera para hacer muebles y diversos objetosde uso cotidiano, ¿qué tendría que hacerse para evitar ladeforestación excesiva?

4. Elabora un cartel en el que representes tus respuestas a lascuatro preguntas anteriores.

5. Compartan sus carteles y dialoguen acerca de las propuestas decada equipo y estén atentos a la retroalimentación de su maestro.

Autoevaluación

I N D I C A D O R D E L L O G R O

L O S É

(Tengo elconocimiento)

L O S É H A C E R

(Desarrollé las habilida-des para representar yseguir procedimientos)

V A L O R OE S T E

A P R E N D I Z A J EC O M E N T A R I O S

Sí Aún no Sí Aún no Sí No ¿Cómo lo lograré?

¿Identificas las características de los modelos y reconoces que

sirven para describir, explicar o predecir el comportamiento delfenómeno estudiado?

¿Reconoces que hay muchas explicaciones acerca de la

estructura de la materia en la historia, hasta la construcción del

modelo cinético de partículas?

¿Describes propiedades de la materia: masa, volumen, densidad y

estados de agregación, a partir del modelo cinético de partículas?

¿Puedes diferenciar los conceptos de fuerza y presión y surelación con el Principio de Pascal?

¿Utilizas el modelo cinético de partículas para explicar la presión,en fenómenos y procesos naturales y en situaciones cotidianas?

¿Describes la temperatura a partir del modelo cinético departículas para explicar fenómenos y procesos térmicos del

entorno y la diferencias del calor?

¿Describes los cambios de estado de la materia con base en elmodelo cinético de partículas, e interpretas la variación de los

puntos de ebullición y fusión en gráficas?

¿Describes cadenas de transformación de la energía en el

entorno y en act ividades experimentales?

¿Interpretas la expresión algebraica del Principio de la conser-

vación de la energía, (cedida y ganada)?

¿Argumentas la importancia de la energía térmica en las activi-

dades humanas y los riesgos de su consumo?

Evalúo mi avance

1. Explica qué es una energía alternativa y da dos ejemplos.2. Elabora un esquema del funcionamiento del horno solar y

justifica su uso más ampl io en la vida cotidiana.

3. Identifica la relación que existe entre la deforestación y el usode fuentes de energía a lo largo de la historia. Ayúdatede la gráfica (figura 30).

Page 200: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 200/276

Evaluemos lo aprendido

1. A continuación se dan cinco enunciados que involucran elconcepto de presión.

A. La presión de las llantas de un vehículo aumenta si lasllantas están calientes por haber rodado más de 2 km.

B. La presión correcta de las llantas depende de la cantidadde carga que debe transportar el vehículo.

C. Una prensa hidráulica permite aplicar una gran fuerza apartir de una fuerza pequeña aplicada al cilindro de me-nor diámetro.

D. La presión de un líquido en un recipiente en reposo esigual en cualquier región.

E. En una jeringa la presión con la que sale el líquido es

igual a la presión que se aplica al émbolo.

Con base en los enunciados anteriores indica cuáles seexplican mediante el principio de Pascal.

a. A, B y D

b. A, C y D

c. B, C y D

d. C, D y E

2. ¿Cuál de las dos situaciones puede evitar que una personase lastime: acostarse sobre una cama con clavos o caminarsobre ella? Elije las opciones correctas.

a. Acostarse sobre la cama, porque toda la presión se ejercesobre la espalda.

b. Las dos situaciones causan el mismo daño a la persona.

c. La presión sobre la espalda de la persona se distribuye yno le causaría daño.

d. Caminar sobre la cama expondría un área pequeña delcuerpo y no se lastimaría.

3. ¿Cuál de las siguientes opciones se refiere a un modeloanalógico?

a. Fuerza es igual a masa por aceleración: F = ma.

b. El modelo cinético de partículas explica los cambios deestado de la materia.

c.

d. El sistema circulatorio puede compararse con unainstalación hidráulica, en donde el corazón representala bomba de agua, las arterias son la tubería de agualimpia y las venas el desagüe que transporta aquelloque el organismo desecha.

Esta cama está hecha con aproximadamente 5000 clavos.

Modelo Geocéntrico de Ptolomeo.

Modelo del sistema circulatorio humano.

198

Page 201: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 201/276

199

B3

19

Aprendizajes esperados

P1

PROYECTOSPROYECTOS

Máquinasde vapor

¿Cómo funcionan las máquinas de vapor?

• Plantearás y

delimitarás un

proyecto derivado de

cuestionamientos que

surjan de su interés y

para el que busquen

solución.

• Utiliza la información

obtenida mediante

la experimentación

o investigación

bibliográfica para

elaborar argumentos,

conclusiones y

propuestas de solución

a lo planteado en su

proyecto.

• Diseña y elaboraobjetos técnicos,

experimentos

o modelos con

creatividad, que te

permitan describir,

explicar y predecir

algunos fenómenos

físicos relacionados

con las interacciones

de la materia.

• Sistematiza lainformación y organiza

los resultados

de su proyecto y

comunícalos al grupo

o a la comunidad,

utilizando diversos

medios: orales,

escritos, modelos,

interactivos, gráficos,

entre otros.

Las versiones más difundidas sobre el hundimiento del barco de vapor Titanic

aluden a la imprudencia del capitán y a los errores en la fabricación del

tristemente célebre trasatlántico (figura 1). Antes que el Titanic, muchosotros buques habían navegado por la misma ruta y época del año, de modo

que era difícil esperar la presencia de icebergs en el nebuloso trayecto del

barco. El invierno previo no había sido tan severo, de manera que en 1912

hubo el mayor desprendimiento de hielo en una década.

Una de las investigaciones científicas más aceptadas sobre esta tragedia

proviene del Grupo de Modelación Matemática de Japón (GMMJ). Se concluye

que el oficial Fleet vio el iceberg cuando éste se encontraba a unos 500 metros

de distancia y avisó al capitán Mordoch, quien ordenó activar la alarma, dar

la vuelta al timonel y por telégrafo avisó al cuarto de máquinas que pararan

y echaran el mecanismo en reversa. Sin embargo, l os trabajadores apenas

alcanzaron a cortar el suministro de vapor a las 3 máquinas y debían esperar a

que disminuyeran las revoluciones de las hélices para cambiar el sentido de

admisión y así dar vapor en sentido contrario y luego poner las hélices en

reversa. El barco iba a 19 nudos que son poco más de 35 km/h y con esta

inercia chocó antes de poder dar marcha atrás.

FIGURA 1. El Titanic se construyó en Belfast entre los años 1909 y 1912.Fue el barco más grande del mundo en esa época.

ACT IVIDAD PREVIA

1. Representen en una línea del tiempo cómo se han idoperfeccionando las máquinas de vapor desde su invención.

2. Hagan una lista en la que ejemplifiquen la utilidad de por lomenos tres máquinas de vapor que se usen en la actualidad.

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR O INNOVAR. INTEGRACIÓN Y APLICACIÓN

Page 202: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 202/276

200

Formen equipos y sigan las orientaciones del

maestro para seleccionar el tema del proyecto.

Recuerden que el tema que elijan debe tra-

tarse de una situación real y que plantee unproblema que sea de su interés y esté vincu-

lada con el tema central de este bloque: “Un

modelo para describir la estructura de la ma-

teria.” Propongan un título para su proyecto.

Con el apoyo de su maestro, analicen si

es posible realizar el proyecto y delimiten su

investigación. Para ello, deberán establecer

cuáles son los diversos aspectos relacionados

con la pregunta que guiará el proyecto.

Pregúntense por ejemplo: ¿Investigaremos

desde una perspectiva histórica cómo se fue-

ron modificando las máquinas de vapor desde

la Antigüedad hasta principios del siglo XX ?

¿Nos concentraremos en el funcionamiento

de un tren o barco famoso de vapor, como el

Titanic? O bien: ¿Las termoeléctricas funcionan

con vapor? ¿Nos interesa saber cómo funcionan

las tintorerías y planchadurías que emplean el

vapor? ¿Existe alguna locomotora de vapor

funcionando aún en nuestro país? ¿Por qué es

tan contaminante el proceso para generar el

vapor de las grandes máquinas?

Elaboren una hipótesis sobre el tema por

investigar, es decir, formulen una suposi-ción provisional que trate de dar una posible

solución o respuesta al problema de su inves-

tigación. Por ejemplo, si eligieran el aspecto

de la contaminación, una hipótesis podría ser:

Para calentar el agua que generará el vapor

se requieren enormes cantidades de carbón,

cuya combustión genera gases y partículas

que afectan el equilibrio del efecto inverna-

dero en la atmósfera terrestre.

Planifiquen cómo desarrollarán el proyecto;

para ello será necesario que propongan una

metodología.

INVESTIGACIÓN

Documental

Implica la búsqueda de información científica

en la biblioteca o en internet o contactarse

con un especialista en el tema de estudio,

por ejemplo, un físico, ingeniero mecánico o

naval que conozcas o puedas encontrar. Tam-

bién busca en la página web de la Secretaría

de Marina, de la Secretaría de Comunicaciones

y Transportes o de la facultad de ingeniería

de alguna universidad de tu estado. También

puedes recurrir a un especialista en máquinas

y herramientas de tu localidad, o bi en v isit ar

algún museo de ciencias. Para enriquecer lainvestigación pueden tomar fotografías, ela-

borar esquemas del funcionamiento de las

máquinas de vapor y recopilar objetos que

estén relacionados con el tema del proyecto.

Cualitativa

Se trata de recabar testimonios de algunos ha-

bitantes de la región mediante entrevistas. Por

ejemplo, pueden entrevistar al operador o al

dueño de una tintorería para que les mues-

tre cómo se genera el vapor de la plancha y

así realizar un esquema del funcionamientode la máquina para la generación de vapor.

También pueden contactar a un técnico de la

Comisión Federal de Electricidad para que les

explique cómo se genera el vapor que mueve

los rotores de una turbina en las plantas ter-

moeléctricas, o bien al vendedor de camotes

y plátanos endulzados , para que les mues tre

cómo se transforma el agua en vapor y éste

se transforma en sonido por la chimenea del

carrito (figura 2).

FIGURA 2. Vendedor de camotes con su carrito. Partedel vapor caliente que sale del carrito de camotes setransforma en el sonido característico que reconoce-mos a cuadras de distancia.

• Enlisten las principales actividades que

deberán llevar a cabo para responder a

las preguntas, y lo que necesitarán para

realizarlas. Consideren qué responsabilida-des implica cada actividad, el tiempo que

llevará realizarlas, y los materiales y re-

cursos que necesitarán. Tengan en cuenta

todas las etapas del proyecto, no sólo la

de desarrollo. En este momento pueden

utilizar el planificador que se incluye en

la introducción del bloque 5.

• Distribuyan tareas entre los integrantes

del equipo. Es importante que ustedes

elijan las actividades que cada uno desee

realizar de acuerdo con sus habilidades y

destrezas.

• Planteen qué dificultades podrían en-

frentar para conseguir los propósitos del

proyecto y propongan algunas soluciones

para resolverlas. Recuerden que estar pre-

venidos ant e cua lqu ier inconveni ent e les

permitirá conseguir sus metas con mayor

facilidad.

1. Planeación

Page 203: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 203/276

B3

20

2. Desarrollo

Elaboren una guía para la investigación docu-

mental y cualitativa. A continuación incluimos

un ejemplo de algunos de los puntos que pue-

de contener; sin embargo, el equipo deberádecidir cuáles consideran importantes sin per-

der de vista el objetivo de su investigación, así

como las preguntas y la hipótesis formuladas

en la etapa de planeación.

• Investiguen aspectos de las máquinas de

vapor : fecha de const rucción, diagrama de

funcionamiento, conversión de calor en

trabajo o en otras formas de energía, rela-

ción con el modelo cinético de partículas,

eficiencia de la máquina y contaminación

generada en la producción de vapor.

• Realicen un modelo de máquina de vapor

con materiales sencillos.

Diseñen una lista de preguntas para entre-

vi st ar a té cn icos , ci en tí fi cos, func iona ri os

públicos u otros expertos, y ot ra para la infor-

mación de la comunidad, como el encargado

de la tintorería o el vendedor del carrito de

camotes.

Tom en not a , en fichas de lectura y biblio-

gráficas, de la información documental que

vayan recabando y regis tren las respuestas de

las entrevistas.

Reúnan los datos recabados en cuadros, ta-

blas, fichas o gráficas, entre otros formatos

pertinentes. Por ejemplo, elaboren una ficha

de cada máquina estudiada en la que se inclu-

yan fotografías o d ibujos, sus funcionamiento

y ef icacia.

Anal icen los datos obtenidos en la inves-

tigación, acuerden qué les indican éstos y

contrástenlos para establecer si se confirmó

la hipótesis planteada en la etapa inicial.

Formulen las conclusiones de la investiga-

ción. Para ello, tengan en cuenta los aspectos

esenciales que responden las preguntas que

han guiado su trabajo y que ustedes eligieron.

3. Difusión

Elijan qué medio de difusión es el más ade-

cuado para dar a conocer los resultados de

su investigación. Por ejemplo: modelo de

máquina de vapor, cartel, tríptico, exposición

Agrega l as que encontraron:

fotográfica, presentación en algún programa

de computadora, entre otros.

• Trabajen en el medio de difusión elegi-

do. Tengan en cuenta que éste debe co-municarla información que se incluyó en

el informe de la investigación y que debe

incluir algo relacionado sobre el diseño y

elaboración de objetos técnicos, experi-

mentos o modelos creativos de máquinas

de vapor, que les permitan describir, ex-

plicar y predecir algunos fenómenos físi-

cos relacionados con las interacciones de

la materia.

• Expongan el resultado de su proyecto ante

su comunidad escolar. Despierten su interés

y curiosidad por conocer cómo la tecnología

de las máquinas de vapor contribuyó al de-

sarrollo del transporte, las comunicaciones,

la industria, pero también tuvo que ser sus-

tituida por otros mecanismos más eficientes

y menos contaminantes. En la actualidad,

los motores a gasolina también deberán des-

aparecer en algún momento futuro puesto

que emiten una gran cantidad de gases y

partículas de efecto invernadero.

4. Evaluación

Evalúen su desempeño individual y el de

los integrantes del equipo en el proceso de

trabajo del proyecto. Tengan en cuenta los

siguientes rubros: metodología de trabajo,

objetivos del proyecto, producto final de

acuerdo con el medio de difusión, la efi-

cacia de la difusión, y la actitud para el

trabajo de cada integrante y del equipo en

su conjunto.

P1

20

Diccionario de física, Madrid, Oxford-

Complutense, 1998.

García Tapia, Nicolás y Jesús Carrillo Cas-tillo, Tecnología e imperio. Ingenios y le-

yendas del siglo de oro, Madrid, Nivola,

2002, p. 144.

García Colín, Leopoldo, Y sin embargo se

mueven… Teoría cinética de la materia,

México, SEP-FCE-Conacyt (La ciencia para

todos), núm. 36, 2002.

García Colín, Leopoldo, De la máquina de

vapor al cero absoluto, México, SEP-FCE-

Conacyt (La ciencia desde México), núm.

5, 1986.

Halliday, Resnick, Walker, Fundamentos

de física, vol. 1, México, CECSA, 2006.

Lightman, Alan, Grandes ideas de la físi-

ca. Cómo los descubrimientos científicos

han cambiado nuestra visión del mundo,

México, McGraw-Hill, 1995, p. 91.

Perelman, Yakov, Física recreativa, tomo

2, México, Ediciones Quinto Sol, 1992.

Lee más...

www.albertoroura.com/peich.php?maquina_vaporhttp://omega. i lce.edu.mx:3000/sites/ciencia/volumen2/ciencia3/067/htm/oceano8 (Historia de lasmáquinas de vapor).

www.youtube.com/watch?v=0BIxwB _qpU4&feature=fvwrel (Cuautla).

www.youtube.com/watch?v=4hl4Cx9mGEY&feature=related (Polonia). (En estas páginas puedes encontraralgunas locomotoras de vapor quefuncionan en la actualidad y valorarsus ventajas y desventajas).

www.cibernautica.com.ar/naufra-gios/titanic_2/index.htm (Para unanálisis técnico del Titanic).

Page 204: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 204/276

202

Gatoshidráulicos

En el año de 2560 a.n.e. en Gizeh, en las cercanías del actual Cairo, se terminó la construcción de lo quefue por unos 4 000 años la edificación más alta en la historia de la humanidad: la pirámide de Keops (en

griego) o Khufu. La mayor y más antigua de las t res pirámides más grandes de Egipto fue erigida, según

calculan los eruditos actuales, en un plazo de 20 años. Y también calculan que tiene un peso de casi

6 millones de toneladas. Ello implicaría que los egipcios habrían tenido que instalar unas 800 toneladas

de piedra ¡al día! ¿Te imaginas cómo podría hacerse eso sólo con el trabajo humano?

Todavía es un misterio cómo lograron hacerlo. Hoy las cosas son diferentes.

Todo empezó con Blaise Pascal, a quien se le debe su famoso Principio, que ya viste en la secuencia 3. Con

el uso de una prensa manejada con émbolos y fluidos (agua o aceite) hoy es posible levantar o descender

enormes pesos. Después del Principio de Pascal, el ingeniero británico Joseph Bramah publicó sus “Nue-

vos métodos de producción y aplicación de más potencia a toda maquinaria que requiera movimiento y

fuerza”, donde habló de la prensa hidráulica.

En el siglo XIX fue posible, gracias a la inventiva de un mecánico estadounidense de origen escocés,

Richard Dudgeon, realizar el levantamiento de grandes masas a partir del Principio de Pascal (figura 1).De hecho, en un país tan industrioso, la Oficina de Patentes de Estados Unidos otorgó a este mecánico

la patente de la prensa hidráulica portátil. Esto inició un gran negocio, que sigue existiendo y permite

a arquitectos e ingenieros construir edificios enormes

sin tener que recurrir a miles de obreros, porque la

prensa hidráulica facilita estas grandes obras.

El principio hidráulico de Pascal puedes observarlo en

las grandes construcciones urbanas, con la aplicación

de Dudgeon, en grúas, levantadores de autos en los

talleres, y en muchas partes donde ves cómo es posible

levantar un peso grande con sólo oprimir un botón,

en lo que se usa además, claro, otro tipo de energía.

FIGURA 1. El gato hidráulico puede levantarmasas enormes con la aplicación de unafuerza relativamente pequeña. Depósitopara reciclaje de metal a cielo abierto.

¿Cómo funcionan los gatos hidráulicos?

ACT IVIDAD PREVIA

1. Explica qué significan los siguientes conceptos clave que forman parte central de la in-vestigación que deberás desarrollar junto con tu equipo en esta propuesta de proyecto.

• Presión en un fluido en reposo

Principio de Pascal2. Averigua qué es un gato hidráulico y cómo funciona.

202

1. Planeación

Formen equipos y seleccionen el tema del pro-

yec to. Par a el lo, el ijan un tí tulo a manera de

pregunta; por ejemplo: ¿para qué se emplea un

gato hidráulico? ¿Podemos fabricar un gato hi-

dráulico?

Anal icen si el proyecto es viable, es decir, si tie-

ne las características necesarias para que puedan

llevarlo a cabo en el tiempo establecido por el

maestro, y con los recursos con los que cuenten

su equipo y su escuela.

P2

Page 205: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 205/276

B3

20

Determinen cuáles son los principales aspec-

tos relacionados con el tema elegido para el

proyecto. Pueden hacerlo en forma de pre-

guntas que guíen la investigación.

Establezcan la hipótesis de trabajo. De

acuerdo con esta propuesta, una hipótesispodría ser: El empleo de gatos hidráulicos

multiplica la fuerza aplicada, pero debe te-

nerse cuidado porque puede tener riesgos.

Propongan una metodología de trabajo y

elijan las fuentes de información para la in-

vest igac ión documental y cual itat iva.

Enlisten las principales actividades que de-

berán llevar a cabo en el proyecto y, si lo

consideran necesario, elaboren un planifica-

dor para organizar el trabajo.

• Prevean los medios y los materiales necesa-

rios para el desarrollo del proyecto.

• Distribuyan las tareas del proyecto entre los

integrantes del equipo.

• Ant icipen dif icultades y prevean posibles

soluciones.

2. Desarrollo

Elaboren una guía para la investigación do-

cumental, sin perder de vista el objet ivo de su

proyecto y la hipótesis formulada. Algunos delos puntos a incluir podrían ser:

• Cómo se aplica el principio de Pascal en el

gato hidráulico.

• Cómo se fue perfeccionando el gato hidráu-

lico en el curso de la historia.

• Apl icaciones del gato hidráulico en dif e-

rentes industrias y actividades humanas

(figura 2).

• Cuidados que deben tenerse al emplear ga-

tos hidráulicos.

Elaboren una lista de preguntas para entre-

vistara la s fuentes de consul ta verbal . Pueden

realizar entrevistas sobre frenos hidráulicos y

gatos hidráulicos a los maestros mecánicos en

talleres de automóviles, “Verificentros”, o bien

pueden acudir a centros de lavado de coches

para preguntar cómo funcionan los mecanis-mos de los gatos hidráulicos que tengan ahí,

contactar a los f abricantes de puertas hidráu-

licas, etcétera.

Consulten las diversas fuentes de informa-

ción elegidas.

Reúnan los datos recabados en cuadros,

tablas, fichas, gráficas u otros formatos que

consideren pertinentes.

Anali cen los datos, discutan qué indican y

decidan si se confirmó la hipótesis planteada

en la etapa de planeación.

Formulen conclusiones sobre los resulta-

dos de la investigación. Para ello, pueden

discutir cuáles son las ventajas de los gatos

hidráulicos, cómo tendría que hacerse el mis-

mo trabajo sin ellos, y cuáles son las partes

esenciales de un gato hidráulico. Los datos

obtenidos en las entrevistas a personas que

emplean gatos hidráulicos les serán úti les para

conocer su importancia en la vida cotidiana.

Elaboren el informe de la investigación.

3. Difusión

Elijan el medio de difusión con el que darán

a conocer los resultados de la investigación.

Trabajen y preparen el medio de difusión.

Expongan el resultado de su pro-

yecto en el grupo y ante su comuni-

dad escolar invitando a sus padres y a la comunidad escolar.

Si no les es posible acudir a reali zar

entrevistas a los talleres y co mercios

sugeridos o no encuentran algún

especialista en el tema, pueden soli-

citar información por correo postal

o electrónico; expliquen su t rabajo

y necesidades, y envíen el cuestio-

nario con las preguntas planeadas

previamente.

Tengan en cuenta las siguientes sugerencias

de preguntas a comerciantes y adultos.

• ¿Qué tan indispensable es el uso del gato

hidráulico en su actividad? ¿Qué ventajas y

desventajas tiene el empleo de este dispo-

sitivo? ¿Qué papel desempeña la presión en

un gato hidráulico? Si el dispositivo fuerade gas, ¿podría funcionar igual?

4. Evaluación

Evalúen su desempeño individual y el de los

integrantes de su equipo en el proceso de

trabajo del proyecto. Tengan en cuenta los

siguientes rubros: metodología de trabajo,

objetivos del proyecto, producto de difusión,

difusión, y actitud individual y del equipo en

su conjunto.

P2

FIGURA 2. La “puerta” del puente de Londres.

20

Diccionario de física, Madrid, Oxford-

Complutense, 1998.

Halliday, Resnick , Walker, Fundamentos

de física, vol. 1, México, CECSA, 2006.

Hewit, Paul G., Física conceptual , México,

Pearson Educación, 2004.

Lee más...

www.youtube.com/watch?v=ERFiCdDJkEo&feature=related (Principio de Pascal).

www.quiminet.com/articulos/gato-hidraul ico-func ionamiento-y-t ipos-2650085.htmwww.ecured . cu/ index .php/Gato_

hidr%C3%A1ulico (Funcionamiento delos gatos hidráulicos).

http://cirugiahoy.com/historia-de-gatos- hidraulicos/ (Historia de los gatoshidráulicos).

http://nasdonline.org/document/ 144/d001705s/uso-seguro-de-los-gatos-hi-draulicos.html (Uso seguro de los gatoshidráulicos).

www.taringa.net/posts/videos/928371/Moviendo-edificios-de-900ton.html(Gatoshidráulicos para mover edificios).

Page 206: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 206/276

212

B2

204

b

BLOQUE 4

Manifestaciones de laestructura interna de la materia

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

Explicación de los fenómenos eléctricos: El modelo atómico

Relacionarás la búsqueda de mejores explicaciones y el avance de la ciencia, a partirdel desarrollo histórico del modelo atómico.

Proceso histórico del desarrollo del modelo

atómico: aportaciones de Thomson,Rutherford y Bohr; alcances y limitacionesde los modelos.

Describirás la constitución básica del átomo y las características de sus componentes con elfin de que expliques algunos efectos de las interacciones electrostáticas

en actividades experimentales y/o en situaciones cotidianas.

Características básicas del modelo atómico:núcleo con protones y neutrones,y electrones en órbitas. Carga eléctricadel electrón.

Explicarás la corriente y resistencia eléctrica en función del movimientode los electrones en los materiales.

Efectos de atracción y repulsión electrostáticas.

Corriente y resistencia eléctrica. Materialesaislantes.

Los fenómenos electromagnéticos y su importancia

Identificarás las ideas y experimentos que permitieron el descubrimientode la inducción electromagnética.

Descubrimiento de la inducciónelectromagnética: experimentos de Oerstedy de Faraday.

Valorarás la importancia de aplicaciones del electromagnetismo para obtenercorriente eléctrica o fuerza magnética en desarrollos tecnológicos de uso cotidiano.

El electroimán y aplicacionesdel electromagnetismo.

Identificarás algunas características de las ondas en el espectro electromagnético y en elespectro visible, y las relacionarás con su aprovechamiento tecnológico.

Composición y descomposición de la luzblanca.

Características del espectro electromagnéticoy espectro visible: velocidad, frecuencia,longitud de onda y su relación con la energía.

Relacionarás la emisión de radiación electromagnética con los cambiosde órbita del electrón en el átomo.

La luz como onda y partícula.

S1

S2

a c

Page 207: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 207/276

205

d e f

20

B4

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturales desde la perspectiva científica.

• Comprensión de los alcances y limitaciones de la cienciay del desarrollo tecnológico en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambientey la promoción de la salud orientadas a la cultura de la prevención.

a) Creo que me encuentro en un campo electrostático. b) Homenaje a Albert Eistein en la filatelia. c) Energía eólica, una opción sustentable.

d) Efectos de la fuerza en la vida cotidiana. e) Tesla, inventor y científico fuera de serie. f) Fometar la cultura de la prevención: una necesidad .

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

La energía y su aprovechamiento

Relacionarás la electricidad y la radiación electromagnética como manifestaciones

de energía, y valorarás su aprovechamiento en las actividades humanas.

Manifestaciones de energía: electricidad

y radiación electromagnética.

Reconocerás los beneficios y perjuicios en la naturaleza y en la sociedad, relacionadoscon la obtención y aprovechamiento de la energía.

Obtención y aprovechamiento de la energía.Beneficios y riesgos en la naturaleza y lasociedad.

Argumentarás la importancia de desarrollar acciones básicas orientadas al consumosustentable de la energía en el hogar y en la escuela.

Importancia del aprovechamientode la energía orientado al consumosustentable.

PROYECTO: Imaginar, diseñar y experimentar para explicar o innovar (opciones)*Integración y aplicación

Elaborarás y desarrollarás de manera más autónoma un plan de trabajo que oriente tu

investigación, mostrando responsabilidad, solidaridad y equidad.

Utilizarás la información obtenida mediante la experimentación o investigaciónbibliográfica para elaborar argumentos, conclusiones y propuestas de solución.

Diseñarás y elaborarás objetos técnicos, experimentos o modelos que te permitandescribir, explicar y predecir fenómenos eléctricos, magnéticos o sus manifestaciones.

Reconocerás aciertos y dificultades en relación con los conocimientos aprendidos, lasformas de trabajo realizadas y tu participación en el desarrollo y comunicación del proyecto.

¿Cómo se obtiene, transporta y aprovechala electricidad que utilizamos en casa?

¿Qué es y cómo se forma el arcoíris?

* Revisa la introducción al bloque 5 antes de trabajar con los proyectos.

S3

Page 208: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 208/276

206

S1

PROYECTO

Trabaja tu proyecto con tu equipo:

Es importante poner atención para elegir

el tema que más les guste. Para iniciar este

trabajo, revisa la Introducción al bloque 5,

donde se explica cuáles son las etapas

de esta modalidad de trabajo.

206

B2

LA HUMANIDAD SE HA PREGUNTADO y se pregunta aún, ¿cuáles son los

constituyentes últimos de la materia? Ahora todos los científicos

creen firmemente en la existencia de los átomos y que éstos, a su

vez, están hechos de partículas más pequeñas y que algunas de es-

tas partículas están distanciadas, en una escala correcta, por una

infinidad de espacio vacío. Por lo tanto, quizá se pueda concluir de

todo esto que estamos hechos esencialmente de: ¡nada!

Por otra parte, ¿cómo es posible que dos objetos interactúen sin con-

tacto alguno?, no fue fácil asimilar esto, y después de mucho trabajo,

alguien propone la idea de campo que circunda el espacio y sirve de

intermediario para la acción a distancia, como un emisor que trans-

mite mensajes de fuerza entre partículas. Pero además estos campos

se propagan en el espacio generándose unos a otros en forma de

ondas. Parecía imposible que algo así pudiera ser verdad.

Pero los científicos creen firmemente en la existencia de ondas elec-

tromagnéticas, que el campo electromagnético se puede propagar

como una onda y a través del vacío y no solo eso, sino que la luz

puede ser descrita como una onda electromagnética; y de la inte-

racción de una onda electromagnética con los átomos proviene el

color de las cosas, y de la transmisión de estas ondas depende que

la gente esté más comunicada que nunca y sepamos lo que le pasa

a una estrella lejana, así es. Esta es la visión de la realidad que nos

ha dado la ciencia, estemos de acuerdo o no, todo esto en su esenciafilosófica más profunda, ¡funciona!

B4

Page 209: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 209/276

207

B4

¿Qué rayos está pasando aquí?

((ENTRA FOTOGRAFÍA DENIÑOS EN COLUMPIOS,

LA FIG S/NPÁG 87))

207

Aprendizajes esperados

S1

• Relacionarás la búsqueda

de mejores explicacionesy el avance de la ciencia,

a partir del desarrollo

histórico del modelo

atómico.

• Describirás la constitución

básica del átomo y las

características de sus

componentes con el fin

de que expliques algunos

efectos de las interacciones

electrostáticas enactividades experimentales

y/o en situaciones

cotidianas.

• Explicarás la corriente y

resistencia eléctrica en

función del movimiento

de los electrones en los

materiales.

Proceso histórico del desarrollo del modeloatómico: aportaciones de Thomson,Rutherford y Bohr; alcancesy limitaciones de los modelos.

Características básicas del modelo atómico:

núcleo con protones y neutrones, y electronesen órbitas. Carga eléctrica del electrón.

Efectos de atracción y repulsión electrostáticas.

Corriente y resistencia eléctrica. Materialesaislantes y conductores.

Explicación de los fenómenoseléctricos: el modelo atómico

Page 210: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 210/276

208

S1

1. Imagina que el átomo se ajusta al modelo de Thomson.El panqué contiene en equilibrio el número de pasasadecuado, de tal manera, que la cantidad de carga positivasea exactamente igual a la carga negativa y el átomo seaeléctricamente neutro. El panqué puede aceptar o perderpasas. Para quitarle o ponerle pasas al panque hay quetrabajar y recuerda que esto puede verse reflejado enun aumento de energía cinética de las pasas. Bien, coneste modelo contesta las siguientes preguntas dando unaexplicación acorde con la ganancia o pérdida de pasas.

• Tomas un globo inflado y haces trabajo sobre él, frotándolocon tu cabello, el globo se carga negativamente y puedeatraer pequeños trocitos de papel, ¿por qué sucede esto?

• Piensa por el momento que cada pasa tiene una carganegativa ‘-e’. Si el panqué gana dos pasas ¿Qué cargatendrá el panqué? Recuerda que antes de la transferenciade pasas la carga total era cero.

• Un panqué tiene una carga de ‘+ 2e’, ¿cuántas pasas perdióel panqué? Explica.

2. El principio de cuantización de la carga eléctrica dice que:

• “Cualquier objeto cargado eléctricamente tendrá unacantidad de carga exactamente igual a ne donde n es unnúmero entero”, por ejemplo: … – 2, –1, 0, 1, 2, …

• ¿Es posible explicar este principio con el modelo deThomson? Justifica tu respuesta.

FIGURA 1. Representación delmodelo atómico de Thomson.

• Proceso histórico del desarrollo del modelo atómico:aportaciones de Thomson, Rutherford y Bohr;alcances y limitaciones de los modelos

En el bloque anterior de este libro has estudiado a la materia, pensando que toda ella

se constituye de partículas con ciertas propiedades. Pues bien, desde la antigüedad

filósofos griegos, entre ellos Demócrito (460-370 a.n.e.), pensaban que la materia se

constituía de diminutas partículas que ya no podían dividirse más; a dichas partículas

les dieron el nombre de átomos que significa “indivisible”. Sin embargo, Platón y

Aristóteles propusieron que no puede haber partículas indivisibles y la idea se aban-

donó por siglos.

El concepto de átomo volvió a surgir en Europa

durante el siglo XVII, aunque la teoría atómica nació

en realidad entre los años 1803 y 1807 de la manode un maestro de escuela inglés, que enseñaba tanto

a niños de primaria como a jóvenes universitarios:

John Dalton.

Por increíble que parezca, en algún sentido Platón

y Aristóteles tenían algo de razón, al menos los áto-

mos de Dalton mostraban una estructura compleja.

Algunas característ icas de la materia como por ejemplo, la que estudiarás en este blo-

que: la carga eléctrica, podían explicarse mejor si se pensaba en un átomo compuesto

de fragmentos más pequeños; una parte del átomo dotada de carga positiva y el resto

de carga negativa. Joseph John Thomson propuso un modelo simple de átomo, pensóen éste como si se tratara de un panqué de pasas (figura 1). El cuerpo del panque (el

pan) contenía la carga positiva y las pasas eran partículas con carga negativa que en

un determinado momento podían abandonar el átomo si se les suministraba energía,

y como ya lo sabes, eso implica hacer algún t ipo de trabajo.

Explora

Carga positiva

Carga negativa

Page 211: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 211/276

209

B4

209

Ahora resolverás el misterio de las pasas. A mediados del siglo XIX muchos cientí-

ficos comenzaron a estudiar descargas eléctricas dentro de tubos de vidrio al vacío.

El aire se les extraía por bombeo o succión.

Para que te des una idea succiona el aire de una botella de plástico vacía, te darás

cuenta de que ésta se arruga, ya que al no tener aire adentro, el aire que está afuera

de ella la aplasta. Por cierto, sacarle el aire a las botellas facilita su reciclado, así que

no dudes en hacerlo.

Volviendo al tubo de vacío, el vidrio aguanta mejor la presión atmosférica y no se

deforma cuando se le saca el aire. El tubo de vidrio se representa esquemáticamente

en la figura 2. En su interior se encuentra un filamento, como el de los antiguos focos,

que aunque siguen en el mercado ya no se recomienda su uso, ya descubrirás un poco

más adelante por qué. El filamento está hecho de Tungsteno que es un metal que se

puede calentar a muy altas temperaturas; cuando se pone al rojo vivo supera los 2000 °C.

A diferencia de los filamentos de los focos, el filamento de este tubo tiene forma de hor-

quilla y termina en punta, ya que las partículas cargadas se concentran en mayor medidahacia las puntas del metal, ¿te has fijado en los pequeños pararrayos de los paraguas?

Como ya sabes por lo que has estudiado en el bloque anterior, la temperatura está

relacionada con la energía cinética promedio de las partículas que conforman un

sistema, en este caso el filamento. Para calentar el filamento, éste se conecta a una

batería o fuente de poder que suministra una gran cantidad de energía cinética a las

partículas, tanta que algunas de ellas pueden escapar del filamento y conformar una

especie de nube alrededor del mismo. Delante

de la nube, a poca distancia, se coloca una placa

metálica cargada positivamente mediante otra ba-

tería, como ya sabes cargas de signo contrario seatraen. Las partículas que emigran del filamento

son atraídas por la placa cargada positivamente,

algunas de ellas se cuelan por un pequeño ori-

ficio al centro de la placa, y continúan su movi-

miento por inercia; equivalente a frenar el auto

de golpe y salir despedidos hacia el parabrisas.

Sin embargo estas partículas no las verías a sim-

ple vista y por eso no te darías cuenta de nada

de esto. Para detectarlas se “pinta” o se recubre

uno de los extremos del tubo con una sustancia

fluorescente; al chocar una partícula con esta sus-

tancia se emite un destello luminoso. Un experimento muy similar a éste condujo a

J. J . Thomson a principios del siglo XX a deducir dos cosas:

1. En el interior de los átomos hay cargas negativas, ¿por qué dedujo esto?

2. Las cargas presentan inercia, así que se trata de partículas , ¿qué propiedad de

la materia se asocia con la inercia?

Las partículas que Thomson descubrió, hoy se conocen como electrones. Por lo

tanto, intenta contestar: ¿qué papel juegan las pasas en el modelo del átomo del propio

Thomson? Cuando contestes habrás resuelto el misterio de las pasas.

FIGURA 2. Esquema del tubo devidrio al vacío.

Pantallaflourescente

Destelloluminoso

Haz de partículascargadas negativamenteFilamento

Placa metálicacargadapositivamente

Nube partículascargadas negativamente

Baterías

Utiliza las TIC

Trabaja con el recursointeractivo quereproduce el modelode Bohr.

www.walter-fendt.de/ph14s/bohrh_s.htm

Page 212: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 212/276

Page 213: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 213/276

211

B4

Reflexiona en cómo ha sido necesario mejorar los modelos que explican la estructura de la materia.

1. Reflexiona antes de iniciar el experimento que iniciarásindividualmente:

¿En realidad existen los átomos?• ¿Por qué el modelo atómico de Thomson tuvo que ser

abandonado?

Material

• Colorante vegetal azul o rojo• 2 vasos o tazas de plástico transparente con iguales

cantidades de agua, una fría y la otra caliente. También sepueden usar tubos de ensayo o matraces

• 2 barras de plastilina de dos colores diferentes• 1 caja de palillos

ProcedimientoPrimera parte

a. Deja caer una gota de colorante vegetal en cada taza ovaso y, sin sin agitar, observa lo que ocurre durante variosminutos.

b. Espera hasta que el colorante se haya dispersado bien en losdos vasos.

Análisis de resultados

1. Contesta en tu cuaderno a las siguientes preguntas:

• ¿Qué diferencias notas entre el vaso de agua fría y el vasode agua caliente?

• ¿Sugiere lo que has observado la presencia de átomos?Explica.

2. Intenta hacer una descripción del fenómeno utilizando el

modelo atómico de Thomson y anótala en tu cuaderno.Segunda parte

c. Ahora, reúnete en pareja y construyan un modelotridimensional.

d. Hagan 14 esferas de plastilina iguales de un color, lo mejorque se pueda. Pongan dos bolitas de plastilina de otrocolor sobre la superficie de las 14 esferas.

e. Acomoden las 14 esferas lo más parecido que puedan a ladistribución que se muestra en la figura. Esto simulará lalámina de oro.

f. Hagan una esfera más chica que las primeras 14, sin bolitasincrustadas, ésta simulará una partícula a.

g. Aproximen la partícula a a la lámina de oro.

Análisis de resultados

3. Expliquen en su cuaderno si la partícula a puede pasar a travésdel oro con facilidad, apóyense en el modelo tridimensionalque acaban de construir. Recuerden que cargas del mimosigno se repelen y que están trabajando con el modelo deThomson.

• ¿Cómo modificarían el modelo tridimensional quehan construido para que las partículas a pasen a travésdel oro considerando la repulsión entre cargas iguales?

Nota: De ser necesario utilicen los palillos para separar.

Tengan en cuenta que si separan demasiado las bolas quesimulan el oro equivaldría a destruir la lámina.

• ¿Qué esperaba observar Rutherford? Esto que hiceron fue loque le encargó Rutherford a su asistente Ernst Marsden.

4. Compartan su modelo con el maestro y con el resto de suscompañeros. Observen los modelos que elaboraron los otrosequipos. ¿Llegaron a las mismas conclusiones?

Elabora modelos y experimenta

Niels Bohr que trabajaba con Rutherford se enteró de los resultados de su experimento

con las partículas a y propuso un modelo para explicar la estructura de los átomos,

porque estaba claro que al menos el átomo se componía de núcleos con carga positiva

y elect rones. Además ya estaban regis trados los resul tados de otros dos experimentos

clave: la radiación (emisión de energía) del cuerpo negro y el efecto fotoeléctrico, de

los cuales se hablará posteriormente con mayor detalle.

Como hecho relevante de estos dos últimos experimentos se desprendía la idea de

que los átomos reciben energía en paquetes discretos, es decir, no reciben cualquier

cantidad de energía, sino que sólo reciben cantidades de energía que sean múltiplos

enteros de la constante ‘h’, ahora conocida como constante de Planck en honor a Max

Planck, considerado por muchos como el padre de la mecánica cuántica. Precisamente

al paquete energético que llega a recibir un átomo es un cuanto, y de ahí el término

de mecánica cuántica.

Modelo tridimensional.

Page 214: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 214/276

212

S1

Bohr (figura 5) propuso un modelo que seguramente te recordará a

un Sistema Solar en miniatura, con el núcleo de carga positiva al centro

como si del Sol se tratara y los electrones orbitando al núcleo. Sin embar-

go, las órbitas de Bohr eran estrictamente circulares. El modelo de Bohr

fue publicado en 1913 y su aplicabilidad estaba restringida a aquellos

átomos que sólo tuvieran un electrón. Aquí se muestra el modelo de Bohr

para el átomo de hidrógeno (figura 6).

Aunque la situación se parece al movimiento de un planeta en torno

al Sol, en realidad no lo es. Uno de los problemas que surgieron con

este modelo, es que se sabía que las cargas eléctricas cuando se ace-

leran pierden energía cinética conforme lo hacen, y ya sabes que una

partícula en trayectoria circular tiene una aceleración centrípeta debida

al cambio de dirección y sentido del vector velocidad, eso significaría

que el electrón iría describiendo trayectorias circulares cada vez de

menor radio, o en otras palabras el elect rón iría cayendo describiendouna trayectoria en forma de espiral hacia el núcleo, llevando al átomo

mismo a un irremediable colapso.

Aun así, Bohr se at revió a postular que sí era posible que el electrón

tuviera órbitas circulares estables alrededor del núcleo siempre y cuan-

do éste tuviera una cantidad precisa de energía tanto potencial como

cinética. Aquí la energía potencial no está relacionada con un trabajo

en contra de la gravedad para colocar un objeto a cierta altura, pero sí

está relacionada con el trabajo que sería necesario hacer para poner al

electrón en órbita en contra de la atracción eléctrica.

El electrón puede ganar energía y moverse a la siguiente órbitadisponible. La condición es que si salta a la siguiente órbita con una

energía inicial E i la energía final E f debe ser tal que la diferencia sea

un múltiplo entero ‘n’ de la constante de Planck, h. En términos mate-

máticos esto se puede expresar así:

E f – E

i = E = nh (1)

Posible órbitadisponible al electrón

Órbita establepermitida

+

Núcleo concarga positiva

Electrón

FIGURA 6 . Modelo de Bohr.

1. Supón que tienes un haz de partículas cargadas y quieresdemostrar que están cargadas eléctricamente positiva onegativamente, ¿qué harías?

2. ¿Qué aspecto de las partículas que descubrió Thomson le su-girieron que se trataba de componentes fundamentales de losátomos?

3. Si el haz de electrones de un tubo de televisión golpea sóloun punto de la pantalla a la vez, ¿cómo puedes ver la imagencompleta? Explica.

4. ¿Por qué el experimento de las partículas de Rutherford lesugirieron que toda la carga positiva del átomo debería estarconcentrada en un núcleo con los electrones alrededor acierta distancia del mismo? Explica.

5. ¿Por qué el modelo de Bohr es adecuado para explicar losexperimentos de dispersión de partículas de Rutherford?

Evalúo mi avance

FIGURA 5. Niels Henrik David Bohr (1885-1962).

Page 215: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 215/276

213

B4

Ernst Rutherford (figura 7), a quien seguramente ya

identificas como el descubridor del núcleo atómico, si-

guió trabajando en experimentos de dispersión de par-

tículas a, pero en 1919 bombardeó con dichas partículas

una muestra de gas nitrógeno y en vez de utilizar como

detector de las partículas que atravesaban el gas, una

placa fotográfica, esta vez utilizó una pantalla fluores-

cente y un contador de centelleo. Este dispositivo recibe

el destello luminoso proveniente de la pantalla fluores-

cente que es energía y la transforma en energía cinéticade electrones que pueden moverse en un cable o placa

metálica, esta energía se puede medir y después de ciertos cálculos matemáticos se

puede determinar con precisión qué tipo de partícula fue la que emitió el destello

luminoso en la pantalla fluorescente.

Ya tendrás oportunidad de hacer estos cálculos conforme te vayas adentrando en

el estudio del modelo atómico y las interacciones eléctricas. Por ahora, lo que es

importante saber, es que Rutherford podía establecer qué tipo de part ícula impactaba

con su pantalla una vez dispersada por el nitrógeno. El dispositivo experimental de

Rutherford se muestra esquemáticamente en la figura 8.

Las partículas a ingresan a una celda llena de gas nitrógeno. Rutherford esperaba

que su contador de centelleo le reportara un gran número de partículas a; esperaba

que éstas impactaran en la pantalla fluorescente prácticamente sin desviación alguna,

además de algunos electrones, pero para su sorpresa detectó otro tipo de partículas

cargadas positivamente, de naturaleza distinta a la de las partículas a.

Partícula α

Electrón

Núcleo denitrógeno

Contadorde centelleo

Destellosluminosos

Pantalla fluorescente

Núcleo de hidrógeno

FIGURA 8. La realidad de lasinteracciones entre las partículasa y los átomos de nitrógeno esmucho más compleja que lo quese muestra aquí.

• Características básicas del modelo atómico:núcleo con protones y neutrones, y electrones en órbitas.Carga eléctrica del electrón

FIGURA 7. Rutherford, físico yquímico neozelandés (1871-1937),en su laboratorio de la Universidadde Manchester, Reino Unido.

Page 216: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 216/276

214

S1

Por sus estudios anteriores con experimentos similares con el hidrógeno, se dio

cuenta de que precisamente las partículas nuevas correspondían a núcleos de átomos

de hidrógeno. Encontrar núcleos de átomos de hidrógeno en una celda que no lo

contenía insinuaba una posibilidad fascinante; tal vez el núcleo de hidrógeno era un

componente básico del núcleo de otros átomos. Experimentos posteriores realizados

por el propio Rutherford mostraron que también los núcleos de hidrógeno podían

expulsarse del sodio cuando se le bombardeaba con partículas a. A esta partícula

ahora se le llama protón y es uno de los constituyentes del núcleo atómico.

Pero la historia no termina aquí. En tu curso de Ciencias III (con énfasis en

Química) estudiarás cómo se mide la masa de un átomo; descubrirás que la mayor

parte de esta masa se concentra en el núcleo atómico. El electrón tiene una masa

insignificante comparada con la de un protón. Pero en el apasionante mundo de la

física ha surgido otro problema. Por ejemplo, el nitrógeno tiene siete electrones y

para compensar la carga su núcleo debe tener siete protones, ya que ambos tienen la

misma carga y signos contrarios.La medida de la masa del átomo de nitrógeno sugería que su núcleo debería con-

tener catorce protones; algo faltaba. En 1932 James Chadwick (figura 9) demostró la

existencia del neutrón, una partícula del núcleo atómico sin carga eléctrica y de masa

aproximadamente igual a la del protón, así que el problema de la masa del átomo

de nitrógeno se solucionó asignando siete neutrones a su núcleo, el problema de la

carga y la masa quedaba resuelto. Chadwick demostró la existencia del neutrón bom-

bardeando una hoja muy delgada de berilio y las partículas que atravesaban el

berilio las hizo pasar enseguida por una

hoja delgada de parafina, separó las par-

tículas que emergían de ésta con undispositivo que ya conoces, dichas par-

tículas eran protones y la nueva partícula,

el neutrón.

1. ¿Cuáles son las partículas constituyentes de los átomos? ¿Cómo se distribuyen éstas en el átomo?

2. El átomo de oxígeno tiene ocho electrones y tiene una masa aproximadamente 16 veces la del protón ¿Cuántos protones y cuán-tos neutrones hay en el núcleo del átomo de oxígeno?

Evalúo mi avance

FIGURA 9. James Chadwick (1891-1974) físico inglésquien recibió el premio Nobel de física en 1935.

Noreña, Francisco, Dentro del

átomo, México, SEP-Libros

del Escarabajo, 2004 (Colec-

ción Libros del Rincón).

Lee más...

Page 217: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 217/276

215

B4

Descubre con un modelo cómo interactúan los cuerpos cargados eléctricamente: construye un electroscopio.

Elabora modelos

Material

• 1 clip sin cubierta de plástico

• 1 laminilla de papel aluminio rectangular de 5 cm de largopor 1 cm de ancho

• 1 vaso de plástico transparente

• 1 octavo de pliego de cartulina

• 1 varilla de vidrio

• 1 varilla de plástico

• 1 moneda

Procedimiento

a. Endereza un extremo del clip.b. Atraviesa con este extremo un pedazo de cartulina que sirva

de tapa para el vaso, observa el dibujo.c. Corta la laminilla de aluminio en dos partes iguales

e insértalas en la parte inferior del clip.d. Tapa el vaso.e. Frota con tu cabello o con un pedazo de tela seco una varilla

de vidrio y acércala a la parte superior del clip, anota tusobservaciones en tu cuaderno.

f. Repite el paso e con la varilla de plástico y la moneda.

Responde de acuerdo con lo que observaste:

• ¿Se cargan eléctricamente las varillas de vidrio y plástico?Explica.

• ¿Se carga la moneda? Explica.

1. Sugiere cómo se podría calibrar el electroscopio, ¿quénecesitarías para determinar directamente la carga eléctricade un objeto que acerques al electroscopio?

2. Explica por qué se puede cargar un cuerpo en términos delmodelo atómico de Bohr.

3. Comparte tus resultados con tu maestro y el resto de tuscompañeros.

Cuando dos objetos cargados eléctricamente interactúan a distancia, esta interacciónse detecta a través de un par de fuerzas acción-reacción. Desde ahora ya no se hará

referencia al objeto cargado interactuando con otro objeto cargado, sino que simple-

mente se mencionará que una carga eléctrica interactúa con otra y, cuando esto suce-

de, sobre cada una de las cargas se ejercerá una fuerza dada por la ley de Coulomb.

La magnitud o módulo de la fuerza está dado por la siguiente ecuación:

q 1q

2 F = k ——— (2) r 2

Donde F representa la fuerza, q 1 y q

2 , son las cargas que interactúan y r es la dis-

tancia que separa a los centros de dichas cargas. La interacción entre cargas eléctricas

no se da igual en cualquier medio y por ello en la ecuación aparece k , que para el

vacío tiene un valor aproximado de k = 9 × 109 N — m2

—C 2

. Las cargas eléctricas se expresan

en la unidad denominada coulomb. El electrón y el protón tienen la misma cantidad

de carga, que equivale a 1.6 × 10–19 C , pero son eléctricamente inversas (tienen signo

contrario) de manera que cuando existe la misma cantidad de estas partículas, el átomo

es eléctricamente neutro.

Observa detenidamente la ecuación (2), es muy similar a la ecuación correspondien-

te a la fuerza gravitacional. Hay muchas similitudes entre la fuerza gravitacional y la

fuerza eléctrica, pero también hay diferencias importantes. Por ejemplo, la interacción

eléctrica es mucho más intensa que la gravitacional, recuerda que se necesita de gran-

• Efectos de atracción y repulsión electrostáticas

Varilla

Cartulina

Clip

Laminillasde aluminio

Vasotransparente

Modelo deelectroscopio.

Page 218: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 218/276

216

S1

des masas interactuando para que la fuerza gravitacional sea detectable,

por el contrario la interacción eléctrica está presente entre partículas

tan pequeñas como lo son los protones y los electrones. Aparte de esta

diferencia, en el caso de la interacción eléctrica se tiene atracción y

repulsión y en el caso gravitacional sólo atracción.

Tanto en el caso gravitacional, como ahora en el caso eléctrico, la

interacción que se estudia se da a distancia. Las cargas eléctricas no

necesitan estar en contacto para que se ejerza la fuerza, a este respecto

la pregunta es: ¿La presencia de la carga misma modifica de alguna

manera el espacio en el cual se encuentra inmersa?

El concepto de campo eléctrico te permitirá entender el efecto que

tiene una distribución de cargas sobre otra en particular que se de-

notará como carga de prueba. Es importante desarrollar un poco esta

idea para comprender mejor fenómenos como la propagación de ondas

electromagnéticas.Piensa en una carga Q positiva y una carga de prueba que se llamará

q 0 también positiva; la carga de prueba siempre se considera positi-

va. Ambas cargas se encuentran separadas a una dis tancia r como se

muestra en la figura 10.

Al aplicar la ley de Coulomb a esta situación, ecuación (2), se obtiene

que la fuerza que actúa sobre q 0 tiene una magnitud:

Qq 0

F = k ——— r 2

Si se divide esta última expresión entreq

0 lo cual daría la fuerza porunidad de carga.

F Q — = k —— (3)

q 0 r 2

Esta ecuación define la magnitud de un vector del campo eléctrico,

la dirección y sentido de este vector son los mismos que los de la

fuerza que se ejerce sobre q 0 en un punto particular. Si te olvidas por

un momento de la carga Q, podrás decir que si q 0 “siente” una fuerza

eléctrica es que se encuentra dentro de un campo eléctrico o, en ge-

neral, si sabes que tienes un cuerpo cargado y de repente sientes que

éste es atraído o repelido eléctricamente y además te encuentras en

reposo, podrás decir con seguridad que te encuentras dentro de un

campo eléctrico; algo parecido a lo que se muestra en la figura 11.

El campo eléctrico como tal es el conjunto de todos los vectores

cuya magnitud se ha definido con la ecuación (3), ya que en cada

punto del espacio en el que decidas colocar a la carga de prueba q 0 se

ejercerá una fuerza eléctrica sobre ella.

La magnitud de los vectores de campo depende de r , que se puede

ver como el radio de una circunferencia con centro en la carga que

genera el campo Q figura 12. Por ello todos los vectores de campo

FIGURA10. Representación de las cargas: Q y cargade prueba q0.

FIGURA 11. Un campo eléctrico ha producido quealgunos de los electrones del cabello de esta niñaemigren a otra parte, cada hebra de su cabello ha

quedado cargada positivamente, como cargas delmismo signo se repelen, esto le da a la niña supeinado tan especial

Estoy dentro de un campo eléctrico

FIGURA 12. Modelo que muestra la distribución delos vectores de campo eléctrico a dos distancias rdistintas. El campo eléctrico es generado por unacarga puntual Q positiva, aunque en esta figura se

muestre a Q con cierta área

Q+

+

+Q q

0

F

r

Page 219: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 219/276

217

B4

colocados a 90° sobre la línea que delimita la circunferencia tienen

la misma magnitud. Los vectores azules tienen la misma magnitud,

sucede lo mismo con los vectores naranja ubicados en la circun-

ferencia de radio mayor. La magnitud de los vectores de campo

disminuye conforme r aumenta. Date cuenta de que si te alejas

muchísimo de Q, o lo que es lo mismo, r se vuelve muy grande,

es probable que te sitúes en una región en donde ya no se perci-

ba el campo eléctrico, a una región con estas características se la

etiquetará como el infinito ∞.

Las unidades del campo eléctrico por su definición son newton sobre coulomb:

E = F —q

0

, [ E ] =[N]—

[C ]

Cuando se está en una región del espacio en la cual se tiene un campo eléctrico

uniforme, esto significa que todos los vectores de campo tienen la misma magnitud,dirección y sentido; geométricamente también significa que los vectores son paralelos

como se muestra en la figura 13, es fácil calcular la fuerza que se ejerce sobre una

carga que se introduce en dicho campo, como se verá en la siguiente actividad.

+ +E

q

FIGURA 13. Entre dos placasmetálicas cargadas, unapositivamente y la otranegativamente, con la mismacantidad de carga, paralelasentre sí, se genera un campoeléctrico uniforme. ¿Cómo semovería una carga q positivaque se pusiera entre estas dosplacas?

Comunica tus avances en ciencias

Determina la fuerza que se ejerce sobre una carga de prueba en un campo eléctrico.

1. Sigue con tu maestro el procedimiento matemático para resolverla siguiente situación.

Solución:

Se parte de la definición de campo E = F —q0 y se despeja ‘F ’,

basta con pasar q0 multiplicando al lado izquierdo de laecuación. Se obtiene que:

F = q0E

Se toma como carga de prueba q0 = 4µC = 4 × 10–6 C.

Recuerda que el sufijo µ significa una millonésima1000

1000 = 0.000001 = 1 × 10–6. Sustituyendo en la última

expresión para la fuerza se obtiene:

F = (4 × 10–6 C) (2.25 × 106 N— C ) = 10 N

Por lo tanto se ejercerá una fuerza de 10 N hacia la derechasobre la carga, ya que se repele con la placa positiva y se atraecon la placa negativa.

2. Sabemos ya las características de la fuerza, ¿se moverá lapartícula cargada?, ¿qué implica esto? Discútelo en grupo.

Evalúo mi avance

1. Haz un dibujo basándote en la figura 12 para describir elcampo eléctrico generado por una carga Q negativa.

2. Actualmente te encuentras rodeado de tecnología sobre tododispositivos o aparatos de tipo electrónico; teléfonos celula-res, televisores, computadoras entre otros. ¿Podrías asegurarque te encuentras inmerso en campos eléctricos casi todo eltiempo? Justifica tu respuesta.

3. Considera una carga positiva de 5 µC dentro de un campouniforme como el de la figura 13 de 2 × 106 N—

C, sólo que ahora

se invierte la polaridad de las placas, es decir la placa positivaqueda a la derecha y la negativa a la izquierda. Calcula lafuerza indicando magnitud, dirección y sentido, sobre la carga.

• ¿Qué pasaría si la carga de 5 µC fuera negativa en vezde positiva?

Una carga de 4 µC positiva se coloca dentro de un campoeléctrico uniforme de 2.25 × 106 N — C como el que se muestra enla figura 13. Se requiere calcular la fuerza eléctrica sobre dichacarga.

Page 220: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 220/276

218

S1

Supón que quieres introducir una carga eléctrica de prueba en un campo eléctrico

generado por una carga positiva, desde una región en donde no existe el campo;

como ya se mencionó a esta región se le llama el infinito que en el contexto que se

manejará simplemente será un punto de referencia. Pues bien, tendrás que hacer un

trabajo desde el infinito en contra del campo para colocar tu carga de prueba a una

distancia r como se muestra en la figura 14.

Si mueves la carga procurando que ésta mantenga una rapidez constante deberás

aplicar una fuerza exactamente igual a la que ejerce el propio campo F = qE , sólo que

hacia arriba. El trabajo realizado como ya lo sabes es fuerza por distancia, es decir,

en este caso W = qEr , pues bien, este trabajo se define como la energía potencial

eléctrica, ¿ya sabes lo que pasará cuando sueltes la carga?; le estás dando energía que

será utilizada posteriormente, ¿a qué te recuerda todo esto?En efecto, la energía potencial eléctrica se define como: U = qEr , ahora se usa la

letra ‘U ’ para que no confundas energía potencial o cualquier otro tipo de energía

con el campo eléctrico.

Todo lo que estudiaste en el bloque 2 para la conservación de la energía en el caso

de la gravedad ¡es válido para el caso eléctrico! ¿En qué tipo de energía se convertiría

la energía potencial eléctrica una vez que se suelte la carga eléctrica que se ha intro-

ducido en el campo?, ¿toda?, reflexiona.

Como sucedía para el caso de la gravedad, la energía mecánica se conservaba

perfectamente en el vacío, pero como lo comprobaste en aquella ocasión la fricción

o rozamiento ocasionaba pérdidas de energía, y ahora imaginarás mover cargas eléc-tricas dentro de diversos materiales que por supuesto no son el vacío.

En un momento se escribirá una ecuación que asocie el cambio en la energía po-

tencial de una carga eléctrica en un campo con algo que te recuerde el efecto cinético

que esto produce. Para comenzar será útil definir una nueva magnitud física llamada

potencial eléctrico ‘V ’, ésta se define simplemente como energía potencial eléctrica

por unidad de carga así que:

V =U —q (4)

Las unidades del potencial son joule (unidad de trabajo y energía) sobre coulomb(unidad de carga), y esto es lo que se define como volt .

[J]—

[C] = [V ]

Por otra parte, la corriente eléctrica remite a la idea de movimiento de la carga eléc-

trica, se asocia de alguna manera con su rapidez. Formalmente se define la intensidad

de corriente eléctrica ‘ I ’ como carga entre tiempo.

I =q —t (5)

r E

F = qE

q

+

+

Infinito ∞

FIGURA 14. La distancia r estan grande como queramosconcebirla.

• Corriente y resistencia eléctrica.Materiales aislantes y conductores

Page 221: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 221/276

219

B4B4

Aquí se usa q (léase q barra) en vez de q , por la siguiente razón: q denota una con-

centración de carga; en realidad se cuentan aproximadamente las cargas que pasan

por unidad de tiempo a través de una sección de material de extremo a extremo. La

idea se muestra en la figura 15.

La unidad de corriente es el coulomb sobre segundo, esta unidad recibe el nombre

de ampere.

[C]—

[s] = [A]

Intuitivamente es de esperar que el cambio de energía cinética de una o varias

cargas eléctricas sea proporcional a la corriente eléctrica. Bien, entonces el cambio en

la energía potencial por unidad de carga que se transforma en energía cinética debe

ser directamente proporcional a la corriente eléctrica, esto se representa matemática-

mente así.∆U —

q I

O lo que sería lo mismo el cambio en el potencial eléctrico es directamente pro-

porcional a la corriente eléctrica. Dicho cambio se calcula restando el potencial inicial

del final, es decir, se calcula la diferencia de potencial. Por lo tanto:

V I

Para establecer la igualdad se introducirá ‘R’ que será la resistencia eléctrica,

ésta medirá qué tanto se opone un material al “paso” de una corriente eléctrica.

La resistencia se mide en ohms y se utiliza la letra omega mayúscula , equivale

a volt/amper. Así que:

U —q = RI (6)

De la ecuación (6) se deduce el hecho de que a mayor resistencia menor corriente.

Sin embargo la ecuación (6) se conoce como la ley de Ohm rescrita como sigue.

V = RI (7)

FIGURA 15. Concentración decarga en un conductor.

Explica por qué los electrones se mueven con facilidad o dificultad a lo largo de los materiales.

Experimenta

Material

• 1 pila de 9 volts

• 3 cables con caimán

• 1 foco de linterna

• 1 portafoco (socket)

• 1 puntilla de grafito de 0.5 mm (para lapicero)

• 1 pieza de grafito extraída de un lápiz

Procedimiento

a. Colóquen el foco en su base.

b. Tomen un cable con caimán y conécten una terminal de lapila a un tornillo de la base.

c. Tomen el segundo caimán y conecten el otro tornillo a unextremo de la puntilla de 0.5 mm.

d. Con el tercer caimán conecten la otra terminal de la pilaal extremo libre de la puntilla. Observen y registren lo quesucede.

e. Deslicen una de las puntas del caimán a lo largo de lapuntilla y observen si hay efectos en la luminosidad delfoco. Registren los efectos en cada tercio de la puntilla.

f. Cambien la puntilla por el grafito del lápiz y repitan el paso e.

g. Registren las diferencias en la conductividad entre laspiezas de grafito.

q

> Continúa en la página siguiente

Page 222: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 222/276

Page 223: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 223/276

221

B4B4

Cuando se conecta un material con resistencia R a una batería se tiene la situación

mostrada en la figura 17.

La batería simple es un dispositivo que acumula carga positiva en una placa me-

tálica o electrodo y carga negativa en otra. Se te dejará investigar acerca de cómo

funcionan las baterías. Lo importante es que entre las placas se genera un campo

eléctrico, observa de nuevo la figura 16. Cada placa tiene cargas que en suma esta-

blecen un potencial en cada una de ellas. Por lo tanto, entre las placas se tiene una

diferencia de potencial V ; una diferencia de potencial entre las placas implica un

campo eléctrico entre ellas.

Como recordarás el potencial eléctrico se mide en volts, y es por ello que cotidiana-

mente se les llama tambien a las baterías fuentes de voltaje, o se utilizan expresiones

como “la instalación eléctrica es alimentada con un voltaje de 120 V”, entre otrasexpresiones. Lo importante es que el campo eléctrico entre las placas produce la

fuerza que acelerará a los electrones libres tanto de los cables como los del material

de resistencia R , produciéndose con esto una corriente eléctrica.

Como un ejemplo de aplicación se calculará la corriente que “circula” por un cir-

cuito alimentado con un voltaje de 9 V y que tiene una resistencia de 3 . Al aplicar

la ley de Ohm en la forma que señala la ecuación (6) se obtiene:

V 9 V I = —— = —— = 3 A

R 3 W

1. Recuerda que el modelo de Bohr explica la presencia de electrones ubicados en niveles deenergía.

• ¿Cómo puedes explicar con este modelo la existencia de materiales semiconductoresy aislantes?

2. Cita tres ejemplos de materiales conductores y tres de materiales aislantes

3. Calcula la corriente eléctrica que circula por un circuito alimentado con un voltaje de 60 V y quetiene una resistencia de 30 Ω.

Evalúo mi avance

FIGURA 17. Modelo de un circuito eléctrico simple.

Símbolo quedenota laresistenciadel materialSentido

de la corrienteeléctrica

Símbolo que denota una bateríao una pila (fuente de voltaje)

Cable

R

ΔV

+ –

Utiliza las TIC

Para que amplíes tusconocimientos, observacómo e comportanlas resistencias enun circuito eléctricosimple, aplicando laLey de Ohm.

www.walter-fendt.de/ph14s/ohmslaw_s.htm

Page 224: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 224/276

S2

Los fenómenos electro–magnéticos y su importancia

Quienes hacen ciencia experimental trabajan en condiciones mucho más favorablesque las que vivieron Galileo y Newton, los máximos representantes de la física

clásica. Hoy existen muchísimos laboratorios e institutos de investigacióndonde se trabaja en forma colaborativa e incluso interdisciplinaria,

los integrantes de estos equipos pueden vivir en puntos distantes del planeta.

Aprendizajes esperados

S2

• Identificarás las

ideas y experimentos

que permitieron

el descubrimiento

de la inducción

electromagnética.

• Valorarás la importancia

de aplicaciones del

electromagnetismo para

obtener corriente eléctrica

o fuerza magnética en

desarrollos tecnológicos

de uso cotidiano.

• Identificarás algunas

características de las

ondas en el espectro

electromagnético y enel espectro visible, y

las relacionarás con

su aprovechamiento

tecnológico.

• Relacionarás la emisión de

radiación electromagnética

con los cambios de órbita

del electrón en el átomo.

222

Descubrimiento de la inducciónelectromagnética: experimentosde Oersted y de Faraday.

El electroimán y aplicacionesdel electromagnetismo.

Composición y descomposición

de la luz blanca.

Características del espectroelectromagnético y el espectro visible:velocidad, frecuencia, longitud de onday su relación con la energía.

La luz como onda y partícula.

Page 225: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 225/276

223

En 1820 Hans Christian Oersted se encontraba experimentando y preparando una cla-

se de electricidad para sus alumnos de la universidad de Copenhague en Dinamarca.

Oersted se dio cuenta por casualidad que la aguja de una brújula se orientaba diferente

cuando se encontraba cerca de un cable por el cual circulaba una corriente eléctrica.

Oersted observó que la brújula, en las cercanías del cable conductor con corriente,

no se desviaba en algunas posiciones. De hecho, la brújula no puede estar con su

dirección Norte Sur paralela al cable. No obstante, Oersted no fue capaz de explicar

este y otros hechos relacionados con lo que acababa de descubrir. Entre los trabajos

más importantes sobre el fenómeno que descubrió Oersted, que parecía relacionar a

la electricidad con el magnetismo, destaca el de Andrie Marie Ampère; gran matemá-tico, en su honor se nombró con su apellido a la unidad de corriente eléctrica en el

sistema internacional.

Si se colocan brújulas sobre un plano, que a su vez, es perpendicular a un cable

conductor muy largo que transporta corriente, las brújulas se orientarán de tal manera

que sus agujas se ajustan a t rayectorias circulares, cuyo sentido de trazo está señalado

por la mitad de la aguja correspondiente al polo norte magnético, observa la figura 18.

Con la dirección que se determina con la orientación de las brújulas se puede definir

cualitativamente un campo magnético, más adelante se definirá con ma-

yor precisión, al menos en lo que respecta a la magnitud de los vectores

que lo componen. Por ejemplo, en el caso que se ilustra en esta figura

los vectores de campo se ajustarían a los círculos concéntricos en torno

al cable, pero lo más importante es que los vectores de campo magné-

tico estarían dibujados en el plano donde se encuentran las brújulas.

Ahora observa la figura 19, verás que el cable que transporta la

corriente está sobre eje z . Las brújulas están en el plano xy y recuerda

que entre los tres ejes x , y , z hay ángulos de 90° entre sí. Por lo tanto,

el vector de campo eléctrico ‘ E ’ que va en la dirección de la corriente

hace un ángulo de 90° con el vector de campo magnético ‘B ’. Estos dos

vectores son perpendiculares.

FIGURA 18. Brújulas colocadasen un plano perpendicular aun cable conductor por el cualcircula una corriente eléctrica.

1. Contesta estas preguntas:

• ¿En qué circunstancias se desvía la aguja de un brújula?

• ¿La interacción magnética es una acción a distancia o no lo es? Explica.• ¿Es posible tener una “carga magnética aislada”; lo que se conoce como un monopolo

magnético?

Explora

•Descubrimiento de la inducción electromagnética:experimentos de Oersted y de Faraday

l

N N

S S

Conductor

Corrienteeléctrica

Electrones libresmoviéndose en elcable conductor

Brújula

I

z

E

B

B

y x

E

FIGURA 19. Los vectores de los campos eléctrico y

magnético son perpendiculares entre sí.

B4

Page 226: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 226/276

224

S2

Relaciona la corriente eléctrica con el magnetismo

Material

1 pila cuadrada de 9 V• 1 clavo grande de 1/8 de pulgada

• 50 cm de alambre de cobre esmaltado calibre 22

• 1 bloque de madera de más o menos 3 cm de largopor 2 cm de ancho, y 1 cm de grosor

• 1 brújula

• 1 poco de limadura de hierro

• 1 pedazo de cartulina cuadrado de aproximadamente10 cm de lado

• Pinzas de corte

• 1 martillo

Procedimiento

a. Inserten el clavo en el trozo de cartulina de tal forma queéste quede a la mitad.

b. Claven el clavo en el bloque de madera como se muestra enla figura. Enrollen un trozo de alambre en la cabeza del clavo

y otro trozo en su punta. Conecten separadamente a los polosde la pila los trozos de cable. Corten el cable que sobre.

c. Coloquen la brújula a un costado del clavo, pueden ubicarlaencima o abajo del bloque de madera, sobre la mesa muycerca del clavo.

d. Viertan un poco de limadura de hierro sobre el trozode cartulina que se encuentra a la mitad del clavo.

e. Procuren que el sistema no esté conectado por más de15 s, ya que puede descargarse rápidamente la batería.

f. Inviertan la polaridad, es decir, inviertan el orden de losalambres que están conectados a la batería; el que estaba enel polo positivo pasa al negativo y viceversa.

g. Sujeten la brújula y colóquenla de forma vertical, es decir, defrente a ustedes, y de tal manera que quede alineada con elclavo.

Registro de observaciones

1. En cuanto al movimiento de la aguja de la brújula cuandoestá sobre la mesa, registra qué ocurre cuando se establece

la corriente por el clavo.

• ¿Qué pasa con la brújula cuando está colocada frente austedes, paralela al clavo, y se establece la corriente?

2. Observen el patrón que se forma con la limadura de hierro.

Análisis de resultados

• ¿Qué ocurre cuando conectan los alambres en los polosopuestos a los que estaban conectados inicialmente?

• ¿Por qué hay posiciones en las cuales no se mueve la brújula,aun cuando se ha establecido la corriente eléctrica que circulapor el clavo? ¿Qué sugiere esto?

1. Escriban su respuesta considerando el ángulo que debenformar el campo eléctrico asociado a la corriente y el campomagnético.

2. Compartan los resultados con su maestro y el restodel grupo.

B

+

I

FIGURA 20. Brújulas colocadasen un plano perpendicular aun cable conductor por el cualcircula una corriente eléctrica.

Clavo

Cartulina con limadurade hierro

Bloque de maderay brújula cercadel clavo

Alambres

Armado del dispositivo.

Las líneas de campo magnético, como ya se ha explicado y lo habrás comprobado

en la actividad anterior, tienden a juntarse en círculos concéntricos en torno al ca-

ble o el clavo. En realidad el comportamiento del campo magnético suele ser más

complejo, pero cuando el conductor por el cual se establece la corriente es relati-

vamente largo el campo se ajusta a los círculos mencionados. En esta circunstancia

se puede utilizar para calcular la magnitud del campo magnético sobre uno de estos

círculos (figura 20) de radio ‘r’ la ley de Ampère, y de paso definir la unidad de

campo magnético; el tesla [T ].

B = k 2 I —

r (1)

En esta ecuación aparece una nueva constante k que combinada con la que apare-

ció en la ley de Coulomb se relacionarán con la velocidad de propagación de la luz

en el vacío más adelante. Por ahora basta saber que k tiene un valor en el vacío de:

k = 10–7

Tm

A

Elabora modelos y experimenta

Page 227: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 227/276

225

B4

Y a su vez el tesla se define como newton sobre ampere por metro:

[N][T] = ———

[A] [m]

Si recuerdas las unidades de campo eléctrico, se tenía newton sobre coulomb, es

decir, fuerza por unidad de carga. Una carga eléct rica produce un campo eléctrico, y ahora ya ti enes en la defini ción de l tesl a por un lado , newton sobre ampere ,

es decir fuerza por unidad de corriente: la corriente eléctrica produce el campo

magnético.

Para poder aplicar la ecuación (1) sigue este ejemplo:

Se requiere calcular el valor del campo magnético producido por una corriente de 12 A

que circula en un conductor recto en un punto que está a 0.04 m del conductor.

Sustituyendo directamente en la ley de Ampère, ecuación (1) se obtiene:

Tm (2) (12 A) B = 10–7 ——————— = 6 × 10–5 T

A 4 × 10–2

m

Cuando se introduce y luego se retira un imán del interior de una bobina, se regis-

tra una corriente eléctrica circulando por ésta. Una bobina es, en esencia un trozo de

alambre enrollado como se muestra en la figura 21. A cada vuelta se le llama espira.

Aproximadamente en 1830, diez años después del descubrimiento de Oersted, Michael

Faraday observó este fenómeno que se le conoce como inducción electromagnética.

Trata de observar los hechos relevantes de la inducción electromagnética realizando

la siguiente actividad.

FIGURA 21. Brújulas colocadasen un plano perpendicular aun cable conductor por el cualcircula una corriente eléctrica.

N S

Observa la inducción electromagnética.

Experimenta

Material• 50 cm de alambre de cobre esmaltado del número 22• 1 imán de barra potente• 1 amperímetro

Procedimientoa. Construye una bobina de 10 espiras enrollando el alambre en el

imán, sin apretarlo pues deben dejar un espacio razonable parapoder introducir y retirar el imán de la bobina, una situacióncomo la que se describe en la figura 18.

b. Conecten las dos terminales de la bobina al amperímetro.c. Introduzcan y retiren el imán a través de la bobina

rápidamente.

Resultados1. Describan en su cuaderno cómo fue el movimiento de la

aguja del amperímetro, o si éste es digital, verán un cambioen la lectura que marca. Es muy probable que su medidorsea un multímetro, en este caso, es necesario verificar que launidad del selector esté en escalas marcadas con la letra A(ampere) en CD. Pidan ayuda a su maestro.

2. ¿Qué pasaría si se mantiene fijo el imán y es la bobina la quese mueve envolviendo al imán? Justifica tu respuesta.

3. Intercambien los resultados con otros equipos y con elapoyo de su maestro obtengan conclusiones sobre esteexperimento.

La clave de la inducción electromagnética, como ya te habrás dado cuenta, estriba

en el movimiento relativo entre la bobina y el imán. Pero esto no es todo, se requirió

de un concepto un poco más preciso para entender la inducción, aparte de la veloci-

dad con la que se mueva el imán con respecto a la bobina y viceversa, la orientación

entre el imán y la bobina también juega un papel importante.

GLOSARIOAmperímetro es el instrumento utilizado

para medir la intensidad de la corriente

eléctrica que circula por un circuito.

Multímetro es un instrumento eléctrico y

portátil con el cual se miden directamen-

te las magnitudes eléctricas: corriente,

voltaje, resistencia, entre otras.

Utiliza las TIC

Observa cómo sesimula una experienciarelativa al campo

magnético generadopor una corrienteeléctrica continua:

www.walter-fendt.de/ph14s/mfwire_s.htm

Page 228: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 228/276

226

S2

Para definir la orientación de la bobina se considera un vector perpen-

dicular a su sección transversal que mida exactamente una unidad, lo que

importará en este caso es el sentido de dicho vector. A este vector se le llama

‘n ’. Observa la figura 22.

Ahora bien, se define el flujo magnético ‘Φ’ como el producto de la magni-

tud del campo magnético por el área ‘ A’ de la sección transversal de la bobina

o la espira Φ = BA. El flujo magnético será positivo si el vector de campo

magnético hace un ángulo con n desde 0° hasta un ángulo que sea menor de

90°. Si el ángulo es mayor de 90° y aumenta hasta 180° el flujo magnético será

negativo. Cuando el campo magnético y n son perpendiculares no hay flujo

magnético, ya que no estaría entrando nada del campo a la bobina. En un

imán de barra el campo magnético va del polo norte hacia el polo sur como

se mostró en la figura 18 y ahora en la figura 23, donde puedes observar las

brújulas y el polo norte del imán pintado de rojo.

Con todo lo anterior se concluye que hay tres maneras de variar el flujomagnético: cambiando la intensidad del campo magnético, es decir su magni-

tud; variando el área expuesta al imán en los dos casos que se han ilustrado.

Por ejemplo si el imán se deja fijo y subes la bobina o la inclinas el área

por la que “entraban las líneas de campo” variaría y en consecuencia varia-

ría el flujo. A esto se refiere el cambio en el valor de ‘A’, ya que si solo se

tratara del área de sección transversal, ésta nunca cambiaría a menos que

se remplace la bobina.

Una tercera forma sería cambiar el sentido del campo magnético, volteando

el imán, o bien, si el campo magnético se hubiese producido con una corrien-

te, bastaría con cambiar el sentido de ésta, y como seguramente ya observaste, esto selogra invirtiendo la polaridad de la batería o de la pila, o lo que es lo mismo, cambiando

las conexiones, la que iba al negativo pasa al positivo y viceversa.

Lo crucial de todo esto es que para que haya una corriente inducida en la bobina, el

flujo magnético a través de la espira debe cambiar en el tiempo, de no ser así no pasará

nada. Por lo tanto, la ley de inducción de Faraday se aproxima a esto:

“Si hay un cambio en el flujo magnético que atraviesa una espira o bobina, se inducirá

en sus terminales una diferencia de potencial o voltaje”.

Pero como ya sabes, si hay una diferencia de potencial en las terminales de un cir-cuito, por la ley de Ohm habrá una corriente, la medida de la corriente dependerá de

la resistencia del conductor. Esto último parece contradictorio, pero no lo es, en efecto

hay materiales que tienen muy buena conductividad, pero de todas maneras siempre

presentan resistencia.

La ley de inducción de Faraday se presenta matemáticamente así:

V = N Φ—

t (2)

La barra encima de (–

V) s ignifica un voltaje medio o promedio, ya que en la reali-

dad todo puede variar de un instante a otro, N es el número de espiras o de vueltas

de la bobina, Φ es el cambio en el flujo, que se calculará como flujo final menos

FIGURA 23. Se muestran dos situaciones,a y b, posibles.

Flujo magnético negativo

Flujo magnético positivo

n

n

B

B

FIGURA 22 . Orientación de la bobina con unvector que hace 90° con su sección transversal.

n

Sección transversal circular

90º

a

b

Page 229: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 229/276

227

B4

flujo inicial y t , el intervalo de tiempo utilizado para producir el cambio en el flujo.

Se aclararán un poco estas variables con el siguiente ejemplo.

Si se necesita calcular el voltaje promedio inducido en una bobina circular de

0.05 m de radio y 10 espi ras expuesta a un campo magnético constante de 6 × 10–5 T.

Se cambia el sentido del campo magnético en 180° en 0.15 s.

Primero se calcularán los flujos inicial y final. El flujo inicial se va a considerar

negativo ya que se supondrá una situación como la que se muestra en la figura 23.

El área de la sección transversal de la bobina corresponde al área de un círculo

A = π R 2, donde R denota el radio de la sección. Por lo tanto,

A = 3.14(5 × 10–2 m) 2 = 3.14(25 × 10–4 m2) = 78.5 × 10–4 m2

Ahora se multiplica por el campo magnét ico para obtener el flujo:

Φi = BA = (6 × 10–5 T)(78.5 × 10–4 m2) = 471 × 10–9 Tm2 = 4.71 × 10–7 Tm2

Se simplificarán las unidades descomponiendo el tesla:

Φi = 4.71 × 10–7 N — Am / m /

2

Recordarás que [ N ][m] = [J] newton por metro es el joule, y que el amper es [ A] =[C]—

[s],

coulomb sobre segundo. Por lo tanto Φi = 4.71 × 10–7

Js—

C. Recuerda que este flujo es

negativo. El flujo final tendrá el mimo valor pero será positivo, observa la figura 6b,

por lo tanto Φ f = 4.71 × 10–7

Js—

C.

El cambio en el flujo será, recordando que [v ] =[J]—

[C], el volt se define como joule

sobre coulomb:

Φ = Φ f – Φ

i = 4.71 × 10–7 v s – (–4.71 × 10–7 v s) = 9.42 × 10–7 v s

Y f inalmente el voltaje promedio inducido, considerando N = 100 es:

9.42 × 10–7 v sV = 100 (———————) = 6280 × 10–7 v = 6.28 × 10–4 v

0.15 s

Es posible medir este voltaje con instrumentos modernos que son capaces de

detectar voltajes cien veces menor que éste.

La tecnología de los generadores eléctricos, que se revisarán en otro contenido,

se basa en el cambio del flujo magnético y el voltaje inducido.

Evalúo mi avance

1. ¿Una carga eléctrica en reposo produce campo eléctrico,magnético o ambos? Justifica tu respuesta.

2. ¿Qué ocurre con el sentido del campo magnético cuando seinvierte la polaridad de la batería a la que se conecta el cableconductor, para que por éste se establezca una corriente eléctrica?

3. ¿Existe campo magnético en la misma dirección de la corriente quecircula por un cable conductor? Justifica tu respuesta con relación alas observaciones que registraste en la pasada actividad.

4. ¿Qué ángulo forman entre sí el campo eléctrico asociado a lacorriente que circula por el conductor, y el campo magnéticogenerado, cuando se observa que la brújula tiene su mayorcambio de orientación?

5. Calcula la magnitud del campo magnético a una distancia de10 cm medida perpendicularmente a un cable conductor porel cual se transporta una corriente de 2 A.

6. Imagina la siguiente situación, se tiene una bobina expuestaa un intenso campo magnético, en un tiempo muy breveretiras la bobina del campo, ¿se induciría una corriente en labobina? Explica.

7. Calcula el voltaje promedio inducido, en una bobina de 1000espiras cuadrada, de 0.05 m de lado de sección transversal,que está expuesta a un campo magnético de 1 × 10–3

T, ydespués de 0.20 s, la magnitud o intensidad del campo sereduce a la mitad.

Page 230: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 230/276

228

S2

•El electroimán y aplicaciones del electromagnetismo

Observa la inducción electromagnética.

Un dispositivo eléctrico como el que acabas de construir, que es capaz de atraer algunos objetos metá-

licos, como si fuera un imán, se conoce como electroimán. La intensidad del campo magnético de un

electroimán está determinada por el número de vueltas del alambre alrededor de un núcleo conductor ,

como lo fue el tornillo. La capacidad magnética de este dispositivo termina en cuanto se suspende el

suministro eléctrico en el circuito. Este fenómeno es una evidencia de que la electricidad y el magnetis-

mo son dos aspectos diferentes de un fenómeno único denominado electromagnetismo.

Además cuando estudiaste el experimento de Oersted pudiste apreciar que el campo eléctr ico y

el campo magnético se componen de vectores perpendiculares entre sí.

Pues bien he aquí el fenómeno clave de gran parte de la tecnología de la que goza la humanidad

hoy en día. Por citar algunos ejemplos, toda aquella tecnología relacionada con las telecomunicaciones

se basa en la transmisión de ondas electromagnéticas. Hacia el final de este bloque ahondarás en el

estudio de sus características. En el siguiente contenido calcularás la velocidad a la que se propaga una

onda electromagnética en el vació utilizando los valores de k que aparecían en las leyes de Coulomb yde Ampère; ¡te sorprenderás!

Material

• 1 pila cuadrada de 9 V

• 1 tornillo• 1 m de alambre de cobre esmaltado calibre 22• 1 caja de alfileres y un clip• Tijeras

Procedimiento

a. Corten un pedazo de alambre de 70 cm yenróllenlo al tornillo, denle 10 vueltas rápidamente.

b. Enrollen los extremos del alambre a las terminales de la pila.c. Acerquen el tornillo a la caja de alfileres y observen.d. Acerquen el clip al tornillo y observen.

e. Denle al tornillo el mayor número de vueltas posible.f. Repitan los pasos c y d y observen.g. Ahora, desconecten el circuito y observen lo que sucede con

los alfileres y el clip.h. Conecten de nuevo el circuito pero invirtiendo la polaridad,

pasando la terminal que estaba en el polo positivo de la pilay viceversa.

Evalúo mi avance

1. En la siguiente figura se muestra un modelo del diseño de un generador de corriente, dispositivocrucial de las plantas de las compañías que suministran electricidad, responde lo siguiente:

• ¿Qué se necesita hacer con la espira para que en ella se induzca una corriente?

Propón un modelo que explique cómo se podría transmitir energía con este dispositivo.2. Si no contaras con un imán tan grande como el que se muestra en la misma figura, ¿qué

utilizarías?

B

N S

Resultados1. Describan en sus cuadernos si el tornillo atrajo a los alfileres

y el clip, con 10 vueltas y con más de 10 vueltas de alambre.Señalen las diferencias que hayan observado.• ¿Hubo algún cambio al invertir la polaridad y acercar el

tornillo a los alfileres y el clip?

Analísis de resultados

1. Expliquen la relación que existe entre el número de vueltasdel alambre sobre el tornillo y su capacidad para funcionarcomo un imán.• ¿Por qué los alfileres y el clip se separan del tornillo si

desenrollan el alambre de una de las

terminales de la pila?2. Si metieran y sacaran el tornillo

conectado a la batería en una bobinase induciría una corriente en ésta¿Por qué?

3. Compartan su análisis y resultados conel maestro y con el resto del grupo.

Elabora modelos y experimenta

Page 231: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 231/276

229

B4

•Composición y descomposición de la luz blanca

Explora

1. Observa la fotografía y reflexiona en lo siguiente:• ¿Te gustan los colores de estas sandías?, ¿por qué?

• ¿De qué color se verían si quedaran en total oscuridad?

• ¿De qué color se verían si las iluminaras con una luz morada?

• ¿Es el color una propiedad inherente a los materiales?

2. Anota tus ideas en tu cuaderno y compártelas con una parejay al terminar este contenido discútanlo en el grupo.

Identifica los colores que forman la luz blanca.

Experimenta

Material

• 1 bandeja transparente.• 1 espejo plano.• 1 hoja de papel blanco o

cartulina blanca.• Agua.• 1 lámpara (opcional).

Procedimiento

a. Llenen el recipiente con agua.

b. Coloquen el espejo inclinado en el agua hasta que forme unángulo que le impida seguirse deslizando.

c. Por una rendija cerca de la ventana o la puerta dejen pasaralgunos rayos de luz solar, como se muestra en el esquema obien inténtenlo con una lámpara. Dirijan la luz hacia la partebaja del espejo que se encuentra sumergida en el agua.

d. Coloquen la cartulina blanca frente al espejo y observen loque el espejo ha reflejado sobre ella.

Resultados de lo observado

• ¿Qué le sucedió a la luz blanca? Describe lo que se vereflejado en la cartulina o la hoja de papel. Acompañen sudescripción con un dibujo.

Análisis de resultados

• ¿Creen que existe algo en el agua que provoque estefenómeno? Expliquen.

• ¿Sería posible que el espejo tuviera algo en su interior quemodificara la luz blanca? Justifiquen su respuesta.

• ¿Qué semejanza encuentran entre lo ocurrido y la formacióndel arcoíris?

• ¿Este fenómeno puede ocurrir aun cuando se modifique latemperatura ambiental y la presión atmosférica?

1. Compartan sus reflexiones y resultados con todo el grupo.

Veamos nuevamente la interacción electromagnética. Por una parte ya sabes que cuando

dos cargas estáticas interactúan, su interacción se describe con la ley de Coulomb, puesactúa una fuerza en cada carga que es directamente proporcional al producto de las car-

gas e inversamente proporcional al cuadrado de la distancia que las separa, precisamente

a la constante de proporcionalidad en el vacío que definimos como:

Nm2

k = 9 × 109 —— C2

Esta constante se expresa en términos de otro número llamado permitividad eléctrica

‘ε’, que se denota con la letra griega épsilon, y es característico del medio en donde se

produce la interacción eléctrica. La ecuación que relaciona k con ε es la siguiente:

1

k = ——

4πε

Bandeja con agua

Espejo

Hoja depapel

Rayo de luzque entra porla rendija

Esquema que muestra cómomontar el experimento. Procurenestar en un cuarto con poca luz oen el laboratorio oscurecido.

¿Es la luz lo único que vemos?

Page 232: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 232/276

230

S2

Despejando ε se obtiene:

1 1 C2 C2

e = —— = ———————— = 8.84 × 10–3 × 10–9 —— = 8.85 × 10–12 —— 4πk Nm2 Nm2 Nm2

4π(9 × 109) —— C2

La constante k que aparece en la ley de Ampère para el campo magnético generado

por una corriente que circula por un conductor recto también puede expresarse en tér-

minos de un número característico del medio ‘µ’, denotado con la letra griega mu, y que

recibe el nombre de permeabilidad magnética. Para este caso k = 10–7 Tm—

A. La ecuación

que relaciona esta k con µ es:

k =µ—

4πDespejando µ se obtiene:

Tm Tmµ = 4πk = 12.57 × 10–7 —— = 1.257 × 10–6 ——

A A

Multiplicando µ por ε descomponiendo el tesla como newton sobre ampere por

metro, se obtiene: C2 Nm C2

eµ = (8.85 × 10–12)(1.257 × 10–6) —— ——— = 11.125 × 10–18 ——— Nm2 AmA A2m2

Ahora se descomponen las unidades del ampere como coulomb sobre segundo, y

se obtiene:

C2

eµ = 11.125 × 10–18 ——— C2m2

——— s2

Observa que la unidades que han quedado en el denominador de la fracción son

unidades de velocidad al cuadrado. Para invertirlas, es decir que pasen arriba, hayque obtener el recíproco es decir:

1 m2

—— = 0.08988 × 1018 —— eµ s2

Extrayendo la raíz cuadrada se obtiene una cantidad con dimensiones de velocidad:

1 m m—— = 0.2997 × 109 — = 2.997 × 108 —

eµ s s

Redondeando se obtiene: 3 × 108 m—s

, y éste es, precisamente, el valor de la magnitud

de la velocidad de propagación de la luz en el vacío.

James Clerk Maxwell demost ró que la rap idez de propagación de una onda elec-

tromagnética en el vacío estaba dada precisamente como 1—

√eµ. Ya se sospechaba antes

de Maxwell que la luz tenía propiedades que eran características del movimiento

ondulatorio, y este resultado confirmaba de alguna manera ese hecho: que la luz

en efecto era una onda, pero no cualquier tipo de onda sino que se trataba de una

onda electromagnética.

A la rapidez de propagación de la luz en el vacío se la denota con ‘c’ y tiene el

valor c = 3 × 108 m—s

; es decir, trescientos mil kilómetros sobre segundo.

Es maravilloso que a partir de un análisis de unidades físicas se puedan inferir

resultados importantes; te sugerimos que nunca dejes de manejar unidades cuando

hagas cálculos con cantidades físicas.

Parusu, Anna y AlessandroTonello, El hilo conductor: la

antesala del átomo, México,SEP-Oniro, 2006 (ColecciónLibros del Rincón).

Lee más...

Page 233: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 233/276

231

B4

Para redondear, es importante mencionar que Maxwell presentó la teoría matemá-

tica que unifica la electricidad y el magnetismo; por esto se puede decir que es el

padre del electromagnetismo. Logró su unificación en cuatro ecuaciones que ahora se

conocen con su nombre. Y no sólo la luz visible se propaga a rapidez c en el vacío,

todas las ondas electromagnéticas lo hacen, la luz visible es un caso especial.

Ya sabes mucho sobre ondas, recuerda que una onda tiene una longitud de onda

y una frecuencia y que su rapidez de propagación está dada por la expresión v = λ f donde v es la rapidez λ es la longitud de onda y f la frecuencia, el producto de las dos

últimas variables equivale a una distancia dividida entre tiempo. Como ya se mencionó

tanto µ como e cambian cuando la onda cambia de medio y por lo tanto, como ya lo

has visto, cambia la rapidez de propagación.

La luz blanca se compone de varias ondas electromagnéticas de diferente longitud

de onda superpuestas, cada longitud de onda corresponde a un color. Cada onda

componente cambia su velocidad de propagación al cambiar de medio. En la activi-

dad que has realizado la luz pasó del aire al agua. Aquí sí nos referimos al cambiode velocidad de propagación, porque también cambia la dirección de la velocidad,

entonces los rayos de luz se “doblan” al pasar del aire al agua y luego del agua al

aire. Las direcciones que adoptan los distintos colores no son las mismas,por lo que

éstos se descomponen, y luego, ya descompuesta la luz, se refleja en el espejo y se

proyecta en un arco iris que se acentúa más debido a la nueva desviación de los co-

lores al pasar del agua al aire y, finalmente, proyectarse en la pantalla.

Al efecto del cambio de dirección de la luz al pasar de un medio a otro se le co-

noce como refracción y al rebote perfecto de la misma en una superficie se le llama

reflexión. Estos efectos también se observan en las ondas mecánicas lo que

refuerza, aún más, los modelos ondulatorios de la luz. La situación que se hadescrito se ilustra en la siguiente figura 24. A la descomposición de la luz

blanca en sus colores componentes se le llama dispersión.

Otro fenómeno asociado con la luz es la absorción, cuando la luz inte-

ractúa con los objetos los átomos que los componen absorben parte de ella,

reflejando sólo un color, como ocurre, por ejemplo con las sandías mostra-

das en la fotografía de la actividad Explora, la pulpa es roja porque refleja

ese color y lo vemos. Otro fenómeno asociado con la luz es la absorción, cuando la

luz interactúa con los objetos los átomos que los componen absorben parte de ella,

reflejando sólo un color, como ocurre, por ejemplo con las sandías mostradas en la

fotografía de la actividad Explora, la pulpa es roja porque refleja ese color y lo vemos.

FIGURA 24. El agua produce ladispersión de la luz blanca.

Evalúo mi avance

1. ¿Por qué cambia la velocidad de propagación de una onda electromagnética al pasar de unmedio a otro?

2. Reconstruye una explicación esquematizada acerca de la dispersión de la luz en las gotasde agua de lluvia.

3. ¿El color de los objetos es una propiedad específica de la materia? Explica.

La refracción de la luz es

un fenómeno que también

puede ser comprendido por

cualquier compañero condiscapacidad visual si se le

compara con la siguiente

experiencia:

Al percutir un diapasón y

escuchar la nota coforme

se acerca a la superficie de

agua contenida en una cu-

beta, se notará un cambio

en el tono; será más grave.

Este cambio en la frecuencia

del sonido es un fenómeno

semejante al que ocurre conla refracción de la luz cuan-

do se observa que un objeto

parcialmente sumergido en

agua se percibe como si éste

se quebrara.

Sé incluyente

Page 234: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 234/276

232

S2

Cuando interactúa con los cuerpos, la luz produce una variedad de efectos y fenóme-nos. En la Naturaleza observamos un buen número de ellos. La luz proveniente del Sol

atraviesa la atmósfera que rodea al planeta, como en la figura 25, e ilumina los objetos,

que a su vez proyectan sombras. Durante el día, si no hay nubes, polvo o humo, el cielo

luce de color azul. Esa misma luz puede adquirir tonos amarillos, anaranjados, rojos

o violetas en los amaneceres y atardeceres. A veces, las superficies de agua reflejan el

paisaje. En ciertas condiciones aparecen arco iris o halos… Todo ello como fenómenos

naturales; además podemos observar diversos efectos ópticos cuando se usan fuentes

de luz como fuego, lámparas, focos, pantallas o aparatos emisores de rayos láser.

Para explicar muchos fenómenos luminosos, podemos considerar a la luz como un con-

junto de rayos que viajan en línea recta. Al incidir la luz en un cuerpo cualquiera puedensuceder tres cosas, como en la figura 26.

Dos fenómenos conocidos desde épocas remotas son la reflexión y la refracción de

la luz. La reflexión es un fenómeno que se produce cuando los rayos de luz inciden

en la superficie de cualquier cuerpo, el ejemplo más fácil de reconocer es un espejo,

pero si recuerdas un poco te darás cuenta que las ventanas, el agua e incluso plásticos

y metales bien pulidos en cierta dirección pueden funcionar como espejos de mala

calidad. La refracción la explicaremos un poco más adelante.

La ley de la reflexión de la luz indica que el rayo incidente forma el mismo ángulo

respecto a la normal (recordemos que la normal a una superficie es la recta perpen-

dicular a la misma) que el rayo reflejado, y que ambos rayos y la normal están sobre

el mismo plano. Esto siempre se cumple, independientemente de que la superficie en

la que se refleja sea lisa y pulida (como los ejemplos mencionados antes), o irregular

y áspera. En el primer caso, la imagen que se forma es bastante precisa y definida

respecto a los objetos reflejados; se trata entonces de una reflexión especular (la

palabra “especular” proviene justamente de “espejo”) que forma una imagen nítida,

como en la figura 27. En el caso contrario, tenemos una reflexión difusa que no

produce imágenes nítidas. Ambas posibilidades se representan en la figura 28.

Existen diferentes tipos de espejos; los más comunes son los planos (figura 29).

Sin embargo, pueden ser curvos, como se muestra en la figura 30.

FIGURA 26. En una ventana devidrio tenemos varios fenómenosluminosos simultáneos: partede la luz la atraviesa por serun cuerpo transparente, unapequeña fracción es absorbida(cuerpo opaco) y otra parte esreflejada.

FIGURA 25. ¿Por qué cuando elSol se está poniendo nos pareceque el tamaño de su disco esmás grande que cuando está enel cenit? ¿Por qué percibimos

que su luz cambia de color?

1. Reúnete con un compañero y hagan una lista de los fenómenos que conozcan en los que estéinvolucrada la luz.

2. Elaboren una pregunta sobre algún fenómeno lumínico. Intercambien sus preguntas conotras parejas y, con el apoyo de su maestro, respóndanlas de acuerdo con lo que sepan yhayan observado en torno a la luz. Conserven sus preguntas y respuestas para contrastar lasexplicaciones al final de la secuencia.

Explora

•Características del espectro electromagnético y elespectro visible: velocidad, frecuencia, longitud de onday su relación con la energía

FIGURA 27. La superficie delagua, si está inmóvil, puedeproducir imágenes reflejadas

tan nítidas como un espejo.

Page 235: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 235/276

233

B4

FIGURA 28. El esquema (a) muestra la reflexión especular, mientras que en el (b) se observa la reflexión difusa.

La reflexión difusa de la luz es la que observamos con mayor frecuencia: es así

como se iluminan la mayoría de los objetos que no emiten luz, desde nuestros rostros

hasta las nubes. Es curioso pensar que lo que vemos no son los objetos en sí, sino

la luz que reflejan.

Además de viajar en línea recta, los rayos de luz se propagan siguiendo el camino

más rápido. En un medio material de densidad homogénea (es decir, igual en todos sus

puntos), el camino más rápido que puede seguir un rayo luminoso es, precisamente, unatrayectoria recta. Si la luz pasa de un medio a otro, esta línea recta cambia de dirección,

si bien sigue siendo siempre una recta. Otra forma de decir lo anterior es que los rayos

de luz no viajan en trayectorias curvas, pero las líneas rectas cambian de dirección al

pasar de un medio material a otro. Este fenómeno se denomina refracción de la luz.

Observa en la figura 31 lo que sucede con la imagen del lápiz cuando una parte de

éste se sumerge en agua.

Como pudimos notar, al pasar de un medio a otro, la luz se refracta, variando el án-

gulo de su trayectoria. Esto se debe a que la rapidez de propagación de la luz está en

función de las características del medio en el que está viajando. En la imagen anterior la

luz viaja más lento en el agua, por lo que sigue otra trayectoria, esto es parecido a correrde un punto en tierra, por ejemplo de la playa a otro punto en el agua del mar, si corres

en la arena eres más veloz que si corres en el agua, el material es más denso; si deseas

llegar más rápido al punto señalado deberás correr lo menos posible dentro del agua.

Hay que tomar en cuenta que la rapidez de propagación de la luz es constante en cada

medio material homogéneo. Desde luego, la luz también viaja a través del espacio vacío,

donde su rapidez de propagación es máxima. En medios materiales, su rapidez es ligera-

mente menor. La rapidez de la luz en el vacío, c, es una constante física importante, y su

módulo es: c = 299 792.458 km/s, que se puede aproximar

como 300 000 km/s. Lo anterior significa que, en el vacío,

¡la luz recorre casi 300 000 kilómetros en un segundo!

La refracción de la luz se aprovecha en las lentes, que son

cuerpos de vidrio o algún otro material transparente, pulidas

por ambos lados, donde los rayos de luz se refractan dos ve-

ces al atravesarlas: la primera vez al pasar del aire al interior

de la lente, y la segunda al pasar de la lente de nuevo al aire.

Según su forma y el material que las constituye, se puede

conseguir que las lentes aumenten o disminuyan el tamaño

de las imágenes de los objetos vistos a través de ellas. Fíjate

en la figura 32.

FIGURA 29. Si levantas la manoderecha al mirarte en un espejoplano, ¿qué mano levanta tuimagen, la izquierda o la derecha?

FIGURA 30. Los espejos curvospueden ser cóncavos, como elizquierdo, o convexos, comoel derecho. Observa cómola imagen reflejada tienedistorsión en cuanto al tamañoy la posición de la imagen.

FIGURA 31. El lápiz parece“quebrado” porque en unode los medios materiales, elaire, los rayos de luz van conuna dirección determinada,y en el agua, la dirección de

los rayos cambia.

FIGURA 32. Las lupas son lentesde aumento de uso muy común.

a b

Page 236: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 236/276

234

S2

Ilustra y ejemplifica un mapa conceptual.

1. Por equipos, observen el siguiente mapa conceptual con información acerca de algunos fenómenos luminosos. Con base en almapa, elaboren en sus cuadernos un mapa conceptual propio, donde incluyan dibujos, ilustraciones y más cuadros de texto que

ejemplifiquen lo que se menciona en el mapa.

2. Compartan con el grupo sus mapas ilustrados.

3. Reflexionen en plenaria sobre la siguiente cuestión: ¿qué es la luz?

Elabora modelos

a 300 000 km/sen el vacío

• menor que el objeto• derecha

LaLUZ

es producida porFUENTES LUMINOSAS

RAYOS

que viajan enLÍNEA RECTA

cuando incide enCUERPOS

TRANSPARENTESlos atraviesa totalmente

TRASLÚCIDOSlos atraviesa parcialmente

OPACOSno los atraviesa

la REFRACCIÓN es la desviación de los rayosal pasar de un medio material a otro

cada medio material tienedeterminado ÍNDICE DE

REFRACCIÓN

la REFLEXIÓN es elrebote de los rayos

es ESPECULAR sobre superficiespulidas o ESPEJOS

es DIFUSA sobrelas superficies irregulares

los espejos PLANOS producen una imagen

los espejos CÓNCAVOS producen imágenes

los espejos CONVEXOS producen una imagen

• del mismo tamaño que el objeto• invertida respecto a derecha-

izquierda

• menores que el objeto• invertidas respecto

arriba-abajo

• mayores que el objeto• invertidas respecto

arriba-abajo

• mayores queel objeto

• derechas

La naturaleza de la luz

Para explicar fenómenos luminosos como la reflexión y la refracción debemos contestar

una pregunta fundamental: ¿qué es la luz? La respuesta a esta pregunta se ha ido cons-

truyendo a lo largo del devenir de la Humanidad y su historia es fascinante, además

de que constituye una de las pruebas más ilustrativas de que los estudios y resultados

científicos nunca son teorías acabadas y definitivas, sino incansables búsquedas, in-

tentos, experimentos, preguntas, respuestas y nuevas preguntas.

Las primeras ideas conocidas en cuanto a la naturaleza de la luz se sitúan en la

antigua Grecia, según las cuales los cuerpos desprendían imágenes que eran captadas

por los ojos y de éstos pasaban al espíritu que las interpretaba. Otros pensadores grie-

gos afirmaron lo contrario: no eran los objetos las fuentes emisoras de luz, sino los

propios ojos, que tenían la capacidad de “palpar” los objetos mediante prolongaciones

invisibles, y así determinar sus formas, dimensiones y colores. Más adelante, el sabio

Euclides (300 a.n.e.) concibió los ojos como emisores de los rayos luminosos, que

se propagaban en línea recta hasta alcanzar el objeto. La refutación inmediata a esta

conjetura es que si son los ojos los que emiten la luz, deberíamos ser capaces de ver

los objetos incluso en la oscuridad.

FIGURA 33. ¿Cuál es el mediomaterial que transmite laperturbación luminosa? Huygensdefinió un medio físico queexiste en todas partes en elUniverso, llenando todos losespacios aparentemente vacíos,al que llamó “éter”. La luz erapues una onda que se propagaba

a través del éter.

Page 237: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 237/276

235

B4

Varios siglos después, los árabes describieron la luz como un proyectil que provenía

del Sol, luego rebotaba en los objetos y después entraba al ojo.

Hacia el siglo XVII , el físico, matemático y astrónomo holandés Christiaan Huygens

(figura 33) propuso el modelo ondulatorio de la luz, que la considera una onda lon-

gitudinal, semejante al sonido.

El modelo ondulatorio de Huygens explica satisfactoriamente la reflexión y la re-

fracción de la luz, pero plantea un problema, pues supone que las ondas luminosas

requieren un medio material para propagarse, de manera análoga al sonido. Cabe

preguntarse entonces cuál es ese medio material a través del cual se propaga la luz, ya

que, por ejemplo, podemos ver la luz proveniente del Sol, que de alguna forma atra-

viesa el espacio vacío entre esta estrella y el límite exterior de la atmósfera de la Tierra.

A princip ios del siglo XVI I, utilizando lentes e instrumentos ópticos, el holandés

Willebrord Snell Van Royen descubrió experimentalmente el modelo matemát ico que

predice los ángulos de refracción de los rayos luminosos en función del medio material,

aunque no fue conocida hasta que, en 1638, el francés René Descartes (1596-1650)retomó en cierto modo la idea de los árabes, diciendo que la luz se comportaba como

un proyectil que se propulsaba a velocidad infinita, sin especificar absolutamente

nada sobre su naturaleza, pero rechazando que cierta cantidad de materia fuera de los

objetos al ojo.

Casi un siglo después, Newton supuso que la luz está formada por pequeñísimas

partículas o “corpúsculos” que son lanzados a gran velocidad por los cuerpos emisores

de luz, proponiendo así el modelo conocido como el modelo corpuscular de la luz en

un tratado sobre óptica (figura 34). El modelo de Newton también permite explicar

la reflexión y la refracción; no así la interferencia de la luz, pues éste es un compor-

tamiento típicamente ondulatorio. A pesar del fundamentado prestigio de Newton, la decisión final entre el modelo

ondulatorio y el corpuscular parecía inclinarse a favor del primero, pues con él se

esclarecen comportamientos de la luz que no son explicables con el segundo.

Así las cosas, llegó el año de 1887, cuando dos físicos, el polaco Albert A. Michel-

son y el estadounidense Edward W. Morley llevaron a cabo un cuidadoso experimento

para determinar la velocidad de la Tierra respecto al éter, y obtuvieron una conclusión

sorpresiva: el éter sencillamente no existe. La situación parecía un callejón sin salida:

al ser los modelos ondulatorio y corpuscular parcialmente correctos o al menos incom-

pletos, la cuestión de la naturaleza de la luz no podía considerarse del todo resuelta.

FIGURA 34. Newton escribióun tratado de Óptica, en elque explicó una variedad defenómenos que experimentala luz, como la reflexión, la

refracción y los colores.

Identifica en dos modelos algunas características de las ondas del espectro electromagnético.

1. Reúnanse por equipos, y elaboren un organizador gráfico con las principales característicasde los modelos ondulatorio y corpuscular de la luz, incluyendo los fenómenos luminosos quepueden explicarse con cada uno de los modelos, o con ambos. Consideren las objeciones aéstos a partir de lo que estos modelos no explican satisfactoriamente.

2. Compartan sus conclusiones en el grupo.

Comunica tus avances en ciencias

Utiliza las TIC

Utiliza el recurso quese encuentra en lasiguiente dirección

electrónica y observacómo cambia el índicede refracción de laluz en diferentesmateriales.

www.walter-fendt.de/ph14s/refraction_s.htm

Page 238: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 238/276

236

S2

La luz como onda electromagnética

Como vimos en la sección anterior, Faraday se interesó en los fenómenos eléctricos

y realizó en su laboratorio los experimentos de Oersted y de Ampère, corroborando

que se puede obtener un campo magnético a partir de un flujo de cargas eléctricas.

Faraday se preguntó si lo contrario era posible: obtener un campo eléctrico a partirdel magnetismo, y encontró que si un campo magnético cambia en el tiempo en un

circuito eléctrico cerrado, se induce, en efecto, una corriente eléctrica.

Este descubrimiento, presentado a la comunidad científica en 1831, se conoce como

la ley de inducción de Faraday , y es uno de los resultados más importantes de la teoría

electromagnética. Es el principio de funcionamiento de los generadores eléctricos, es

decir, gracias a este conocimiento es posible generar electricidad en las formas más

conocidas: termoeléctrica, hidroeléctrica, eólica, entre otras.

Otro físico brillante del siglo XIX fue el escocés James Clerk Maxwell (1831-1897)

(figura 35), quien, con base en los trabajos de Faraday, pudo elaborar modelos ma-

temáticos apropiados para describir los fenómenos eléctricos y magnéticos: logrósintetizar desde la ley de Coulomb hasta la inducción electromagnética, en la que

cada cambio del campo eléctrico produce un campo magnético en su proximidad y

viceversa. La int egración de las interacciones eléctricas y magnét icas que consiguió

establecer Maxwell lo condujo a predecir la existencia de ondas electromagnéticas.

¿Cómo se generan estas ondas? Si hay una carga eléctrica, como un electrón, que

oscila, se desencadena un cambio en el campo eléctrico asociado, esto es, un cam-

po eléctrico variable, el cual producirá un cambio en el campo magnético, o campo

magnético variable, que producirá a su vez un campo eléctrico variable, que de nuevo

inducirá un campo magnético variable… y así sucesivamente. Ambos campos (eléctrico

y magnético) variarán periódicamente, serán perpendiculares entre sí y se propagarán

en una dirección común, que será perpendicular a ambas fuerzas en todo momento,

como se representa en la figura 36. El resultado es una onda electromagnética, que

es transversal y puede propagarse aun a través del vacío, ya que las interacciones

eléctrica y magnética son interacciones a distancia. En una antena de radio se tienen

cargas oscilantes, que suben y bajan a través de ella, generando las ondas electromag-

néticas llamadas ondas de radio.

FIGURA 36. En el centro de los ejes coordenados se encuentra una carga eléctrica que oscila en direcciónvertical (eje y ). Las fuerzas eléctricas (en rojo) y las magnéticas (en azul) generadas varían periódicamente,estando siempre perpendiculares entre sí (las eléctricas en dirección del eje y y las magnéticas en direccióndel eje z . La onda electromagnética generada se propaga en la dirección del eje x , que es perpendicular a las

direcciones y y z , por lo que es una onda transversal.

y

x

z

FIGURA 35. Entre las muchas

contribuciones de Maxwell a la

Física, se encuentran estudios

sobre el modelo cinético de las

partículas y su relación con la

temperatura en gases, así como

la idea de la síntesis aditiva delcolor: que permite obtener luz

de cualquier color, basta con

tener fuentes emisoras de tres

colores, llamados primarios (rojo,

azul y verde) con diferentes

intensidades luminosas. Si se

suman emisiones de luz de los

colores primarios con la misma

intensidad, se obtiene luz

blanca. Este principio continúa

aplicándose en pantallas de

televisión, computadoras,

teléfonos celulares, etcétera.

GLOSARIOLa oscilación es un movimiento en

el que un m óvi l se desplaza en un

sentido y luego regresa a la posición

original desplazándose en la mismadi recc ión pero en sent ido opuesto,

repitiendo este movimiento en inter-

valos de tiempo regulares.

Page 239: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 239/276

237

B4

Como todas las ondas, las ondas electromagnéticas tienen asociadas magnitudes

como longitud de onda, periodo, frecuencia, amplitud de onda y velocidad de propa-

gación, y transportan determinada cantidad de energía, en este caso energía eléctrica

y magnética. Otra manera, ciertamente conveniente, de nombrar el tipo de energía que

transportan las ondas electromagnéticas es denominarla energía radiante, dado que

las fuentes emisoras de estas ondas las lanzan en todas direcciones.

Existen radios de amplitud modulada que funcionan sin baterías o conexiones a la

corriente eléctrica llamados radios de galena, aunque su volumen es muy reducido

es posible recibir la señal de estaciones de AM cercanas, la alimentación del radio es

simplemente la onda electromagnética que recibe.

¿Por qué en todas direcciones, si acabamos de ver que las ondas se propagan en

dirección perpendicular a las fuerzas eléctricas y magnéticas? No olvidemos que los

cuerpos están compuestos de una inconcebible multitud de átomos, y que éstos (a

excepción del átomo de hidrógeno) tienen dos o más electrones, así que cada elec-

trón oscilante dará lugar a una onda electromagnética que se propaga en determinadadirección, pero billones de electrones oscilantes emitirán ondas en todas direcciones.

Poco antes del experimento de Michelson y Morley, antes referido, la teoría de

Maxwell proveyó la solución al problema de la naturaleza de la luz: la luz es una

onda electromagnética que, como tal, puede propagarse en el vacío o en un medio

transparente o traslúcido, y cuya longitud de onda es pequeñísima.

Una vez que Maxwell predijo la existencia de ondas electromagnéticas, se presentó el

reto de cómo generarlas. Heinrich Rudolf Hertz (1857-1894), físico alemán (figura 37),

dedujo las características de estas ondas a partir de las ecuaciones de Maxwell. La con-

dición indispensable es que la carga eléctrica esté acelerada, pues una carga eléctrica

estática no genera un campo magnético, y una que se mueva a velocidad constantegenera un campo magnético que no varía en el tiempo. En cambio, si la carga está

acelerada, es decir si tiene cambios en el módulo, dirección y sentido de su velocidad,

se desencadena el proceso de emisión de ondas electromagnéticas, como ocurre en el

caso de un electrón que oscila.

El espectro electromagnético

La luz que los seres humanos percibimos con nuestros ojos es una parte muy pequeña

del rango de longitudes de ondas electromagnéticas que pueden existir. Por razones

obvias, la llamamos luz visible. Sin embargo, al considerar todas las longitudes deonda posibles, tenemos ondas desde longitudes de onda tan grandes como miles de

kilómetros hasta longitudes de onda verdaderamente diminutas, del orden de la cien

mil millonésima parte de un milímetro, como se muestra en la figura 38.

FIGURA 37. Hertz produjoexperimentalmente ondaselectromagnéticas y demostróque no requieren un cablepara conducirse, dando asíinicio a una nueva era en lascomunicaciones

FIGURA 38. Observaen este esquemala comparación delas longitudes deonda de diferentesradiaciones con eltamaño de distintos

objetos..

Tipo de radiaciónLongitud de onda (m)

Escala aproximada de

la longitud de onda

Radio103

Edificios Humanos Mariposas Punta de

aguja

Protozoarios Moléculas Átomos Núcleo

atómico

Microondas10–2

Infrarrojo10–5

Visible0.5 x 10–6

Ultravioleta10–8

Rayos X10–10

Rayos gamma10–12

Page 240: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 240/276

238

S2

Todas estas ondas electromagnéticas constituyen el es-

pectro electromagnético. Recuerda que en el Bloque 1

revisaste las principales características de las ondas,

como la amplitud y la longitud de onda. Observa la

figura 39.

¿Qué encontramos en el espectro electromagnético,

además de la franja de la luz visible, llamada espectro

visible? Si consideramos ondas con longitudes de onda

mayores que las de la luz visible, en primer lugar están

las ondas electromagnéticas denominadas infrarrojas;

esta radiación se percibe como calor. A longitudes de ondas aún más largas está la

zona del infrarrojo lejano, después las microondas y luego toda la sucesión de las

ondas de radio. Por ejemplo, la parte de ondas de radio de AM (amplitud modula-

da), y la llamada onda media (MW ), corresponden a longitudes de onda de 545 a 188

metros, respectivamente.En el otro extremo del espectro electromagnético, disminuyendo progresivamente

la longitud de onda, se encuentran la radiación ultravioleta, los rayos X y los rayos

gamma; estos últimos son muy peligrosos.

El espectro electromagnético completo se puede representar mediante esquemas o diagramas,

como el de la figura 40. Los nombres de las diferentes zonas, franjas o bandas de fre-

cuencia son convencionales, pues físicamente la longitud de onda y la frecuencia van

variando de manera continua, y dependen más bien de las aplicaciones que los seres

humanos hemos encontrado para cada franja del espectro.

FIGURA 40. Espectroelectromagnético. Nota que laregión correspondiente a la bandavisible para los ojos humanos esuna estrecha ventana de todo elespectro; cada color tiene unasubfranja con longitudes de onda

características.

FIGURA 39. La longitud de ondaes la distancia entre dos crestassucesivas, y la frecuencia es elnúmero de longitudes de ondascompletas (o ciclos) que pasanpor un punto de referencia en un

segundo, y se mide en hertz.

Amplitud

CrestaLongitud de onda

Dirección depropagaciónde la onda

Valle

Frecuencia (Hz) Longitud de onda (m)Rayos

1020 10–12 1 pm

Rayos X 10–9 1 nm 400 nm

1017 Violeta

AzulUltravioleta

Espectro Verde

visible AmarilloInfrarrojo

Naranja

Rojo

1014

750 nmMicroondas

10–3 1 mm

1011

Bandas de FM 1

y TV. Radio de

100 MHz 108 onda corta

Banda AM 102 1 km

Radio de onda

100 kHz 103 larga

Page 241: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 241/276

239

B4

Relaciona las características de las ondas con su aprovechamiento en la generación de tecnología.

Elabora modelos Utiliza las tics

El ser humano ha aprovechado el conocimiento de las ondas electromagnéticas en

varios campos de las ciencias y las tecnologías. Algunas aplicaciones se encontraron

hace siglos, y hoy en día se siguen concibiendo nuevas formas de usar estas ondas. La

inmensa mayoría de las aplicaciones se basan en el hecho de que las ondas electro-

magnéticas pueden interactuar con la materia y la energía.En los seres humanos, sólo la radiación de la estrecha banda del espectro visible es

capaz de estimular las células de nuestras retinas. A través de esta relativamente peque-

ña ventana nos asomamos para contemplar la inmensa variedad de objetos, paisajes,

rostros y cuerpos celestes que están a nuestro alrededor. Dependiendo de la banda de

frecuencia específica, tendremos luz visible de colores que va cambiando del rojo al

violeta, pasando por el anaranjado, el amarillo, el verde y el azul.

Aunque la luz infrarroja y la ultravioleta son invisibles para los ojos humanos, tenemos

manera de percibir sus efectos a través de otros de nuestros sentidos. Para empezar

todo cuerpo, de cualquier tamaño, en cualquier lugar del Universo, emitirá ondas

infrarrojas en función de su temperatura. Esto significa que la radiación infrarroja esjustamente la manera de transmitir energía térmica a distancia (figura 41). Las radia-

ciones infrarrojas estimulan los termorreceptores que se encuentran en la piel, por

lo que las percibimos con el sentido del tacto, sencillamente como calor (figura 42).

Las ondas de radio tienen aplicaciones en las telecomunicaciones, así como las mi-

croondas y la radiación infrarroja.

Por su parte, los rayos ultravioleta (UV) no se perciben como calor o luz visible,

pero cuando nos exponemos a este tipo de radiación se propiciarán ciertas reacciones

químicas en nuestra piel, produciendo que su color se oscurezca. Las personas necesi-

tan cierta cantidad de rayos ultravioleta para mantener sanos los huesos (pues permite

que se fije el calcio en ellos), pero una exposición excesiva es perjudicial y puede,

incluso, propiciar el cáncer cutáneo. Algunas aplicaciones de la luz UV se muestran

en las figuras 43 y 44.

FIGURA 41. Algunos calentadoresdomésticos están diseñados paraemitir ondas infrarrojas, que novemos, pero que percibimoscomo calor.

FIGURA 42. Las microondas confrecuencias en torno a los 2.4 a2.5 GHz se utilizan en hornos demicroondas, capaces de trasmitircalor al agua que contienen losalimentos, y al fin y al cabo,cocerlos o recalentarlos.

1. Con tu equipo, elabora una línea del tiempo de losavances científicos que han llevado a conocer el espectroelectromagnético. Después elijan dos instrumentos, aparatoso desarrollos tecnológicos que hayan evolucionado hasta laactualidad.

2. Representen mediante dibujos, esquemas, recortes

de revistas o periódicos, o bien, mediante un modelotridimensional cómo ha evolucionado esta tecnología.

3. Compartan con el grupo y con la ayuda de su maestroinvestiguen en Internet qué caminos está siguiendo la cienciade frontera para el desarrollo futuro de tecnología.

FIGURA 43. La luz ultravioleta (a) se utiliza paraesterilizar agua y materiales usados en cirugías,entre otras cosas. La radiación UV mata muchosde los gérmenes, sin alterar los objetos. Existendispositivos para el control de plagas (b) basados

en esta radiación.a b

Page 242: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 242/276

240

S2

FIGURA 46. Las imágenesobtenidas con radiación gamma

se llaman gammagrafías.

FIGURA 44. Hay lámparas que emiten rayos UV,llamadas lámparas de “luz negra” (a). Por dentroestán recubiertas de un material que brilla conluz visible al recibir estos rayos, como el fósforo,razón por la cual se dice que hay un fenómenode “fosforescencia”. La luz negra ayuda a detectar

manchas y huellas (b) que no se ven al iluminarsecon luz visible. Por ello, son de gran ayuda para losinvestigadores policiacos o para certificar la higiene deun lugar. Hay dispositivos especiales para detectar siun billete, documento o pieza de arte son auténticos.También se utilizan con fines recreativos (c).

Los rayos X son emitidos por electrones que se frenan bruscamente al colisionar

con los átomos de placas metálicas de cobre, tungsteno o níquel. Fueron descubier-

tos a finales del siglo XIX . Por su rango de longitudes de onda, los rayos X pueden

interactuar con la materia en el nivel de los electrones de los átomos. Usando estas

ondas electromagnéticas, los científicos han estudiado propiedades microscópicas de

materiales sólidos, en especial cristales, así como líquidos. En la actualidad, además

de las aplicaciones médicas ampliamente conocidas, como las radiografías o placas

de rayos X, que permiten ver tejidos “duros” (como los huesos) a través de tejidos

“blandos” (como la piel y los músculos), (figura 45), también tienen usos industriales,

como la detección de fisuras en cuerpos metálicos.

Los rayos gamma corresponden a la radiación que tiene los valores más altos de

frecuencia y las longitudes de onda más pequeñas, menores a 0.000000001 mm. Al

igual que los rayos X, son capaces de penetrar materiales, sólo que se generan en

el nivel de los núcleos de los átomos, e igualmente pueden modificar los núcleos alinteractuar con ellos. Sus aplicaciones médicas permiten el escrutinio de órganos y

tejidos con más precisión que los rayos X, como se ilustra en la figura 46.

En el ámbito de la tecnología y la industria, la radiación gamma se utiliza para la

prospección de yacimientos petroleros o para la detección de espesores de capas

de láminas de metal (al medir cuánta radiación logró traspasarlas). También es útil en

la medición de tiempos de procesos de producción, el estudio de movimientos de

fluidos en ductos, la detección de obstrucciones de cañerías y la determinación de volú-

menes y masas de líquidos en movimiento, entre otras aplicaciones tecnológicas.

Observa la figura 47.

FIGURA 47. Con los rayos X se pueden esterilizar

instrumental médico, cosméticos y alimentos.

FIGURA 45. El más célebre delos científicos que investigaronlos rayos X fue el físico alemánWilhelm Conrad Röntgen (1845-1923), quien los nombró así

porque no se sabía exactamentequé tipo de radiación era. Laimagen corresponde a la quees probablemente la primeraplaca de rayos X, tomada de lamano de su esposa Anne Berthe,quien falleció debido a los dañosderivados de la exposicióna estos rayos sin la debidaprotección. La protuberanciaoscura en el dedo anular es elanillo que llevaba puesto.

a b c

Page 243: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 243/276

241

B4

Las ondas electromagnéticas y la energía que transportan

Toda onda transporta determinada cantidad de energía al propagarse. ¿Cómo se relacio-

na esta energía con características de la onda tales como frecuencia y longitud de onda?

Se ha encontrado que la energía asociada a una onda electromagnética es directa-

mente proporcional a su frecuencia, esto es, a mayor frecuencia más energía transportala onda. Entonces, radiaciones como los rayos X o gamma son de energías mucho más

altas que las ondas de radio, al grado de que al incidir en un material pueden conferir

suficiente energía a los electrones de los átomos para liberarlos, convirtiendo entonces

estos átomos en iones, como se indicó en la figura 48. Debido a esto, estas radiaciones

se consideran radiaciones ionizantes.

La radiación electromagnética interactúa con la materia de diversas maneras; básica-

mente en función de su frecuencia y del material con el que entra en contacto. En general,

para un mismo material, su penetración es inversamente proporcional a la frecuencia. Los

rayos ultravioleta que provienen del Sol pueden atravesar las nubes, pero son bloquea-

dos por cremas con filtros especiales, ropa gruesa, sombrillas, etc. Los rayos X requieren

placas de metales como el plomo para ser absorbidos, y los gamma son absorbidos por

placas muy gruesas de metal o de concreto. Los reactores nucleares liberan mucha radia-

ción gamma, por ello están sellados por gruesas paredes de metal y de concreto.

Por otra parte, la intensidad de la luz se relaciona con la amplitud de la onda elec-

tromagnética, de manera análoga a la intensidad o “volumen” del sonido, que depende

de la amplitud de la onda mecánica. Por ejemplo, si la onda electromagnética está den-

tro del espectro visible, la luz será más brillante de acuerdo con la amplitud de onda.

Propagación de las ondas electromagnéticas

Como has visto antes, la longitud de onda λ se relaciona con la frecuencia f para

determinado módulo de velocidad de propagación v , como: f = v/ λ.

Si la onda electromagnética se propaga en el vacío, su velocidad v es igual a c; por

lo tanto, en el vacío f = c /λ.

FIGURA 48. Un ion es un átomoque tiene un número mayoro menor de electrones quelos que normalmente posee.El átomo en a) posee treselectrones; si se le quita uno,será un ión con dos electrones,como se ve en b).

1. Para la telefonía celular se utilizan ondas electromagnéticas

con frecuencias de 300 MHz a 3000 MHz. Según la clasifi-cación propuesta, ¿qué tipo de ondas electromagnéticas seestarán empleando?

2. ¿Qué longitud de onda tendría una onda de radio de lallamada banda de onda corta o “SW”, si su frecuencia es de90 MHz y se propaga en el vacío?

3. ¿Por qué cuando pasamos por un túnel para vehículos sepierde la recepción de la radio en la banda de AM, y no asíla de FM? Considera que un túnel o paso a desnivel tieneuna altura de alrededor de 15 metros, y que las ondas deAM tienen una longitud de onda de más de 500 metros,mientras que las de FM son del orden de un metro.

4. ¿Qué tipo de emisión surge de la

antena de una estación de televi-sión: ondas sonoras, luz visible oradiación electromagnética invisi-ble? Argumenta tu respuesta.

5. Actualmente existen cámaras fo-tográficas o de video que captanrayos infrarrojos. ¿Por qué estascámaras permiten fotografiar ofilmar en la noche, en ausenciade luz visible? Explica turespuesta.

Evalúo mi avance

Las estaciones detelevisión transmiten suprogramación a travésde una antena.

Protones = 3

Neutrones = 4

Electrones = 3

Carga = 0

Protones = 3

Neutrones = 4

Electrones = 2

Carga = +1

a

b

Page 244: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 244/276

242

S2

Explora

1. ¿En qué aspectos son diferentes las partículas y las ondas?

2. ¿Qué es la órbita de un electrón en un átomo en términos de los modelos atómicos que hanrevisado?

3. ¿Cómo se relacionarían estas órbitas con la emisión de luz?

4. Compartan en grupo las respuestas y guarden sus notas para revisarlas al final de esta secuencia.

Cuando, de acuerdo con lo que relatamos antes, Maxwell estableció que la luz es

una onda electromagnética y Hertz consiguió generar dichas ondas, parecía que

la cuestión de la naturaleza de la luz estaba finalmente zanjada. Sin embargo, y comoes frecuente en la investigación científica, la historia no terminó ahí.

Un artículo publicado en 1905 por un

físico alemán que trabajaba en una ofici-

na de patentes en Suiza, y que después

sería mundialmente célebre, Albert Eins-

tein (figura 49), sobre un fenómeno que

involucraba la luz y la corriente eléctrica,

provocó que se replanteara la pregunta de

cuál es la naturaleza de la luz… otra vez.

El efecto fotoeléctrico, descubiertoen 1887 por Hertz, consiste en la emi-

sión de electrones de un cuerpo (por

ejemplo, una placa metálica) cuando

incide luz en él. Cuando esto sucede,

los electrones que son “arrancados” del

cuerpo conforman una corriente eléctrica

mesurable si el cuerpo está conectado

adecuadamente en un circuito eléctrico.

El efecto inverso también es posible: cuando los electrones en el átomo cambian de

órbita, se emiten fotones. Este fenómeno se conoce como fluorescencia, y es el

principio de funcionamiento de las lámparas fluorescentes.

Podría pensarse que la corriente eléctrica depende de la intensidad de la luz in -

cidente, es decir de la amplitud de la onda electromagnética, pero para sorpresa del

propio Einstein, esto no era así; la intensidad de la corriente dependía de la frecuen-

cia de la luz incidente.

Este resultado no podía explicarse concibiendo la luz como onda, sino como partícu-

la. En cierta forma, Einstein retomó la teoría corpuscular de la luz de Newton, pero

a la vez extendió la idea de otro físico alemán, Max Planck (figura 50), quien, a raíz

de sus propias investigaciones sobre la energía asociada a las ondas electromagnéticas,

FIGURA 49. Albert Einstein(1879-1955) hizo aportacionesfundamentales a la FísicaModerna, que comprende lafísica que se ha desarrollado enel siglo XX y lo que va denuestro siglo.

•La luz como onda y partícula

Page 245: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 245/276

243

B4

propuso en 1900 la existencia del cuanto como la porción mínima de

energía asociada a la radiación emitida por un átomo, la cual sólo

puede tener un valor determinado. Einstein fue más lejos y planteó

que la luz en sí está formada por cuantos, que ahora llamamos

fotones (figura 51). Estos se comportan como partículas muy

peculiares, pues adquieren masa debido a su movimiento, si

bien en reposo su masa es cero.

¿Qué es la luz entonces, una onda o una partícula? Hasta

donde sabemos hoy en día, la luz tiene una naturaleza dual,

es decir en ciertos fenómenos se comporta como onda electro-

magnética y en otros casos como un haz de fotones. Hay que

tener muy en cuenta, sin embargo, que no se comporta de ambas

maneras simultáneamente: en general, cuando la luz es emitida o

absorbida por un cuerpo, sólo en ese instante, su comportamiento es

corpuscular, pero cuando se propaga, su comportamiento es ondulatorio.Recordemos que los conocimientos científicos son confeccionados por

seres humanos, y ninguna teoría o modelo es definitivo; más bien es un proceso

en permanente construcción que, mientras existamos como especie, sólo cesará si

alguna vez perdemos nuestra curiosidad y renunciamos a nuestro afán de comprender

y explicar la Natura leza.

Emisión fotónica Absorción fotónicaa b

FIGURA 51. Los fotones se producen cuando, por ejemplo, (a) un electrón de un átomo pasa de un nivel deenergía (órbita) a otro nivel inferior, y se absorben (b) si inciden en un átomo y producen que un electrónpase a un nivel de energía superior.

1. Reflexiona sobre lo siguiente y contesta las preguntas.

• Por equipos, observen el siguiente mapa conceptual coninformación acerca de algunos fenómenos luminosos. Conbase en al mapa, elaboren en sus cuadernos un mapaconceptual propio, donde incluyan dibujos, ilustracionesy más cuadros de texto que ejemplifiquen lo que semenciona en el mapa.

• ¿Cómo se relacionaría la frecuencia de la luz incidente conel número de fotones incidentes?

• ¿Qué relación hay entre la corriente eléctrica y el númerode electrones (que a fin de cuentas son electrones) quecirculan por unidad de tiempo?

• Con base en tus respuestas anteriores, ¿puede concluirseque en el efecto fotoeléctrico la corriente eléctrica esmayor cuando la luz incidente tiene una frecuenciamayor porque hay más fotones que golpean los átomos ydesprenden más electrones? Justifica tu respuesta.

2. Elabora un dibujo que represente tu explicación del efectofotoeléctrico.

Evalúo mi avance

FIGURA 50. A Max Planck(1858-1947) se le considera,

junto con Einstein, como uno delos creadores principales de laFísica Moderna, en particular, dela Mecánica Cuántica.

Sumérgete en la fascinante

aventura de los hallazgosmás importantes en la física

del siglo XX a través de la

lectura de la obra siguiente:

De Régules Ruiz-Funes,

Sergio, Cuentos cuánticos,

SEP-ADN Ediciones, México,

2001 (Colección Libros del

Rincón).

Lee más...

Page 246: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 246/276

S3

244

La energíay su aprovechamiento

Durante los Juegos Olímpicos que se celebraron en Beijing, China, se hicieron grandesconstrucciones que aprovechaban las fuentes renovables de energía. Uno de

estos edificios es el Centro Acuático de Beijing o Cubo de Agua. Este edificio se construyócon materiales especiales que lo hacen energéticamente eficiente y permite que las

condiciones climatológicas en el interior sean las más adecuadas para los atletas.

Aprendizajes esperados

S3

• Relacionarás

la electricidad

y la radiación

electromagnética

como manifestaciones

de energía, y valorarás

su aprovechamiento

en las actividadeshumanas.

• Reconocerás los

beneficios y perjuicios

en la naturaleza

y en la sociedad,

relacionados con

la obtención y

aprovechamiento de

la energía.

• Argumentarás la

importancia de

desarrollar acciones

básicas orientadas al

consumo sustentable

de la energía en

el hogar y en la

escuela.

Manifestaciones de energía: electricidady radiación electromagnética.

Obtención y aprovechamiento de la

energía. Beneficios y riesgos enla naturaleza y la sociedad.

Importancia del aprovechamiento de laenergía orientado al consumo sustentable.

Page 247: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 247/276

B4

245

•Manifestaciones de energía: electricidad y radiaciónelectromagnética

Históricamente se sabe que el ser humano conoció diferentes fenómenos relacionados

con el movimiento de los electrones libres desde el siglo VI a.n.e. cuando el filósofogriego Tales de Mileto observó que, frotando una varilla de ámbar con una piel o lana,

se podían atraer pequeños objetos. Sin embargo, el uso generalizado de la energía

eléctrica no se dio sino hasta finales del siglo XIX , que junto con el desarrollo de

tecnologías específicas como el alumbrado público, el uso de los motores eléctricos,

la refrigeración y las comunicaciones, se volvió esencial para enlazar y entender a la

nueva sociedad.

Hemos visto que las ondas electromagnéticas son una combinación de campos

eléctricos y magnéticos que transportan energía de un lado a otro. A diferencia de

las ondas mecánicas, como el sonido, las ondas electromagnéticas no necesitan un

medio material para su propagación. Pero, ¿cómo se manifiesta la energía radiante?

Material

• 1 lámpara con un foco incandescentede 100 Watts

• 2 vasos con agua• 3 termómetros

Procedimientoa. Coloquen un vaso con agua a una distancia

de 20 cm del foco prendido y otro enuna ventana donde reciba la luz del soldirectamente.

b. Midan la temperatura del agua antes deiniciar el experimento y al transcurrir 20minutos de haber expuesto el dispositivoen la fuente de luz.

Resultados

1. Anoten en su cuaderno los datos queobtuvieron. Pueden usar tablas, como enactividades anteriores, para registrarlos.

Analisìs de Resultados• ¿A que se debió el cambio de temperatura

del agua que estaba cerca del foco?Argumenten.

• ¿La razón que dieron en la pregunta anteriorse puede aplicar también al cambio detemperatura del agua que se expuso al Sol?

• ¿Qué fuentes de energía identifican eneste experimento?

Conclusiones1. Comenten en el grupo las siguientes

cuestiones:• ¿Qué similitudes y diferencias hay entre

las fuentes de energía que se utilizaronpara elevar la temperatura del aguacontenida dentro de los vasos?

• ¿En qué tipo de energía se transformó laenergía eléctrica que entró al foco? ¿Enque parte del foco incandescente ocurrióese cambio?

2. Identifiquen en cada uno de los casoscuales fueron las fuentes de energía y laenergía que se aprovechó.

3. Debatan, guiados por su maestro, parallegar a conclusiones grupales. Anótenlasen sus cuadernos.

Explora

Se coloca el termómetro dentro de losvasos con agua y posteriormente se colocauno junto a la lámpara y el otro junto a laventana.

GLOSARIOLos electrones l ibres son aquellos

que no están fuertemente l igados a

los átomos y que por consiguiente se

pueden desprender fáci lmente de su

estructura.

Reconocerás el efecto de dos fuentes de energía.

Page 248: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 248/276

246

S3

1. ¿Qué diferencia existe entre la energía eléctrica y la energía radiante?

2. ¿Cómo se transporta la energía eléctrica? ¿Y la energía radiante?

Evalúo mi avance

A par tir del experimento pudieron constatar que el

mismo fenómeno de aumento de temperatura se llevó

a cabo con dos fuentes de energía diferentes.

Se llama energía eléctrica (figura 52) a la ener-

gía que resulta del movimiento de cargas eléctricas,

principalmente los electrones de los átomos que

componen un material, entre dos puntos que tie-

nen diferentes potenciales eléctricos. Los diferentes

potenciales se producen porque existe exceso o de-

fecto de electrones entre los dos puntos por los que

se coloca el material conductor y el movimiento se

induce cuando las cargas positivas (electrones) y las

negativas (protones) buscan entrar en equilibrio al

neutralizarse.

La energía radiante (figura 53) es aquella que proviene de una fuente luminosa.En ese caso lo que se emiten son fotones, como se vio en la secuencia anterior.

La intensidad de esta energía sólo depende de la intensidad de la luz y de su color. La

energía radiante es el tipo de energía asociada a las ondas electromagnéticas.

En el caso del experimento que acaban de hacer, el vaso que se colocó junto a la

ventana absorbió el calor proveniente de los rayos del Sol, mientras que el vaso que

se colocó junto a la lámpara absorbió el calor de las ondas emitidas por un filamento

de tungsteno, que es calentado al hacerle pasar una corriente de electrones.

FIGURA 52. La generación deenergía eléctrica es fundamentalpara la vida diaria, ésta provienede la red eléctrica y puede sertransformada en otros tipos deenergía.

FIGURA 53. Los rayos ultravioleta,los rayos infrarrojos y la luzvisible, son ejemplos de energía

radiante que se transmitepor fotones. Atardecer en laspiramides de Guiza, Egipto. Porsupuesto, en la fotografía seaprecia únicamente la luz visible.

Page 249: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 249/276

24

B4

Las fuentes de energía son los recursos naturales de los que la humanidad puede

obtener energía eléctrica útil para realizar sus actividades. Desde la perspectiva hu-mana, un recurso natural es todo aquello que podemos obtener del entorno y que

es aprovechado para satisfacer nuestras necesidades. Así, podemos considerar que

los alimentos son recursos disponibles que nos proveen de la energía necesaria para

vivir. Existen algunos recursos que suministran la energía suficiente para ser transfor-

mada en diversas formas de energía que nos son de utilidad. Esas transformaciones

se llevan a cabo mediante tecnologías específicas, como los motores de

combustión interna utilizados por los automóviles; la energía calorífi-

ca obtenida de la combustión de la gasolina se transforma en energía

mecánica que aprovechamos para transportarnos.

Las fuentes de energía pueden clasificarse en renovables y no reno- vables dependiendo de la rapidez con que consumamos la energía que

nos proporcionan, comparada con el tiempo que tarda en producirse; de

este modo, la tasa de consumo de las energías renovables es menor a su

tasa de producción.

Las fuentes renovables de energía son:

Solar: La energía solar es aquella proveniente de la radiación solar

y se considera la fuente de energía más importante de nuestro planeta.

De la radiación solar podemos aprovechar el calor que llega a la Tierra,

y le llamamos energía fototérmica (f igura 54), o bien,

haciendo uso de otro tipo de tecnologías como las foto-

voltaicas (figura 55) con las que podemos transformar

la radiación y producir energía eléctrica gracias al efecto

fotovoltaico, que fue descubierto por el físico francés

Henri Becquerel en 1823 (figura 56).

Eólica: La energía eólica es aquella que se obtiene del

viento. El movimiento del aire se produce por la diferen-

cia de temperatura en la superficie terrestre, que, como

sabes por tus cursos de Geografía, se deben al calenta-

miento desigual de su superficie debido a la inclinación

FIGURA 54. Se muestra uncalentador solar doméstico. Estastecnologías aprovechan el calor

radiante proveniente del Sol paracalentar el agua que se utilizaen las casas, por ejemplo, parabañarnos. Cuenta con un colectorque puede ser de tubos de cobre,plástico o vidrio y un tanqueaislado térmicamente donde sealmacena el agua caliente.

FIGURA 55. Celdas fotovoltaicas. Estas tecnologíastransforman la energía luminosa en energía eléctricamediante el efecto fotoeléctrico, que es el fenómenoque se presenta en algunos materiales que emitenelectrones al ser iluminados por una fuente de luz.

FIGURA 56. Antoine HenriBecquerel. Fue un físico francésque nació a mediados delsiglo XIX y en 1903 se le otorgóel Premio Nobel de Física porsus descubrimientos en torno a

la radioactividad.

1. Elabora una lista en tu cuaderno de todo aquello que está a tu alrededor y que en estemomento se le esté suministrando energía para que funcione.

2. Junto a cada objeto que escribiste, agrega la forma de energía que utiliza.

• ¿De dónde crees que provenga toda la energía que se está utilizando?

Explora

•Obtención y aprovechamiento de la energía. Beneficiosy riesgos en la naturaleza y la sociedad

Page 250: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 250/276

248

S3

FIGURA 58. Estufa eficiente de leña. Estas estufas tienen grandesbeneficios para la salud ya que cuentan con una chimenea quehace que los gases salgan de las habitaciones donde se encuentran,además de que se requiere de menor cantidad de leña para la cocción

adecuada de los alimentos.

FIGURA 59. La termoeléctrica de Cerro Prieto, en el estado de BajaCalifornia, en Mexicali, es la segunda planta más grande del mundo de

producción eléctrica por medio de Geotermia.

FIGURA 57. Aerogeneradores enLa Ventosa, Oaxaca.

con la que inciden sobre la Tierra los rayos del Sol. Las

tecnologías que utilizan esta energía transforman la ener-

gía cinética del viento en energía eléctrica, al hacer girar

los grandes molinos, llamados aerogeneradores, como se

observa en la figura 57, que a su vez hacen girar una

turbina que genera la energía eléctrica.

Biomasa: La biomasa comprende toda la materia de ori-

gen orgánico tanto de vegetales (madera) como de animales.

Los procesos de conversión de los desechos o materia

muerta proveniente de la biomasa para producir los bio-

combustibles son: la combustión directa, la gasificación, la

fermentación, la pirólisis y la digestión.

La pirólisis es la descomposición de la materia orgánica

por calentamiento y en ausencia de oxígeno. Cuando la

pirólisis es completa se l lama carbonización.En la actualidad 8% de la energía primaria utilizada en México es a partir de la leña, prin-

cipalmente para cocinar (figura 58) y calentarse. La leña es un recurso renovable, siempre

y cuando lo util icemos con responsabil idad. Una vez que se deforesta un bosque o una

selva, tarda muchos años en regenerarse, y esto ocurre sólo si se conserva la zona, por lo

que una fuente renovable de energía se torna no renovable.

Geotermia: La energía geotérmica se obtiene del calor que emite el interior de la Tierra

y que sale a la superf icie en forma de géiseres. Estas formaciones se logran cuando hay

una cámara magmática cerca de un depósito subterráneo de agua por lo que ésta alcanza

temperaturas por arriba de los 600 ºC. Actualmente se aprovecha esta energía cuando se

producen emanaciones de agua a altas temperaturas o bien vapor de agua. En Méxicoexisten cuatro centrales termoeléctricas, una de las más importantes, por la cantidad de

electricidad que produce es la de Cerro Prieto en Baja California (figura 59) y la de los

Azufres en Michoacán.

GLOSARIOUna turbina es un di spos i t ivo que

al paso de un f luido, sea éste gas o

líquido, acciona una serie de paletas

que al entrar en movimiento producen

energía mecánica, la cuál se puede

transformar en otras formas de energía

como la eléctrica.

Page 251: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 251/276

24

B4

FIGURA 60. Las minihidraúlicasson una alternativa importantepara el cuidado del medioambiente. Estas pequeñasplantas generan energía

eléctrica aprovechando lospequeños caudales de agua quellevan los ríos, por lo que nohay necesidad de almacenargrandes cantidades de agua enpresas, lo cual puede afectar ladisponibilidad del líquido para laagricultura y el consumohumano en ciertas regiones.

Valora la importancia de aprovechar las diferentes fuentes de energía.

1. Organícense en equipos y completen en sus cuadernos las tres primeras columnas de una tablacomo la siguiente:

2. Discutan en el grupo cuáles serían las ventajas y las desventajas de utilizar las diferentesfuentes de energía que han anotado. Consideren que algunas de ellas son intermitentes.

3. Reflexiona sobre lo siguiente y después comparte con dos compañeros tu respuesta:

• ¿De qué tipo son las fuentes de energía que proveen de energía eléctrica a la región en laque vives? ¿A qué se debe?

• ¿Es benéfico para la sociedad la construcción de edificios como el de Beijing que se ilustraen el inicio de la secuencia? Explica por qué en términos sociales y naturales.

• ¿Conoces algún efecto indeseable en el uso de recursos para generar energía? Describe almenos dos y explica por qué los elegiste.

4. Escribe en los recuadros restantes de la tabla las conclusiones a las que llegaron en el grupo.

Comunica tus avances en ciencias

Fuente deenergía

UsosEjemplo de su

aplicaciónVentajas Desventajas Conclusiones

1. Elabora una gráfica circular en la que queden representados los porcentajes del uso entre lasfuentes de energía fósil, y renovables.

2. Haz una lista de los objetos que utilizas cotidianamente e identifica el tipo de energía queutilizan para su funcionamiento y la fuente de la que proviene cada una.

Evalúo mi avance

Oceánica: La energía oceánica se obtiene al aprovechar la energía cinética proveniente

de los océanos debido a: las mareas, las corrientes marinas (frías y cálidas) producidas por

las diferencias de temperaturas así como de las olas.

Hidráulica: La energía cinética obtenida de las plantas hidráulicas está muy establecida

en distintas regiones del mundo, ya que en la primera mitad del siglo XX las centrales hi-

droeléctricas fueron la principal fuente de electricidad del mundo.

Actualmente la tendencia es desarrollar las mini y microhidraúlicas (figura 60) pues se

busca aprovechar la energía cinética del agua en movimiento procurando la mínima afec-

tación en el medio.

Las fuentes de energía no renovable son: petróleo, carbón natural y gas. Estos recursos

energéticos se utilizaron mucho en el siglo pasado, pero ocasionaron serias consecuen-

cias al ambiente, como la contaminación del agua, del suelo y de la atmósfera. De la

energía que se consume actualmente en el mundo 63% proviene de combustibles fósiles

(petróleo, gas y carbón natural), 16% de materiales radiactivos (uranio) y 21% de fuentes

renovables.

Consulta el siguiente libro

para enriquecer tus ideas en

torno a la importancia de la

energía y su consumo respon-

sable en nuestro entorno:

Sierra i Fabra, Jordi, et al.,

Enchúfate a la energía,

México, SEP-Ediciones de

Educación y Cultura, 2003

(Colección Libros del Rincón).

Lee más...

Page 252: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 252/276

250

S3

1. Busca imágenes en libros, periódicos, revistas o en internet que ejemplifiquen las

consecuencias del calentamiento global.

2. Reúnete con una pareja y comparen las imágenes con las de otras parejas, después

expliquen el fenómeno que se está generando debido al calentamiento.

3. Expliquen si, como sociedad e individualmente, podemos hacer algo para evitarlo.

4. Al final, hagan un collage con las imágenes y sus propuestas de solución.

Explora

FIGURA 62. Víctor Luis UrquidiBingham nació en 1919 en

Francia y muere en México en

el 2004. Desde muy joven llegó

a México y trabajó en el Banco

de México y en la Secretaría de

Hacienda y Crédito Público.

Fue catedrático de El Colegio

de México y participó en la

creación de los posgrados en

Economía en varios estados. La

biblioteca que lleva su nombre

está ubicada en El Colegio de

Tlaxcala, en Apizaco.

Históricamente, los energéticos más importantes que se utilizaban hasta final del siglo XIX

eran el carbón y la madera. Durante el siglo XX se dio el auge del uso del petróleo como

fuente de energía, permitiendo que la cantidad de energía utilizada por persona fuera

veinte veces mayor que la que se tenía en los siglos anteriores. El aumento de la pob la-

ción mundial, así como el desarrollo de tecnologías que funcionan con los combustibles

de origen fósil, está afectando al clima de nuestro planeta (figura 61) produciendo el

fenómeno de calentamiento global.

Actualmente, dado el inc remento en las necesidades energéticas , deb ido principal-

mente al crecimiento de la población humana y al uso cada vez más generalizado de

tecnologías que funcionan con electricidad, es imperativo que todos busquemos solu-

ciones que nos permitan sustituir los combustibles fósiles por fuentes de energía menos

contaminantes y que sean renovables, así como desarrollar, y poner al alance de todos,

nuevas tecnologías que faciliten mitigar lo más posible la contaminación atmosférica

del suelo y del agua, protegiendo así el medio y la biodiversidad. Esto último es parti -

cularmente importante en un país megadiverso como el nuestro.

Víctor Luis Urquidi Bingham, uno de los economistas más sobresalientes de México

y de los primeros en trabajar con seriedad el problema del med io ambiente d io la def i-

nición de sustentabilidad que se reproduce en la figura 62.

“El desarrollo

sustentable es el

que se lleva a cabo

sin comprometer

la capacidad de las

generaciones futuras

para satisfacer sus

propias necesidades,

manteniendo la equidad

energética dentro de

cada generación”

• Importancia del aprovechamiento de la energíaorientado al consumo sustentable

FIGURA 61. Diseño inspirado en la necesidad de

cuidar nuestro planeta. Las decisiones que estamos

tomando como sociedad e individualmente

repercutirán también en nuestra salud. ¿Cómoimaginamos nuestro futuro?

Page 253: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 253/276

25

B4

1. Reflexiona de manera individual sobre laregión y la comunidad en la que vives;después de leer las preguntas escribe tusrespuestas:

• ¿Hay suficientes días soleados a lo largodel año? es decir, ¿que presenten bajanubosidad?

• ¿Existen zonas donde los vientos soplenpor varias horas seguidas y durante casitodos los días?

• ¿Vives en una zona cerca del mar?

• ¿Hay géiseres cerca de tu comunidad?

• ¿Los ríos que conoces llevan suficienteagua todo el año?

• ¿Hay presas cerca de tu comunidad?

• ¿Identificas zonas boscosas o selvas cercadel lugar donde vives?

• ¿Se utiliza la leña como fuente deenergía?

2. Dibuja un plano de tu comunidad dondeidentifiques las fuentes de energía renovablecon las que cuenta.

• ¿Actualmente se utiliza algún tipo defuente renovable de energía en tucomunidad?

3. Con la información que has leído en estelibro y en otros medios responde:

• ¿Qué tipo de tecnologías propones parapoder aprovechar la energía de las fuentesrenovables?

4. Ilustra en el plano las fuentes de energía quese utilizan actualmente.• ¿Qué propondrías en tu comunidad

para aprovechar las fuentes de energíarenovable accesibles?

• ¿Qué beneficios aportaría a tu comunidadel uso de las fuentes renovables deenergía?

5. Identifica los problemas más importantes decontaminación que hay en tu comunidad.

6. Propón acciones para reducir los efectos dela contaminación.• ¿Cuántas de las acciones que propusiste

en la pregunta anterior tienen que vercon el uso de las fuentes renovables deenergía?

7. Cuando hayas terminado de responder las

preguntas anteriores, intercambia y comparalas respuestas con todo el grupo.

8. Dibujen entre todos, en el pizarrón o en unahoja de rotafolios, un plano de su comunidade identifiquen: las fuentes renovables deenergía, su aprovechamiento, las fuentesde contaminación y las acciones para reducirsus efectos.

Comunica tus avances en ciencias

1. Elije la opción correcta.Una fuente renovable de energía se caracteriza porque:a. Su tasa de consumo es menor a la tasa de producción.b. La tasa de consumo es mayor a la tasa de producción.

2. Enuncia las principales fuentes renovables de energía.

3. La energía solar sólo se puede aprovechar en las horas de exposición al Sol. Explica con tuspropias palabras cómo resolverías el suministro energético durante la noche.

4. ¿Consideras importante seguir produciendo un poco de energía eléctrica haciendo uso de los com-bustibles fósiles?

5. De las fuentes renovables de energía, ¿cuál de ellas te parece que tendría un menor impactocontaminante? Explica tu respuesta.

Plantea argumentos sobre la importancia del consumo sustentable.

Evalúo mi avance

Para aprovechar la energía de las fuentes que ya hemos mencionado se requiere del

desarrollo de tecnologías que nos permitan utilizar esa energía en nuestro beneficio mi-

nimizando siempre el impacto ambiental. Las formas de energía con las que estamos

más familiarizados son: eléctrica, mecánica y térmica.

Para relacionar el consumo

de energéticos con el im-

pacto ambiental por la con-

taminación resultante deestos, te sugerimos revisar

el siguiente texto de la Bi-

blioteca Escolar:

Lavín Maroto, Mónica, Planeta

azul, planeta gris, México,

SEP-ADN Editores, 2007 (Colec-

ción Libros del Rincón).

Lee más...

Page 254: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 254/276

252

Autoevaluación Al completar esta tabla podrás saber si lograste dominar, a lo largo de los contenidos, los aprendizajes señalados.Rellena el cuadro que corresponda a tu propia evaluación y comenta, en la última columna, la tarea necesaria para que logres el aprendizajey compártela con tu maestro.

I N D I C A D O R D E L L O G R O

L O S É

(Tengo el

conocimiento)

L O S É H A C E R

(Desarrollé las habilida-des para representar yseguir procedimientos)

V A L O R OE S T E

A P R E N D I Z A J E

C O M E N T A R I O S

Sí Aún no Sí Aún no Sí No ¿Cómo lo lograré?

¿Relacionas la búsqueda de mejores explicaciones y elavance de la ciencia a partir del desarrollo histórico delmodelo atómico?

¿Describes la constitución básica del átomo para expli-car algunos efectos de las interacciones electrostáticasen experimentos y situaciones cotidianas?

¿Explicas la corriente y resistencia eléctrica en funcióndel movimiento de los electrones en los materiales?

¿Identificas las ideas y experimentos que permitieronel descubrimiento de la inducción electromagnética?

¿Valoras las aplicaciones del electromagnetismo paraobtener corriente eléctrica o fuerza magnética en

tecnologías de uso cotidiano?

¿Identificas algunas características de las ondas enel espectro electromagnético y las relacionas con suaprovechamiento tecnológico?

¿Relaciona la emisión de radiación electromagnéticacon los cambios de órbita del electrón en el átomo?

¿Reconoces la electricidad y la radiación como mani-festaciones de energía, y valoras su aprovechamientoen las actividades humanas?

¿Reconoces las ventajas y desventajas de la obtencióny aprovechamiento de energía en el ambiente y lasociedad?

¿Argumentas la importancia de implementar accionesorientadas al consumo sustentable de la energía encasa y en la escuela?

Page 255: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 255/276

Evaluemos lo aprendido

En los reactivos del 1 al 6 elige el inciso que corresponda

a la respuesta correcta.

1. El modelo de la estructura atómica, que considera alátomo compuesto de materia con carga eléctrica positivauniformemente distribuida en todo su volumen, y electronesincrustados en esta materia se atribuye a:

a. Rutherford

b. Thomson

c. Bohr

d. Chadwick

2. La resistencia eléctrica es una propiedad de los materiales

y depende de la estructura de los diversos materiales,pero además depende de manera precisa de propiedadesespaciales o geométricas. La resistencia eléctrica es:

a. Directamente proporcional a la longitud del materiale inversamente proporcional al área de su seccióntransversal.

b. Inversamente proporcional al perímetro de la seccióntransversal del material y directamente proporcional a sulongitud.

c. Directamente proporcional a la longitud y al área de lasección transversal de un material.

d. Independiente de la longitud del material, pero si

depende en proporción inversa al área de su seccióntransversal.

3. Al fenómeno de descomposición de la luz en sus longitudesde onda constituyentes se le conoce como:

a. Refracción

b. Reflexión

c. Absorción

d. Dispersión

4. Los siguientes rayos son ondas electromagnéticas, excepto:

a. Rayos gamma

b. Rayos UV

c. Rayos alfa

d. Rayos X

5. El espectro electromagnético consiste en:

a. El conjunto de todas las amplitudes de onda de la luzvisible, que producen los colores.

b. El conjunto de todas las velocidades de propagaciónposibles de las ondas electromagnéticas.

c. El conjunto de todas las longitudes de onda posibles delas ondas electromagnéticas.

d. El conjunto de todas las características de los camposeléctricos y magnéticos.

6. En la siguiente lista de aparatos que nos suministranenergía eléctrica, radiante, térmica o cinética, elije los quefavorezcan un consumo responsable de energéticos yque sean amigables con el ambiente, es decir, cuyoimpacto ambiental sea mínimo.

a. 2, 5, 8

b. 1, 3, 9

c. 4, 6, 7

d. 2, 4, 10

Resuelve el siguiente problema.

7. En tu escuela realizaron un proyecto de investigaciónsobre los calentadores de agua que utilizan la emergíaradiante del Sol, y analizaron las ventajas y desventajasde utilizar calentadores de este tipo en casa. De entre losargumentos que surgieron, elije el que se relacione máscon el aprovechamiento de la energía orientada al consumosustentable:

a. La adquisición e instalación de calentadores solaresrequiere de un gasto inicial, pero esta inversión seamortiza en poco tiempo, considerando el ahorro en elpago del gas LP o gas natural que usan los calentadorestradicionales

b. La extracción, almacenamiento, manejo, distribución yempleo del gas LP o gas natural implica la utilizaciónde mucha energía, además de que es un recurso norenovable, y conlleva un impacto ambiental mucho máselevado que el empleo de calentadores solares.

c. En los calentadores de gas llevamos el agua atemperaturas superiores a las que realmente requerimospara tomar un baño, lo que implica un desperdicio de

energía, pues esa agua tan caliente la tenemos quemezclar después con agua fría para no correr riesgos dequemaduras en la piel, además del combustible que sedesperdicia en el piloto de los mismos.

d. Como los calentadores solares absorben la radiación delSol, especialmente las longitudes de onda infrarrojas,en días nublados, lluviosos, muy fríos o cuando es denoche no dispondremos de agua caliente o al menossuficientemente templada. Esto significa que, si bien laenergía que utilizan es renovable, en muchas ocasionestendremos que calentar el agua en un calentadortradicional de gas o uno eléctrico, lo que implica costoeconómico adicional.

1. Plancha eléctrica. 6. Pilas desechables.

2. Calentador solar de agua. 7. Horno de microondas.

3. Foco con resistencia eléctrica. 8. Foco ahorrador.4. Licuadora. 9. Estufa de leña.

5. Bicicleta. 10. Automóvil a gasolina.

253

B4

Page 256: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 256/276

254

PROYECTO 1

254

PROYECTO 1

La electricidad ¿Cómo se obtiene, transporta y aprovechala electricidad que utilizamos en casa?

1. Realicen lo siguiente:

a. Consigan dos mangueras, mientras más largas sean se verá mejor el fenómeno.Conecten una de ellas a la toma de agua y pongan una cubeta de 10 l.

b. Con la primera manguera llenen de agua la cubeta. Midan y registren el tiempoque tarda en llenarse.

c. Conecten la segunda manguera en serie con la primera y repitan el experimento.• ¿Los tiempos de llenado fueron los mismos?

• ¿En qué experiencia se tardó más en llenar la cubeta?

• ¿Qué propondrían para que el tiempo de llenado sea el mismo con una o condos mangueras conectadas en serie?

2. Comenten en el grupo:• ¿Qué tiene que ver esta actividad con el suministro de electricidad que usamos

en casa?

ACTIVIDAD DE INICIO

P1

La lámpara incandescente de Edison

Hace ciento treinta años las calles de todas las ciudades del mundo se iluminaban en las

noches con lámparas de gas o velas. El alumbrado público tal como lo conocemos ahora

era el sueño en la mente de un científico e inventor estadounidense: Tomás Alva Edison

(1847-1931), quien se propuso iluminar la ciudad de Nueva York utilizando la electricidad

(figura 1).

Con esta finalidad, Edison abordó las investigaciones sobre la luz eléctrica. La competen-

cia era enconada y varios laboratorios habían patentado ya sus lámparas. El problema consistía

en encontrar un material capaz de mantener una bombilla encendida largo tiempo. Despuésde probar diversos elementos con resultados negativos, Edison encontró por fin el filamento

de bambú carbonizado. Inmediatamente

adquirió grandes cantidades de bambú

y, hac iendo gala de su pragmatismo, ins-

taló un taller para fabricar él mismo las

bombillas. Luego, para demostrar que el

alumbrado eléctrico era más económico

que el de gas, empezó a vender sus lámpa-

ras a cuarenta centavos, aunque su costo

era mayor a un dólar; pero su objetivo

era hacer que aumentara la demanda para

poder producirlas en grandes cantidades

y rebajar los costos por unidad. En poco

tiempo consiguió que cada bombilla le

costara treinta y siete centavos: el negocio

empezó a marchar como la seda. El 21 de

octubre de 1879 consiguió que su primera

bombilla luciera encendida durante 48 horas

ininterrumpidas.

Posteriormente, Edison construyó la

primera lámpara incandescente con un

filamento de algodón carbonizado y la

presentó, con mucho éxito, en la Primera

Exposición de Electricidad de París (1881)

como una instalación completa de ilumi-

FIGURA 1. Grabado de Tomás Alva Edison. Entresus inventos más célebres están el fonógrafo,el microteléfono y el foco. Fuente: Horace E.Scudder, 1897. La Historia de estados Unidos

de América.

PROYECTOS

• Elabora y desarrolla

de manera más

autónoma un

plan de trabajo

que oriente su

investigación,

mostrandoresponsabilidad,

solidaridad y

equidad.

• Utiliza la

información

obtenida mediante

la experimentación

o investigación

bibliográfica

para elaborar

argumentos,

conclusiones ypropuestas de

solución.

• Diseña y elabora

objetos técnicos,

experimentos o

modelos que le

permita describir,

explicar y predecir

fenómenos

eléctricos,

magnéticos o sus

manifestaciones.

• Reconoce aciertos

y dificultades en

relación con los

conocimientos

aprendidos, las

formas de trabajo

realizadas y su

participación en

el desarrollo y

comunicación del

proyecto.

Aprendizajesesperados

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR O INNOVAR. INTEGRACIÓN Y APLICACIÓN

Page 257: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 257/276

Page 258: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 258/276

256

PROYECTO 1

256

su voltaje para adecuarse a las líneas de

distribución para, finalmente, llegar a los

transformadores que ajustan el voltaje que

requieren los consumidores finales.

Imaginen que en la actividad que realiza-

ron al principio, el agua son los electrones

que fluyen por lo conductores y, así comoaparecieron pérdidas en el flujo de agua, lo

mismo ocurre en los cables eléctricos. La em-

presa encargada de distribuir la electricidad

debe considerar esas pérdidas, de manera que

el usuario final cuente con el suministro eléc-

trico necesario para el buen funcionamiento

de los equipos que consumen la energía eléc-

trica. En México se garantiza un suministro

de fluido eléctrico con un voltaje de 110 V.

Uso de la energía eléctricaen las casas.

La forma principal de energía que utilizamos

en nuestras casas es la energía eléctrica, ya

sea para iluminarnos, para accionar diversos

electrodomésticos. El fluido eléctrico llega a

110 V; lo que varía en cada aparato eléctrico

es la corriente que consume. Al multiplicar

la corriente ( I ) y el voltaje (V) obtenemos la

potencia de cada equipo.

P = I V

La potencia eléctrica se mide en watt [W].

Los aparatos suelen contener una etiqueta o

empaque que indica la potencia eléctrica que

consumen. Como ejemplo, podemos ver que

algunos de los focos ahorradores consumen

10 W por cada hora que están prendidos. Una

plancha eléctrica puede llegar a consumir

¡hasta 1000 W (1 kW) por cada hora! Obser-

va la figura 5.

La energía eléctrica que consumimos no

se puede almacenar, se debe generar al mis-

mo tiempo que se requiere. Al hacer un uso

racional de la energía eléctrica, además de

que tendremos un ahorro económico al pagar

FIGURA 5. Red de distribución eléctrica.

cuentas más reducidas, estaremos evitando

parte de la contaminación que se produce al

generar energía eléctrica.

La cuestión del almacenamiento de la ener-

gía eléctrica es un reto que muchas personas

dedicadas a las ciencias enfrentan en la actuali-

dad. Hasta ahora, los dispositivos más comunespara almacenar la energía eléctrica son las pi-

las y baterías. Estos dispositivos transforman la

energía química en energía eléctrica, sin em-

bargo la potencia que entregan sigue siendo

muy baja y el tiempo de duración es pequeño.

1. Planeación

Para elaborar su plan de trabajo pueden con-

siderar distintos aspectos relacionados con

el tema propuesto y ajustándolos al tipo deproyecto que elijan. Planteen la pregunta que

quieren resolver y definan qué más quieren

saber y cómo lo investigarán:

• ¿Cuáles de las plantas generadoras utilizan

recursos energéticos renovables y de qué

tipo son?

• ¿Es viable tener más plantas generadoras de

electricidad en México que funcionen con

recursos renovables?

• Elaborar un cuadro comparativo de las dife-

rentes plantas de generación de electricidad

instaladas en México incluir costo-beneficio

tanto social como ambiental ambiental.• Presentación de maquetas que ilustren la

conversión de un tipo de energía en otra.

2. Desarrollo

• La introducción de este proyecto puede

servirles de pauta para ahondar aún más en

las explicaciones que requieran trabajar en su

proyecto. Sintetizar la información obtenida

en las fuentes consultadas.

• Representar información en mapas.

Conseguir los materiales y construir un pe-

queño dispositivo que ilustre la conversión

de energía.

Utiliza las TIC

Para el desarrollo de este proyecto, puedeser de utilidad consultar los temas que lesinteresen sobre fuentes de energía en:

www.slideshare.net/profeallendetec-no/energas-no-renovables-2653977

También encontrarás algunos videos in-teresantes, por ejemplo busca: “Energíaverde-Enrique Ganem” o bien informa-ción histórica en las siguientes páginas,practica tu inglés:

http://vidasdefuego.com/biografia-

nikola-tesla.htm www.history.com/topics/nikola-tesla/videos#thomas-edison

3. Difusión o comunicación.

Dependiendo del tipo de proyecto que hayan

planificado, elijan la manera en que lo darán a

conocer y tomen en cuenta qué público podría

estar interesado en participar y enriquecerlo.

• Presenten su dispositivo, si es que hicieron

un proyecto tecnológico u organicen unamesa redonda para plantear las conclusio-

nes de su proyecto que orienten a su pú-

blico sobre el fenómeno de la conducción

eléctrica.

4. Evaluación

• Valorar el alcance del proyecto. Por ejem-

plo, averiguar mediante una encuesta si en

tu localidad la población es consciente de

lo que implica que llegue energía eléctricaa su comunidad y la necesidad de hacer un

uso eficiente de la energía eléctrica debido

al alto costo económico y ecológico que

esto representa.

• Evalúen la importancia del proyecto. Por

ejemplo, qué han aprendido sobre el desa-

rrollo histórico de la generación de la ener-

gía eléctrica, lo costoso de su producción,

y la eficiencia de su consumo.

Agrega las que encontraron:

Carlson, W. Bernard, “Nikola Tesla”,

en Investigación y Ciencia, núm. 344,

mayo, 2005.

Lee más...

Page 259: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 259/276

B1T1 B2P1

25

B1T1 B4P2

2525

¿Qué es y cómo se forma el arcoíris?P2

Para desarrollar los fundamentos teóricos nece-

sarios para explicar los arcoíris es importante

que retomen algunos conceptos abordados en

este bloque, como la descomposición y com-posición de la luz blanca, considerando a la

luz como una onda electromagnética. Les su-

gerimos también que, con la orientación de

su maestro, profundicen y amplíen sus cono-

cimientos sobre el fenómeno de la refracción

de la luz, que se produce cuando pasa de

un medio material a otro, o cuando pasa del

vac ío a un medio materi al o vicevers a. Par a

ello, pueden buscar información en fuentes

a su alcance sobre temas como el índice de

refracción, que es específico para cada medio

material. Luego, pueden relacionar la refrac-

ción con la descomposición de la luz blanca

al atravesar las pequeñas gotitas de agua que

se encuentran en suspensión en las nubes o

la neblina.

Para delimitar los objetivos de su proyec-

to, puede resultarles de utilidad elaborar un

cuestionario con los aspectos que acuerden en

el grupo y que consideren interesantes, por

ejemplo: ¿por qué no se observan siempre siete

colores en los arcoíris?, ¿qué colores aparecen

siempre?, ¿las franjas de color están siempre en

el mismo orden?, ¿por qué a veces se forman

arcoíris dobles?, cuando miramos un arcoíris de

frente, ¿dónde está situado el disco solar res-

pecto a nosotros?, ¿pueden producirse arcoíris

sin que existan nubes en el cielo?, ¿pueden

producirse a partir de una fuente luminosa dis-tinta a la solar, como la luz que refleja la Luna

a la Tierra?, ¿podemos apreciar arcoíris en las

cascadas o las fuentes?, entre muchas otras.

Otros fenómenos que pueden resultar inte-

resantes para indagar son los halos, el aspecto

del Sol y de la Luna cuando se aprecian muy

cercanos al horizonte, o los espejismos. Si

les parece interesante, pueden orientar una

parte del desarrollo del proyecto a contestar

preguntas como: ¿qué es un halo?, ¿en qué se

relaciona con los arcoíris?, ¿qué condiciones se

requieren para la aparición de halos?, ¿por qué

los discos de la Luna o del Sol se aprecian con

un diámetro aparente mayor al usual cuando

están muy cerca del horizonte, y se ven en

tonalidades anaranjadas o rojas?, ¿qué son los

espejismos y por qué se producen?, ¿qué es la

refacción atmosférica y cómo se relaciona con

estos fenómenos ópticos?

Una vez planteadas las preguntas, les suge-

rimos diseñar un plan de cómo llevarán a cabo

la investigación, qué fuentes de consulta utili-

zarán, y de qué otras maneras pueden recabar

la información que requieren. Sigan las etapas

que ya conocen.

Organicen la información recabada de la

manera que consideren adecuada, por ejemplo,

pueden montar una pequeña exposición sobre

el arcoíris y otros fenómenos ópticos atmos-féricos y diseñar experimentos sencillos para

“fabricar” su arcoíris personal: prueben conse-

guir un envase con atomizador que contenga

agua y, con el Sol a su espalda, lancen neblinas

en distintas direcciones, mientras otros com-

pañeros se sitúan en distintas posiciones para

observar lo que sucede.

Para comunicar sus hallazgos a la comu-

nidad, además de invitarlos a la exposición,

podrían también encuestar a los asistentes en

torno a qué piensan de los arcoíris, por ejemplo

cuestionar acerca de si es cierto que es posible

“llegar al arcoíris”, qué emociones les producen,

y si son fenómenos “sobrenatura les ” o fenó-

menos físicos. Con base en los resultados de la

encuesta, pueden organizar un breve debate en

torno a que los fenómenos ópticos atmosféricos

que investigaron son perfectamente explicables

con base en las nociones que han adquirido

sobre la naturaleza y comportamiento de la luz,

y en par ticular la refracc ión de la luz.

Finalmente para evaluar su proyecto inclu-

yan esta pregunta:

• ¿El ser capaces de entender qué es y cómo

se forma el arcoíris lo hace más interesante?

ACTIVIDAD PREVIA

1. Observen la siguiente imagen y comenten:¿es correcta? ¿Hay algo que encuentreninconsistente?

2. Realicen una lluvia de ideas para explicarqué es el arcoíris, qué peculiaridades hannotado en éstos, si son siempre iguales,cuáles son las condiciones necesariaspara que se forme un arcoíris, qué otros

fenómenos ópticos han visto, y si éstos sedeben a las mismas causas, entre otrascuestiones. Anoten sus preguntasy respuestas, para cotejarlas al términodel proyecto.

Este dibujo intenta representar un fenómeno natural, tiene doserrores, ¿cuáles son?

¿Qué es y cómo se forma el arcoíris?

Page 260: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 260/276

258

a b c

A P R E N D I Z A J E S E S P E R A D O S C O N T E N I D O S

El Universo

Identificarás algunas de las ideas acerca del origen

y evolución del Universo, y reconocerás sus alcancesy limitaciones.

Teoría de “La gran explosión”; evidencias que la sustentan,alcances y limitaciones.

Características de los cuerpos cósmicos: dimensiones, tipos;radiación electromagnética que emiten, evolución de lasestrellas; componentes de las galaxias, entre otras.La Vía Láctea y el Sol.

Astronomía y sus procedimientos de investigación:observación, sistematización de datos, uso de evidencia.

Interacción de la tecnología y la ciencia en elconocimiento del Universo.

Describirás algunos cuerpos que conforman al Universo:planetas, estrellas, galaxias y hoyos negros, e identificarás

evidencias que emplea la ciencia para determinaralgunas de sus características.

Reconocerás características de la ciencia, a partir de losmétodos de investigación empleados en el estudio del

Universo y la búsqueda de mejores explicaciones.

Reconocerás la relación de la tecnología y la ciencia,tanto en el estudio del Universo como en la búsqueda

de nuevas tecnologías.

BLOQUE 5

Conocimiento,sociedad y tecnología

a) Una supernova. b) Trabaja en equipo y disfruta el haber alcanzado los aprendizajes y responder las preguntas que te has planteado. c) Unan esfuerzos

e ideas. d) Puentes que unen. e) Ciencia y tecnología para la sociedad. f) Nunca dejes de experimentar y sorprenderte.

258

S1

Page 261: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 261/276

259

B5

25

d e f

B5

C O M P E T E N C I A S

• Comprensión de fenómenos y procesos naturales desde la perspectiva científica.

• Comprensión de los alcances y limitaciones de la cienciay del desarrollo tecnológico en diversos contextos.

• Toma de decisiones informadas para el cuidado del ambientey la promoción de la salud orientadas a la cultura de la prevención.

A P R E N D I Z A J E S E S P E R A D O S P R O Y E C T O S

PROYECTO: Imaginar, diseñar y experimentar para explicar o innovar Integración y aplicación

Aplicarás e integrarás conceptos, habilidades, actitudes y valoresmediante el diseño y la realización de experimentos,

investigaciones, objetos técnicos (dispositivos) y modelos,con el fin de describir explicar y predecir fenómenos

y procesos del entorno.

Desarrollarás de manera más autónoma tu proyecto, mostrandoresponsabilidad, solidaridad y equidad en el trabajo colaborativo;

asimismo, reconocerás aciertos y dificultades en relacióncon los conocimientos aprendidos, las formas de trabajo

realizadas y tu participación en el proyecto.

Plantearás preguntas o hipótesis que generen respuestas posibles,soluciones u objetos técnicos con imaginación y creatividad;asimismo, elaborarás argumentos y conclusiones a partir de

evidencias e información obtenidas en la investigación.

Sistematizarás la información y los resultados de su proyecto,comunicándolos al grupo o a la comunidad, utilizando diversos

medios: orales, textos, modelos, gráficos y tecnologíasde la información y la comunicación.

Argumentarás los beneficios y perjuicios de las aportacionesde la ciencia y la tecnología en los estilos actuales de vida,

en la salud y en el ambiente.

La tecnología y la ciencia en los estilos de vida actual. ¿Cuáles son las aportaciones de la ciencia al cuidadoy la conservación de la salud?

¿Cómo funcionan las telecomunicaciones?

Física y ambiente.

¿Cómo puedo prevenir y disminuir riesgos ante desastresnaturales al aplicar el conocimiento científicoy tecnológico en el lugar donde vivo?

¿Crisis de energéticos? ¿Cómo participo y qué puedo hacerpara contribuir al cuidado del ambiente en mi casa,la escuela y el lugar donde vivo?

Ciencia y tecnología en el desarrollo de la sociedad.

¿Qué aporta la ciencia al desarrollo de la cultura y latecnología?

¿Cómo han evolucionado la física y la tecnología enMéxico?

¿Qué actividades profesionales se relacionan con la física?¿Cuál es su importancia en la sociedad?

P2

P3

P4

P5

P6

P7

Page 262: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 262/276

Explora

1. Al observar el cielo nocturno en un lugar alejado de pueblos y ciudades, ¿tehas preguntado cuestiones como, ¿qué tan lejos están las estrellas? ¿De quéestán hechas? ¿Qué tipo de astros hay? ¿Han estado siempre ahí, o cómo ycuándo se formaron? ¿Qué tipo de objetos celestes son las nebulosas? ¿Porqué algunas regiones del cielo, como la Vía Láctea, contienen tantos astros?

2. Si tienes respuestas a algunas de estas preguntas, anótalas en tu cuadernoy agrega otras más que te hayas planteado. Comparte con tus compañerosestas notas.

El Universo

Es célebre la frase que pronunció Armstrong un instante antes de pisar lasuperficie de la Luna por primera vez: “Este es un pequeño paso para una persona,

pero un gran paso para la Humanidad”. Fotografía propiedad de la NASA .

S1

Desarrolla con tu equipo alguno de los

siete proyectos que se proponen aquí o

considera las preguntas planteadas como

punto de partida para responder alguna

otra inquietud con relación al contenido

central del bloque: el Universo.

260

Aprendizajes esperados

S1

• Identificarás algunas

de las ideas acerca del

origen y evolución del

Universo, y reconocerás

sus alcances y

limitaciones.

• Describirás algunos

cuerpos que conforman

al Universo: planetas,

estrellas, galaxias

y hoyos negros e

identificarás evidencias

que emplea la ciencia

para determinar algunas

de sus características.

• Reconocerás

características de la

ciencia a partir de los

métodos de investigación

empleados en elestudio del Universo y

la búsqueda de mejores

explicaciones.

• Reconocerás la relación

de la tecnología y la

ciencia, tanto en el

estudio del Universo

como en la búsqueda

de nuevas tecnologías.

Page 263: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 263/276

261

B5

•Teoría de “La gran explosión”; evidenciasque la sustentan, alcances y limitaciones

Al estudiar los espectros de galaxias cercanas a la nuestra se halló que eran similares a los

de las estrellas –como era de esperarse, al estar formadas de millones de ellas–. Sin embargo,

conforme se perfeccionaron los instrumentos de observación, se vio que los espectros de las

galaxias lejanas tenían patrones parecidos, pero estaban recorridos hacia longitudes de onda

mayores respecto a las cercanas. La explicación que resultó más convincente para este hecho,

llamado genéricamente corrimiento al rojo (pues la luz roja es la que tiene mayor longitud

de onda en el espectro visible) se apoya en un fenómeno ondulatorio.

Cuando una fuente emisora de ondas (mecánicas como el sonido o electromagnéticas como

la luz) está en movimiento respecto a un observador, la longitud de onda registrada por dicho

observador cambia: si la fuente se acerca, disminuye, y si se aleja, aumenta. En el sonido esto

se percibe como un cambio en el tono; es más agudo si la fuente se acerca y más grave si

se aleja. En la luz se nota un cambio de color; es más azul si se acerca y más rojo si se aleja.

El corrimiento al rojo de los espectros de galaxias lejanas indica que se están alejandode la Tierra; de hecho, el astrónomo estadounidense Edwin Hubble encontró que entre más

lejos se encuentren, más rápido se alejan. Esto ha sido cuidadosamente verificado en cientos

de galaxias lejanas observables desde la Tierra, y sucede sin importar hacia qué punto de la

bóveda celeste apuntemos con los telescopios. Lo anterior significa que absolutamente todas

las galaxias se alejan entre sí.

Este fue el punto de partida para que surgieran los primeros modelos del Universo. En la época

en la cual Hubble había hecho su descubrimiento, ya se contaba con una teoría de la gravedad

propuesta por Einstein, aplicable al estudio del Universo en su conjunto, y que superaba en sus

predicciones a la ley de la Gravitación Universal de Isaac Newton. Dicha teoría se conoce hoy en

día con el nombre de teoría de la Relat ividad General .En 1927, el sacerdote y astrofísico belga Georges Lemaître presentó un trabajo en el cual

explicaba la expansión del Universo a partir de la solución de las ecuaciones matemáticas de

la relatividad general. Lemaître tuvo el cuidado de comparar sus resultados matemáticos con

los hechos experimentales reportados, así que vislumbró un Universo dinámico en expansión,

pero además de corroborar lo hallado por Hubble, identificó un valor crítico de la densidad

media de la materia del Universo que equivale aproximadamente a la masa de tres átomos

de hidrógeno por metro cúbico. Si la densidad de materia observada es menor que la crítica,

entonces se tiene un Universo cerrado como el que se muestra en la figura 1. En un Universo

cerrado, la gravedad equilibraría en algún momento a las fuerzas de expansión, y finalmente

se contraería, hasta que toda la materia se halle en un punto infinitamente denso.

Si pensamos la historia al revés, es posible que el Universo entero haya estado concentrado

en un punto infinitamente denso y posteriormente se expandiera. Lemaître especuló que la

expansión tuvo lugar como consecuencia de un evento majestuoso como un gran estruendo,

en décadas posteriores a este evento que se supone dio origen del Universo se le llamó la

teoría de la Gran Explosión ( Big Bang en inglés).

La teoría de la gran explosión tiene algunas limitaciones, entre las cuales destaca que no

proporciona información con respecto a la creación de elementos pesados, los cuales se for-

man en las estrellas; hubo que esperar algunos años más para que se contara con una teoría

atómica, en particular, una teoría que describiera el comportamiento de los núcleos atómicos

y otras part ículas para perfeccionar la teoría de la Gran Explosión. Por otra parte, en la época

en que surgió no se tenían datos muy precisos de la separación entre las galaxias, lo cual

FIGURA 1. El Universo con unadensidad media de materiaque exceda de tres átomos de

hidrógeno por metro cúbico.

GLOSARIO

El espectro de la radiación elec-

tromagnética de un cuerpo o unconjunto de cuerpos se produce al

dispersar dicha radiación en diferen-

tes longitudes de onda, permitiendo

detectar los materiales que emiten o

absorben la radiación.

Page 264: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 264/276

Page 265: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 265/276

263

B5

•Características de los cuerpos cósmicos: dimensiones,tipos; radiación electromagnética que emiten,evolución de las estrellas; componentesde las galaxias, entre otras. La Vía Láctea y el Sol

El 20 de julio del 2009 el mundo recordó el momento en que el primer ser humano –el

astronauta Neil Armstrong– puso un pie en la Luna. Este momento ha quedado registrado en

la memoria de miles de personas, y constituyó un símbolo de la consecución de un antiguo

afán de la humanidad: explorar otros cuerpos celestes. Este hecho no constituye el final de

la historia; al contrario, marcó el inicio de las misiones de exploración con tripulantes que

caminarían sobre la Luna. Tampoco es el principio de la exploración espacial, pues durante

incontables generaciones los seres humanos hemos observado el cielo para desentrañar los

misterios del Universo.

Al concebir a la luz como una onda e lec tromagnética, como vimos en el bloque anterior,

se pudieron estudiar los espectros luminosos de miles de objetos celestes. Dichos espectrosconsisten en la dispersión de la radiación luminosa que emite o absorbe determinado material

en ciertas longitudes de onda, de la misma manera que podemos dispersar la luz solar al ha-

cerla pasar a través de un prisma o simplemente al contemplar el espectáculo de un arcoíris.

Los espectros de emisión se pueden producir suministrando suficiente energía a un material

hasta que emita radiación electromagnética, por ejemplo, calentando un metal al rojo vivo. Si

luego descomponemos la luz que emite en sus distintas frecuencias, sólo habrá franjas corres-

pondientes a determinadas longitudes de onda, características de la composición del material.

De forma análoga, los gases son capaces de absorber radiación de longitudes de onda

específicas cuando son atravesados por radiación electromagnética, produciendo líneas de

absorción en un espectro, y, de nueva cuenta, es posible saber de qué gas se trata y de qué

está compuesta la fuente emisora analizando estos espectros con líneas de absorción.

Cuando se analizaron los espectros luminosos de las estrellas, se supo que consisten en gas

extremadamente caliente que emite radiación e lectromagnética gracias a transformaciones de

energía en los núcleos atómicos.

Se encontró también que la magnitud absoluta (el brillo de una estrella

corrigiendo las diferencias que surgen por el factor de la distancia), el color y la

temperatura superficial de una estrella están relacionados (figura 3).

A partir de lo anterior se establec ieron los tipos espectra les de las estrellas,

una clasificación que relaciona su magnitud absoluta en función de su temperatura

superficial. Los tipos espectrales conocidos a la fecha se representan en el Diagra-

ma de Hertzprung-Russell, o simplemente diagrama H-R, como el de la figura 4.El factor más determinante en la evolución de una estrella es su masa inicial.

Una estrella con una masa como la del Sol, después de convertirse en gigante roja,

expulsará progresivamente las capas externas de materia, pasando por la fase llamada

nebulosa planetaria. Al centro, la materia restante se compacta más y más, aumen-

tando la densidad, de tal suerte que cuando la nebulosa se dispersa, queda una

enana blanca tan pequeña como la Tierra, y muy caliente, la cual se va enfriando

hasta que deja de emitir radiación, y se transforma en una enana negra.

Ahora, si la estrella joven es muy masiva, no permanece mucho tiempo (compara-

tivamente hablando) en la fase estable de la Secuencia Principal. Para una estrella

así, el cambio se da hacia las supergigantes rojas, y pueden alcanzar un diámetro

FIGURA 3. El espectro luminosode una estrella contienelíneas oscuras llamadas líneasde absorción. Se muestra elespectro de la estrella “Arturo”,una gigante naranja y de lasmás brillantes del cielo vistodesde el Hemisferio Norte.

FIGURA 4. El Sol en el Diagrama H-R es unaestrella tipo G2, y se encuentra en la zonallamada Secuencia Principal. También estála estrella binaria Sirio, que se componede dos estrellas, Sirio A (que es la estrellamás brillante que apreciamos a simple vistadespués del Sol) y Sirio B que es una estrellaenana blanca. El diagrama que se muestraaquí está simplificado, hay otros tipos

espectrales del lado derecho.

Tipo espectral O B A F G K M

L u m i n o s i d a d

Sirio B

Sirio A

Sol

Supergigantes

Gigantes

EnanasrojasEnanas blancas

Page 266: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 266/276

264

mil veces mayor al del Sol. Estas supergigantes son muy inestables, y acaban

lanzando al espacio las capas exteriores de materia, explotando en lo que se

conoce como una supernova (figura 5) y emitiendo grandes cantidades de ra-

diación. Durante esta fase, las supernovas tienen un brillo extraordinario. Pero

la historia de la estrella no acaba aquí; la materia remanente de la explosión

se compacta de manera tan densa, que ni siquiera pueden prevalecer átomoscomo tales; sólo pueden existir neutrones, lo que les da el nombre de estrella

de neutrones. Si tomásemos una cucharadita de este material, su masa sería

comparable a la de la Tierra.

Pero hay casos aún más extraños. De nuevo, si la masa inicial es verdadera-

mente inmensa, la estrella de neutrones se sigue contrayendo, incrementando

por supuesto su atracción gravitacional, que se torna tan intensa que ni siquiera

la luz puede escapar de ella. Estamos frente a un hoyo negro, objeto que llega

a emitir rayos X, debido a que cualquier cuerpo que se aproxime lo suficiente

será ineludiblemente absorbido por éste y emitirá radiación en este proceso.

Recordemos que las fuerzas gravitacionales, si bien comparativamente “débiles” respecto alas electromagnéticas y las nucleares, son de muy largo alcance, tan largo como grandes son las

dimensiones y las distancias entre los cuerpos. Por lo tanto, en esta gran escala, las fuerzas

gravitacionales actúan agrupando a los cuerpos en gigantescos conglomerados llamados ga-

laxias. La galaxia donde se encuentra el Sistema Solar donde vivimos, se llama Vía Láctea.

A una escala aún mayor, las galaxias se agrupan, primero, porque existen galaxias satél ites

de otras, y luego varias galaxias “vecinas” forman cúmulos de galaxias . El cúmulo donde

está la Vía Láctea se denomina Grupo Local. A una escala aún mayor, los cúmulos galácticos

conforman supercúmulos. No estamos seguros aún si hay mega-estructuras aún mayores.

Pero hay casos aún más extraños. De nuevo, si la masa inicial es verdaderamente inmensa,

la estrella de neutrones se sigue contrayendo, incrementando por supuesto su atracción gravi-

tacional, que se torna tan intensa que ni siquiera la luz puede escapar de ella. Estamos frente a

un hoyo negro, objeto que llega a emitir rayos X, debido a que cualquier cuerpo que se apro-

xime lo suficiente será inevitablemente absorbido por éste y emitirá radiación en este proceso.

Astronomía y sus procedimientos de investigación:observación, sistematización de datos, uso de evidenciaEs impresionante que con base en la única información que recibimos de los cuerpos celestes

–sólo luz de distintas longitudes de onda – se hayan conseguido desentrañar tantos aspectos de

sus propiedades, características, estructura a gran escala, origen más probable y posible futuro.

Si consideramos que la velocidad de la luz es muy grande, pero no infinita, podremos

comprender que la observación astronómica de objetos alejados implica observar el pasado

de dichos objetos. Por ejemplo, la distancia promedio de la Tierra a la Luna es de un poco

más de 300 000 km. La luz viaja en el vacío a una velocidad cercana a 300 000 km/s, como

se comentó en el bloque anterior. Cuando volteamos a mirar la Luna, no estamos viendo la

Luna de este instante, sino la luz que la Luna ha reflejado hace un poco más de un segundo. Si

En las siguientes páginas puedesampliar tus conocimientos sobreel origen, la estructura y losobjetos que se han encontradoen el Universo:

http://cienciamia.net/blog/tag/julieta-fierro/

www.espacial.org/astronomia/cosmologia/universo1.htm

http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volu-men2/ciencia3/078/htm/sec_11.htm

Videos de la serie Cosmosde Carl Sagan. (Estosvideos pueden adquirirse,conseguirse en bibliotecas overse en línea):

www.youtube.com/watch?v=HoKP1bX_tkE

FIGURA 5. Las supernovasobservadas en modernostelescopios son objetos celestes

espectaculares.

1. ¿Cuál es la diferencia primordial entre una estrella y un planeta, satélite o asteroide? Explica.

2. Menciona los tipos de cuerpos celestes que se hallan en las galaxias.

Evalúo mi avance

S1

Page 267: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 267/276

265

B5

observamos la estrella Próxima Centauri, estamos viendo la luz emitida por ella hace 4.2 años.

Si esta estrella explota en este momento, la seguiremos viendo sin cambios, y tendremos que

esperar más de cuatro años para detectar que ha explotado.

Imaginemos ahora observar una galaxia distante; la radiación proveniente de una galaxia

distante puede haber tardado varios millones de años en llegar a la Tierra, incluso decenas de

millones de años, si estamos observando galaxias extremadamente distantes. Lograr observarobjetos tan distantes es, literalmente, observar eventos ocurridos en el pasado más remoto del

Universo, incluso tan antiguos como la formación del mismo.

La teoría de la Gran Explosión es hoy la más aceptada en todas las comunidades científicas

del mundo. Esto se debe a que se han encontrado importantes evidencias que la sustentan.

Entre esas evidencias está la expansión del Universo propiamente dicha, que indica que el

Universo como un todo se expande en todas partes y en todas las direcciones simultáneamente.

Otra evidencia es la llamada radiación de fondo, detectada por primera vez en 1965. Esta ra-

diación proviene de todas las regiones del cielo, sin importar hacia dónde se observe. No se trata

de luz visible, sino de ondas electromagnéticas en la franja de las microondas. Al analizarla, se

concluyó que es parte de la radiación liberada durante procesos asociados a la Gran Explosión.Una prueba más que sustenta esta teoría del origen del Universo son las observaciones

detalladas de la morfología y estructura de las galaxias, cúmulos y súper-cúmulos galácticos,

ya que las galaxias son más recientes que las primeras estrellas, los cúmulos más recientes que

las galaxias, y los súper-cúmulos mucho más recientes aún.

• Interacción de la tecnología y la cienciaen el conocimiento del Universo

En noviembre del 2006, fue inaugurado el Gran Telescopio Milimétrico (figura 6) que se ha desti-

nado al análisis de las llamadas “ondas milimétricas”, que son ondas de radio con longitudes

de onda entre 1 y 4 mm. A nivel mundial, es el radiotelescopio con más alcance en este rango de

longitudes de ondas, y permite estudiar desde detalles del Sistema Solar hasta la radiación

de fondo, llamada por algunos como “los ecos del Big Bang ”.

Quedan muchas preguntas por resolver:

• ¿Qué otros descubrimientos científicos y avances tecnológicos vendrán en el futuro?

• ¿Qué otras respuestas y teorías surgirán como resultado de la investigación continua delUniverso?

• ¿Qué nuevas interrogantes aparecerán? ¿Serás parte de esto?

• ¿Dejaremos de hacernos preguntas algún día?

FIGURA 6. El Gran TelescopioMilimétrico fue inaugurado ennoviembre del 2006.

1. Explica por qué las imágenes captadas del cielo a través de telescopios ópticos en películas sensibles a la luz visible sondiferentes a las que se captan con películas fotográficas sensibles a la luz ultravioleta o la luz infrarroja, a los rayos X o aotros tipos de radiación.

2. ¿Sería posible captar la radiación de una galaxia extremadamente lejana mediante un telescopio óptico? ¿Por qué?

Evalúo mi avance

1. Calcula cuánto tiempo tarda la luz del Sol en llegar a la Tierra, si la distancia promedioentre estos dos cuerpos es 150 000 000 km. Expresa tu resultado en minutos.

Evalúo mi avance

Page 268: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 268/276

266

Introducción al trabajo por proyectos

El trabajo por proyectos es una estrategia grupal (figura 1) encaminada a lograr una meta,

ya sea invest igar un tema para comprender mejor algún aspecto de tu entorno, elaborar un

producto para atender una determinada necesidad o resolver una situación problemática de

tu escuela, casa o comunidad.

Podrás aprender de tus compañeros y, a la vez, aportar tus conocimientos a los integrantes

de tu equipo y grupo. Participa con entusiasmo, solidaridad y responsabilidad, demostrando

una actitud positiva, abierta a la colaboración y al intercambio de ideas y asumiendo que

aprendemos a lo largo de toda la vida.

Adecuarán los temas elegidos a uno de los tres tipos de proyecto:

• Científico. Se investigan fenómenos naturales o procedimientos científicos pararesolver un

problema y tomar decisiones informadas. Se realizan mediante un trabajo de campo o en

el laboratorio y requieren de la experimentación.

• Tecnológico. Se elabora o evalúa un producto o proceso que pueda satisfacer una de-terminada necesidad humana. Se pueden también desarrollar modelos o prototipos de

dispositivos como un calentador solar y probarlo para medir sus alcances, entre otros.

• Ciudadano. Permite analizar una situación problemática de la escuela o la comunidad y

buscar una solución o bien una respuesta a una pregunta que surja de esa inquietud social,

por ejemplo, cómo aprovechar el agua en una comunidad con escasez.

La elección del tipo de proyecto dependerá del enfoque que quieras darle y de

los contenidos que te hayan resultado más interesantes en cada etapa de estudio.

En todos ellos deberás emplear habilidades como la elaboración de hipótesis,

la observación, la comparación, la consulta e investigación, la comprensión, elanálisis, la experimentación, la comprobación por repetición, la redacción

de un informe de las conclusiones a las que hayan llegado, la comunicación de

resultados y la toma de decisiones, así como ejercitar las distintas formas de eva-

luación del trabajo que desarrollarás en cuatro etapas (cuadro 1).

FIGURA 1. Ya están preparadospara trabajar distintos proyectosya que han aprendido a plantearproblemas y a buscarsoluciones. Recuerden que sumaestro será, como siempre,fundamental, desde la

planeación hasta la última etapa.

Cuadro 1. Planificador para trabajar un proyecto

Proyecto:

Inicio:

Fin:

Etapas Periodo de

realización Act iv idades Observaciones

1. Planeación

2. Desarrollo

3. Comunicación

4. Evaluación

IMAGINAR, DISEÑAR Y EXPERIMENTAR PARA EXPLICAR O INNOVAR. INTEGRACIÓN Y APLICACIÓN

Consulten estos

aprendizajes en la

página 259, trabajarán

de manera más autónoma.

Aprendizajesesperados

PROYECTOS

Page 269: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 269/276

267

B5

¿Cuáles son las aportaciones de la

ciencia al cuidado y la conservación

de la salud?

Los fenómenos físicos (como las ondaselectromagnéticas y su propagación) tienen

implicaciones en el cuidado y la conserva-

ción de la salud. La tecnología derivada del

conocimiento científico hoy permite contar

con un diagnóstico oportuno de cualquier

padecimiento, enfermedad o malestar.

1. Planeación

Intercambien puntos de vista sobre su pro-

yecto. Para el lo consideren:

Los propósitos del proyecto y la forma dellevarlo a cabo.

• Qué información necesitan para su inves-

tigación: a. El funcionamiento básico de

los aparatos de rayos X y de los rayos

gamma. b. Las enfermedades que pue-

den ser detectadas con esta tecnología.

c. Las ventajas y desventajas de utilizar

radiaciones de este tipo. d. Qué tipo de

imágenes se captan mediante estos apara-

tos. e. Cómo debe prepararse un paciente

para estos estudios.

• Planeen la visita al área de medicina nu-

clear de algún hospital cercano.• Además de platicar con algún médico,

enfermera o radiólogo que conozcan,

consulten libros, revistas y diferentes pá-

ginas electrónicas.

2. Desarrollo

• Analicen los datos y se representan me-

diante esquemas y cuadros.

Elaboren las conclusiones de esta fase.

Para saber más, investiguen:

• Los rayos gamma provienen de los nú-

cleos de los átomos. ¿Tienen el mismo

origen que los rayos X?

• El impacto de los rayos gamma y los

rayos X.

En la página de la Sociedad Mexicana de

Medicina Nuclear, hay un espacio dedicado

a informar a los pacientes sobre los procedi-

mientos con esta tecnología. Su información

es accesible para el público.

3. Comunicación

Mediante un guión teatral, de radio o de

televisión informen a la audiencia qué es

una gamacámara y un aparato de rayos X.En internet escribe: “Corazón virtual

para estudiantes de medicina”, “Medicina

nuclear” y entren a:

http://www.incan.salud.gob.mx/

contenido/medicos/direccion/

medicinaN.html

Para buscar la información que les interese.

4. Evaluación

• Elaborar un esquema que sintetice losaspectos más relevantes de su proyecto. To-

men en cuenta las actitudes que les llevaron

como equipo a culminar su proyecto.

Atlas básico de tecnología/textos.

Libros del Rincón.

Pogan, Andrew, “¿Qué otro tipo de

energía proviene de los átomos?”, en

Fuerzas fís icas , SEP -Time Life, 2003

(Libros del Rincón).

P2 ¿Cómo funcionan las telecomunica-

ciones?

1. Planeación

Consideren, entre otros, aspectos como:

• El empleo de las TIC para investigar sobre

el contenido de su proyecto e incluso para

presentarlo.

• Pueden elaborar un artículo de divulga-

ción sobre el impacto de las tecnologías

recientes en telecomunicaciones en su

vida cotidiana. También pueden crear unarevista, un blog, o un foro de discusión o

grupo privado en redes sociales.

2. Desarrollo

• Lleven a cabo las actividades de investi-

gación y consulta que han planificado.

3. Comunicación

• Presenten su revista, su blog y envíen in-

vitaciones elec trónicas.

4. Evaluación

• Hagan preguntas a sus lectores para tener

retroalimentación. Por ejemplo, la incor-

poración de datos novedosos, la calidad

de la redacción de los artículos o el dise-

ño gráfico.• Evalúen la importancia del proyecto y

qué les gustó más. Reflexionen en para

qué les puede servir en el futuro.

Braun, Eleazar, Electromagnetismo,

de la ciencia a la tecnología, México,

FCE, 1998.

ht tp ://bibl iotecadigi ta l . i lce .edu.

mx/sites/ciencia/volumen2/cien-

cia3/086/htm/sec_10.htm

Física y ambiente

P3 ¿Cómo puedo prevenir y disminuirriesgos ante desastres naturales alaplicar el conocimiento científico ytecnológico en el lugar donde vivo?

En este proyecto aplicarán varios concep-

tos abordados en el libro, por ejemplo, las

características de las ondas, las fuerzas, las

transformaciones de energía, el modelo ci-

nético de partículas, la presión atmosférica,

entre otros. Además, pueden retomar algu-nos resultados de proyectos anteriores.

Te sugerimos diseñar y analizar estrate-

gias de evaluación de riesgos y prevención

ante desastres naturales relacionados con

la dinámica propia de nuestro planeta, tales

como las inundaciones, los sismos, las erup-

ciones volcánicas, las sequías y las heladas.

Puedes comentar con tus compañeros y

otras personas la necesidad de profundizar

y ampl iar nuest ra comprensión de los temas

que se abordan en la geofísica, disciplina

que conjuga los conocimientos de los fenó-

menos físicos con la descripción, el análisis

y la construcción de modelos que expliquen

los eventos y procesos naturales que ocu-

rren en la Tierra.

P4 ¿Crisis de energéticos? ¿Cómo participo y

qué puedo hacer?

En este proyecto podrían aplicar la idea de

energía en procesos térmicos, eléctricos y

mecánicos que se manifiestan en sistemas

físicos en términos de la transformación y

conservación de la energía.

La tecnología y la ciencia en los estilos de vida actual

Page 270: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 270/276

268

Un plan de acción sobre el consumo res-

ponsable de energía y energéticos puede ser

interesante para que muestres la relación entre

el consumo responsable de energía y su costo-

beneficio económico y ambiental. Registren,

por ejemplo, los datos del consumo sobre la

cantidad de litros de agua, de kilowatts/hora,de metros cúbicos de gas, o de kilogramos de

carbón o leña que se requieren en un periodo

determinado del año. Después plantearán las

acciones de ahorro. Más adelanta podrán con-

firmar si las acciones emprendidas redujeron

el consumo de recursos.

Para ser congruentes con sus propuestas,

es importante difundir, comunicar y, sobre

todo, hacer extensivas sus reflexiones y con-

clusiones acerca del consumo responsable de

energías no renovables y/o contaminantes, y

hacer patente aquellos pequeños cambios en

nuestros hábitos y que hacen la gran diferen-cia. Un evento comunitario que concluya en

la toma de posturas y acciones muy concre-

tas y puntuales, por ejemplo desde el uso de

papel reciclado para tomar notas.

Ciencia y tecnología en el

desarrollo de la sociedad

P5 ¿Qué aporta la ciencia al desarrollo de

la cultura y la tecnologías?

Consideren, mediante un tratamiento crono-

lógico o temático, el papel de la ciencia en

distintas épocas y su contribución al desarro-

llo de la cultura y la tecnología. Destaquen

también las aportaciones de la física en áreas

como las ingenierías que han favorecido el

desarrollo económico y social del país.

Un cine-club con extractos de películas,

documentales y videos científicos selec-

cionados de acuerdo con criterios que tú

y tus compañeros establezcan, puede ser

interesante para propiciar debates con otros

compañeros en torno al resultado del pro- yec to. Pueden anali zar cr íti camen te cómo

a veces se presenta a los profesionales de

las ciencias y las ingenierías con ciertos

estereotipos que son idealizaciones o re-

ducciones simplistas de las actividades que

realizan y de su forma de vida.

P6 ¿Cómo ha evolucionado la física y la

tecnología en México?

En este proyecto aplicarán varios concep-

tos abordados en el libro, por ejemplo, las

características de las ondas, las fuerzas, las

transformaciones de energía, el modelo ci-nético de partículas, la presión atmosférica,

entre otros. Además, pueden retomar algu-

nos resultados de proyectos anteriores.

Te sugerimos diseñar y analizar estrategias

de evaluación de riesgos y prevención ante

desastres naturales relacionados con la diná-

mica propia de nuestro planeta, tales como las

inundaciones, los sismos, las erupciones vol-

cánicas, las sequías y las heladas. Puedes

comentar con tus compañeros y otras personas

la necesidad de profundizar y ampliar nuestra

comprensión de los temas que se abordan en

la geofísica, disciplina que conjuga los cono-cimientos de los fenómenos físicos con la

descripción, el análisis y la construcción de

modelos que expliquen los eventos y procesos

naturales que ocurren en la Tierra.

P7 ¿Qué actividades profesionales se

relacionan con la física? ¿Cuál es su

importancia en la sociedad?

1. Reúnete con tus compañeros y acepten el

siguiente reto:

Mencionar un fenómeno natural que noinvolucre en absoluto a la materia y sus

cambios, ni a la energía y sus transfor -

maciones. Tienen diez minutos para

reflexionar y encontrar un ejemplo que

cumpla con estas condiciones.

2. ¿A qué conclusión llegaron? Anótenla en

sus cuadernos.

3. Si la física se podría definir como la cien-

cia en que se estudia la materia, la energía

y sus t ransformaciones, respondan: ¿cómo

se relaciona la física con todas las cien-

cias, las tecnologías y en general, todo

el cúmulo de conocimientos acerca de laNaturaleza e inventos y desarrollos que ha

alcanzado la Humanidad hasta la fecha?

Para el desarrollo de este proyecto, decidan

de qué manera establecerían la relación de

la física con las actividades profesionales.

Enlisten las actividades profesionales que

han considerado desempeñar en el futuro.

Ampl íen su li st a tomando en cuen ta no

sólo las carreras profesionales “clásicas”,

como ingeniería en sistemas, ingeniería ci-

vil , med icina, admini str ación, psicolog ía o

derecho, sino opciones profesionales quetodavía no tienen una demanda tan grande.

Investiguen sobre cuáles profesiones

conjugan varias disciplinas, como telemática,

ciencias e ingenierías ambientales, neuro-

ciencias, ciencias del aprendizaje ingeniería

del transporte, entre muchas, muchas otras.

Amp líen de nuevo su lis ta conside ran-

do opciones profesionales técnicas y de

oficios, como enfermería, artes circenses,

administración portuaria, técnico en sonido,

iluminación o en electrónica, música, danza,

edición, entre muchas otras, y agreguen ofi-

cios artesanales, como textiles, orfebrería,necesarios para la sociedad.

Cuando hayan concluido su lista, agre-

guen una columna en la que describan qué

temas y conceptos de la física serían útiles e

incluso necesarios para ejercer exitosamente

esas opciones profesionales.

• ¿En cuáles actividades profesionales no se

requiere saber nada de física? Argumen-

ten con ejemplos.

• ¿Cuál es la importancia de la física en la

sociedad en general y en nuestra comu-

nidad en particular?

Tanto en la difusión, como en la evalua-

ción, animen a sus interlocutores jóvenes

para que contemplen el amplio espectro de

posibilidades para su futuro: que opten por

lo que más les guste, y no por lo que menos

les disguste. Elegir un camino depende en

gran medida de qué tan convencido se está.

Revisa este libro para ampliar tu pers-

pectiva:

Barajas, Libia y Sergio de Régules, Com-

partir la ciencia, México, SEP-Santillana,

2008 (Colección Libros del Rincón).

Lee más...

Page 271: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 271/276

26

Unidades de medición

En muchas situaciones de la vida requerimos realizar mediciones.

Por ejemplo, saber la distancia entre el salón de clases y la bi-

blioteca. Podemos averiguar esta distancia de varias formas; una

posibilidad es contar los pasos que damos para llegar de un lugar

a otro. El paso es una distancia determinada que comparamos con

la distancia que estamos midiendo, y en este caso, es la unidad de

medición empleada. Diremos, por ejemplo, que hay una distancia

de 180 pasos entre el salón y la biblioteca.

Igualmente podemos medir una fracción del tiempo con el se-

gundero de un reloj. Por ejemplo, el tiempo de caída de una pelota

puede ser de 3 segundos. La magnitud medida es el tiempo y la unidad

es el segundo. Hay que tener cuidado de no confundir magnitudes,

como tiempo, distancia, masa, presión, etcétera, con las unidades

para medirlas, como minuto, kilómetro, gramo o pascal.

¿Qué es entonces medir? Medir es simplemente comparar una

magnitud con otra de la misma especie, llamada unidad patrón.

Para medir el largo de tu escritorio, puedes compararlo con la

longitud que hay entre tu pulgar y tu meñique teniendo la mano

extendida. En ese caso, estarías midiendo tu escritorio en una unidad

llamada “cuarta”.

A lo largo de la historia, se han empleado diversas unidades

para medir determinadas magnitudes. Por ejemplo, la distancia se

ha medido en leguas, pies, codos, metros y muchas otras más.

Para que haya un acuerdo común, ciertas unidades se han escogido

como patrones. Esto es porque la unidad patrón indica que es la

misma en todos los casos. Si en el ejemplo de medir una distancia

en pasos, lo hace primero una persona y luego otra, es posible

que el paso de cada quien sea de diferente longitud. En cambio,

cuando se habla de un metro, éste tiene la misma longitud en todo

el mundo.

En la física se han escogido ciertas unidades en particular como

las más adecuadas para ser el patrón universal de medición. No

significa que sean las únicas unidades posibles, pero sí es un acuer-

do que ha resultado conveniente no sólo a los científicos sino en la

vida práctica. Este conjunto de unidades se conoce como Sistema

Internacional (SI).

Algunas magnitudes se pueden medir directamente, como la

distancia, la masa o el tiempo, mientras que otras, como la acele-

ración, requieren de mediciones indirectas y de hacer cálculos con

ellas. Para las primeras magnitudes se emplean las llamadas uni-

dades fundamentales, y para las segundas, las unidades derivadas.

La aceleración, por ejemplo, se mide en m/s2, que es una unidad

fundamental, el metro, dividida entre el cuadrado del segundo,

que es otra unidad fundamental. Entonces la unidad de la ace-

leración es una unidad derivada de unidades fundamentales de

distancia y tiempo.

En las tablas siguientes se presentan algunas de las unidades

fundamentales y derivadas más usuales en física.

Unidades fundamentales del Sistema Internacional

Magnitud Unidad Símbolo

Distancia o longitud metro m

Tiempo segundo s

Masa kilogramo kg

Temperatura kelvin K

Intensidad de corriente ampere A

Intensidad de luz candela Cd

Cantidad de sustancia mol mol

Unidades derivadas del Sistema Internacional

Magnitud Definición Unidad Símbolo

Velocidad m/s metro/segundo

m/s

Aceleración m/s2 metro/segundo2 m/s2

Área m2 metro2 m2

Volumen m3 metro3 m3

Fuerza kg · m / s2 newton N

Energía y trabajo N · m joule J

Potencia J / s watt W

Presión N / m2 pascal Pa

Carga eléctrica A · s coulomb C

Tensión eléctrica,diferencia depotencial

J / C volt v

Intensidadde campo eléctrico N/C volt / metro N/C

Resistencia eléctrica v / A ohm Ω

Resistividad Ω · m ohm · metro Ω m

Intensidadde campo magnético N /A· m tesla T

Apéndice

Page 272: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 272/276

270

Asimov, Isaac, Introducción a la Ciencia,Ciencias físicas (vol. I), Barcelona,Plaza y Janés, Biblioteca de DivulgaciónCientífica. Muy Interesante, 1973.

Church, Jok, El mundo de Beakman,México, Selector, 2001.

Domínguez, Héctor y Fierro Julieta, Einstein,un científico de nuestro tiempo, México, Editorial Lectorum, 2007.

Domínguez, Héctor y Fierro, Julieta, Laluz de las estrellas, México, Ferrari yUribe Ediciones, Correo del Maestro,Ediciones La Vasija, 2006.

Domínguez, Héctor y Fierro Julieta,Los sonidos de nuestro mundo, México, Dirección General deDivulgación de la Ciencia, UNAM,2003.

Fierro, Julieta, et al., Eclipse total de Solen México, México, UNAM, 1991.

Fierro, Julieta, Los mundos cercanos, México, McGraw-Hill, 1996.

Herrera, Miguel Ángel, Cargas ycorrientes, México, SITESA, 1996.

Perelman, Yakov, Física recreativa (vols. Iy II), México, Editorial Cartago, 1983.

Sagan, Carl, Cosmos, Barcelona, EditorialPlaneta, 1982.

Recomendaciones para los estudiantes

Asimov, Isaac, Cien preguntas básicas sobrela ciencia, México, El libro de bolsillo,Física, Alianza Editorial.

Driver, Rosalind, et al. (2000). Dando senti-do a la ciencia en secundaria. Investi- gaciones sobre las ideas de los niños, México, Visor/SEP, Biblioteca para laactualización del maestro.

Driver, Rosalind, et al., Ideas científicas en lainfancia y la adolescencia, 1999.

Halliday, David y Robert Resnick, et al., Fundamentos de física, México, CECSA,2001.

Hecht, Eugene, Física en perspectiva. Méxi-co: Addison-Wesley, 1989.

Hewitt, Paul G., Física conceptual , México:

Pearson, 2004.Lightman, Alan, Grandes ideas de la física.Cómo los descubrimientoscientíficos han cambiado nuestra visióndel mundo, Madrid, McGraw-Hill, 1995.

Pogan, Andrew, Fuerzas físicas, México, SEP/Ediciones Culturales Internacionales,2003.

SEP, Enseñanza de la física con tecnología, México, ILCE, 2000.

Stollberg, Robert, Física. Fundamentos yfronteras, México, Publicaciones Cultu-ral, 1979.

Tippens, Paul, Física, conceptos y aplica-ciones (2a. ed.), México, McGraw-Hill,1993.

Wood, Robert Williams, Ciencia creativa yrecreativa. Experimentos fáciles paraniños y adolescentes, México, McGraw-Hill Interamericana, 2004.

Recomendaciones para docentes

Referencias consultadas

Cooper, Bruce S. y Anne Gargan, “Rubrics inEducation: Old term, new meanings”.Kappan, September, 2009, 54-55.

Chamizo, José Antonio y Mercè Izquierdo,“Evaluación de competenciasen el pensamiento científico”,Barcelona. Didáctica de las CienciasExperimentales, 2007, 51, 9-19.

Freeman, Cecilia K., Cómo integrar a niñoscon necesidades especiales al salón declases: Gimnasia para el cerebro,Argentina, Editoria Brujas, 2012.

Llewellyn, Douglas, Inquire within.Implementing inquiry-based science

standards in grades, 2a. ed., CorwinPress, 2007, 3-8.

Novak, Joseph y Bob Gowin, Aprendiendo aaprender, 15a. ed., España, EdicionesMartínez Roca, 1984.

Nussbaum, Joseph, “La constitución de lamateria como conjunto de partículas en lafase gaseosa” en Driver, R., Guesne, E.,Tiberghien, A. (eds.), Ideas científicas en lainfancia y la adolescencia, 2a. ed., España,Ministerio de Educación y Ciencia,Ediciones Morata, S. A., 1992,196-224.

Qin, Zhining, David W. Johnson, y RogerT. Johnson, “Cooperative versuscompetitive efforts and problem

solving”, Review of EducationalResearch, 1995, 65, 129-143.

Sánchez, Alonso, Daniel Gil-Perez y JoaquínMartínez-Torregrosa, “Evaluar no escalificar. La evaluación y la calificaciónen una enseñanza constructivista de lasciencias en Investigación en la escuela”,1996, 30, 15-26.

Sanmartí, Neus, “Didáctica de las ciencias en laeducación secundaria obligatoria”,Madrid, Síntesis educación, 2002.

Soler, Miquel-Albert, Didáctica multisensorialde las ciencias. Un nuevo método paraalumnos ciegos, deficientes visualesy también sin problemas de visión,Barcelona, Paidós Ibérica, 1999.

Toseland, Roland W. y Robert F. Rivas, Anintroduction to group work practice,Boston, Allyn and Bacon, 1997.

Referencias de internetwww.telesecundaria.dgme.sep.gob.mx/buscador/bsc.php : indica a este buscador que mues-tre la lista de los recursos interactivos de Física; www.geogebra.org: una útil aplicación paraFísica y Matemáticas, que te ofrece materiales útiles, gráficas interactivas y plantillas dinámi-cas; www.lite.org.mx/repositorio/lite/?q=buscador: página del Laboratorio de Innovación enTecnología Educativa, donde encontrarás una serie de herramientas que te ayudarán a la com-prensión de temas relacionados con las diferentes asignaturas que estudias; http://sined.mx/sined/aprendiendo/objetos-de-aprendizaje.htm : explora los objetos de aprendizaje de esta

página del Sistema Nacional de Educación a Distancia.

Referencias consultadassobre discapacidadwww.revistaeducarnos.com/art%C3%ADculos/educaci%C3%B3n/la-educaci%C3%B3n-en-ciencia-para-ni%C3%B1os-y-j%C3%B3venes-con-discapa-cidad-visualhttp://latu.org.uy/espacio_ciencia/es/

images/RedPop/ProdMateriales/M28.pdf

Bibliografía

Page 273: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 273/276

27

B l o q u e

Contenido D o s i f

i c a c i ó n

Momentos de organización

de actividades

E v a l u a c i o n e s

P r o y

e c t o s

S E M A N A S

1

El movimiento de los objetos 1 a 4 2 9 5 4

6 2

3

1 A

l o

l a r g o

d e l b l o q u e

A

l o

l a r g o

d e l b l o q u e

El trabajo de Galileo: Una aportaciónimportante para la iencia

5 y 6 4 3 1 4 4

La descripción de las fuerzasdel entorno

7 y 8 3 7 6 4

2

La explicación del movimiento

en el entorno9 a 11 1 4 2 4

5 2

3

1 A

l o

l a r g o

d e l b l o q u e

A

l o

l a r g o

d e l b l o q u e

Efecto de las fuerzas en la tierra

y el Universo12 y 13 1 3 2 3

La energía y el movimiento 14 2 1 1 2 3

3

Los modelos de la ciencia 15 a 17 3 2 1 2

4 2

2

1 A

l o

l a r g o

d e l b l o q u e

A

l o

l a r g o

d e l b l o q u e

La estructura de la materia a partir

del modelo cinético de partículas18 a 20 4 3 7 5

Energía calorífica y sus transformaciones 21 y 22 5 3 1 6 5

4

Explicación de los modelos eléctricos 23 a 25 1 2 2 2

4 1

4

1 A l o

l a r g o

d e l b l o q u e

A l o

l a r g o

d e l b l o q u e

Los fenómenos electromagnéticos

y su importancia26 y 27 4 1 4 4 6

La energía y su aprovechamiento 28 y 29 3 2 3

5

El Universo 33 a 35 4

A l o

l a r g o

d e l b l o q u e

A l o

l a r g o

d e l b l o q u e

La tecnología y la ciencia en los estilos

de vida actual

3 6

a

4 0

Física y ambiente

Ciencia y tecnología en el desarrollo

de la sociedad

B

A

E

S2

S3

S2

S3

S2

S3

S2

S3

P2

P3 P4

P5 P7P6

S1

S1

S1

S1

S1

Dosificación de contenidos

Nota: Las Evaluaciones son de tres tipos: (E) por Secuencia de contenidos para aplicarse de manera individual o bien, en pareja, co evaluación, (A) Autoevaluación,

y (B) por Bloque que se propone aplicar en forma individual. En cada caso el maestro podrá decidir la aplicación más efectiva para su grupo.

Page 274: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 274/276

Este libro se imprimió enReproducciones Fotomecánicas, S.A. de C.V.,

Democracias 116, San Miguel Amantla,C.P. 02700, México, D.F.,

en MES de 2014.

La tirada fue de

XXX,XXX ejemplares.

Bancos de imágenes:

© Dreamstime/Alex 01221: Cubierta: Aurora boreal (2010) “Dynamic Aurora polaris a nal mountain”, p. 153 (centro y ab. der.),

© El Colegio Nacional: p. 250: (izq.) Victor Urquidi (2007).

©/ Nasa: pp. 59, 118, 123, 150 (ab.) fotografía del cometa Halley, 1910; 158 (izq.), 260, 264, 265.

© Science Photo Library: pp. 52 Galileo Galilei, Emilio Segre Visual Archives/ American Institute of Physics, 163 Newtons optics (1704),212 Niels Bohr, 254 Tomás Alba Edison, grabado basado en fotografía de Science Photo Library.261-262.

© Shutterstock: pp. 16 (der.), 41 (ab.), 43, 53, 56, 69, 72 (arr.), 73 (arr.), 92, 98 (centro y der.), 99, 102 (arr.), 110, 111 (arr.), 112, 114,116 (arr.), 127, 133, 141, 142-146, 147 (centro y der.),157, 161-162, 166, 173, 177, 179 (ab.), 183, 186 (arr.), 190, 202, 203, 204-205,208, 216, 233 (ab. izq), 240 (arr. izq. y der.), 242, 244-246, 250 (der.), 258 (centro y der.), 266.

© Photostock: pp. 12 (centro y der.), 13 (izq. y centro), 49, 58 (arr.), 65, 68, 78 (arr.), 79 (centro).

Fotografías diversas:

p. 95: Sismoscopio (2005), fotografía: Juan Martín Gómez, Centro de Geociencias de la UNAM, campus Juriquilla, Querétaro; p. 96: Bob Beamon, fotografía: Jesee Owens (1968), Olimpiadas México; pp. 147, 154: (izq.) Mina de Naica, fotografía: Ing. Edgar GonzálezVenegas, Departamento Geología, Naica, Chihuahua; © p. 169: Pascalina, Musseé des Arts et Metiers, David Monniaux (2005) ; p. 207: Tesla coil sparks, fotografía: Peter Terren (2007), Australia. p. 222: Laboratorio de ciencias, España.

Dominio público (©/):

p. 51: Aristóteles, escultura busto en marmol, copia romana, Museo de Louvre, Paris, fotografía: Jastrow (2016)/ Ludovisi Collection;p. 74: (arr.) Tales de Mileto Ernst Wallis et. al ., (1785-1889), (centro) Charles Du Fay , anónimo siglo XXVIII, (ab.) Charles Coulomb,Hipolite Lecompte; p. 99: (centro) y p. 103: Isaac Newton; p. 115: Ptolomeo (arr. centro), autor anónimo, (ab.) Modelos geocéntricoy heliocéntrico; p. 116: (ab.) Modelos antiguos de cuerpos celestes; p. 149: Halley et Newton, Sello postal, República de Guinea1986; p. 151: Sueño de Escipión, Tierra plana; p. 155: Dibujo Newton; p. 174: (arr.) termoscopio Galileo; p. 213: Rutherford, 1911;p. 214: James Chadwick, p. 150: (arr.) Edmund Halley, óleo sobre tela; (centro) representación del cometa Halley en 1066; p. 156: (izq.)Clausius, (der.) Boltzman, (ab.) Maxwell; p. 169: Blaise Pascal, retrato anónimo, siglo XVII, Toulouse, Archevêché; p. 199: “Titanicsink four hours after hitting iceberg” , New York Times, 6 de abril,1912; p. 235: Óptics treatise (Tratado de óptica), Newton; p. 234:

Huygenes; p. 236: James Clerck Maxwell y Catherine Maxwell, 1869; p. 237: Heinrich Rudolf Hertz; p. 240: (centro izq.) primera placade Rayos X, 1895-1896, p. 243: Max Planck, fotografía anónima, Berlín 11 de enero, 1933; p. 247: Alexandre Edmond Becquerel. Litografía: Pierre Petit (1832-1885), printed by Charles Jeremie Fuhr.

Créditos iconográficos

Page 275: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 275/276

Page 276: Ciencias Dos-fisica

7/25/2019 Ciencias Dos-fisica

http://slidepdf.com/reader/full/ciencias-dos-fisica 276/276