8
ESTADO DE AGREGACIÓN DE LA MATERIA Este diagrama muestra la nomenclatura para las diferentes transiciones de fase con la Desde el puto de vista fisicoquímico se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen. Todos los estados de agregación poseen propiedades y características diferentes, los más conocidos y observables cotidianamente son cuatro, las llamadas fases sólida, líquida, gaseosa y plasmática. Otros estados son posibles, pero no se produce de forma natural en nuestro entorno por ejemplo: condensado de Bose-Einstein, condensado fermiónico y las estrellas de neutrones. Otros estados, como plasmas de quark-gluón, se cree que son posibles. 1 Sólido Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada. Las sustancias en estado sólido suelen presentar algunas de las siguientes características: Cohesión elevada. Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original. A efectos prácticos son Incompresibles . Resistencia a la fragmentación. Fluidez muy baja o nula. Algunos de ellos se subliman . SOLIDO CRISTALINO se puede decir que un sólido cristalino podría ser el hielo; ya que este posee un ordenamiento estricto y regular, es decir, que sus átomos, moléculas o iones ocupan posiciones específicas, estos sólidos suelen tener superficies planas o caras que forman ángulos definidos entre sí. Los sólidos cristalinos adoptan diferentes formas y colores. COLEGIO MILITAR GENERAL GUSTAVO MATAMOROS D´COSTA Resolución # 001590 de 22 de Octubre de 2007 de Secretaria de Educación Municipal. DANE: 354001009504 NIT: 4953944-1 "Formamos Hombres Nuevos Para Una Colombia Mejor" FECHA: / 2019 AREA: CIENCIAS NATURALES PERIODO 1 DOCENTE: DALFY YARIMA LÒPEZ ROJAS ACTIVIDAD : TALLER DE QUIMICA #1 GRADO: 9 ESTUDIANTE: NOTA:

ESTADO DE AGREGACIÓN DE LA MATERIA - webcolegios.com · fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura. Las Las moléculas

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

ESTADO DE AGREGACIÓN DE LA MATERIA

Este diagrama muestra la nomenclatura para las diferentes transiciones de fase con la

Desde el puto de vista fisicoquímico se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.

Todos los estados de agregación poseen propiedades y características diferentes, los más conocidos y observables cotidianamente son cuatro, las llamadas fases sólida, líquida, gaseosa y plasmática. Otros estados son posibles, pero no se produce de forma natural en nuestro entorno por ejemplo: condensado de Bose-Einstein, condensado fermiónico y las estrellas de neutrones. Otros estados, como plasmas de quark-gluón, se cree que son posibles.1

Sólido Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.

Las sustancias en estado sólido suelen presentar algunas de las siguientes características:

Cohesión elevada.

Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original.

A efectos prácticos son Incompresibles.

Resistencia a la fragmentación.

Fluidez muy baja o nula. Algunos de ellos se subliman.

SOLIDO CRISTALINO se puede decir que un sólido cristalino podría ser el hielo; ya que este posee un ordenamiento estricto y regular, es decir, que sus átomos, moléculas o iones ocupan posiciones específicas, estos sólidos suelen tener superficies planas o caras que forman ángulos definidos entre sí. Los sólidos cristalinos adoptan diferentes formas y colores.

COLEGIO MILITAR GENERAL GUSTAVO MATAMOROS D´COSTA Resolución # 001590 de 22 de Octubre de 2007 de Secretaria de Educación

Municipal. DANE: 354001009504 NIT: 4953944-1

"Formamos Hombres Nuevos Para Una Colombia Mejor"

FECHA: / 2019

AREA: CIENCIAS NATURALES PERIODO 1 DOCENTE: DALFY YARIMA LÒPEZ ROJAS

ACTIVIDAD : TALLER DE QUIMICA #1 GRADO: 9

ESTUDIANTE: NOTA:

SÓLIDO AMORFO: Amorfo quiere decir que estos sólidos no

tienen forma. Este sólido carece de un ordenamiento bien definido y de un orden molecular definido, algunos de estos sólidos son mezclas de moléculas que no se

apilan, es decir que no pueden ir unos arriba de otro Algún ejemplo de este tipo de sólidos son el hule y el vidrio.

DIFERENCIAS ESTRUCTURALES Y DE COMPORTAMIENTO DE LOS SÓLIDOS CRISTALINOS Y MATERIALES VÍTREOS

Cuando las moléculas que componen un sólido están acomodadas regularmente, decimos que forman un cristal. Y al sólido correspondiente le llamamos sólido cristalino o fase cristalina Existen muchos ejemplos de

sólidos cristalinos como por ej., la sal de mesa (cloruro de sodio, Na Cl?) y el azúcar (sacarosa, C 12 H 22 O 11?). Los sólidos como cristalinos porque las partículas macroscópicas que los forman (los cristales) tienen formas regulares: si examinamos cristales de cloruro de sodio bajo una lente de aumento, veremos que los cristales tienen forma de pequeños cubos.

El vidrio es una sustancia amorfa porque no es ni un Sólido ni un líquido, sino que se halla en un estado vítreo en el que las unidades Moleculares, aunque están dispuestas de forma desordenada, tienen suficiente Cohesión para presentar rigidez mecánica.

LÍQUIDO Si se incrementa la temperatura, el sólido va perdiendo forma hasta desaparecer la estructura

cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:

1. Cohesión menor. 2. Movimiento energía cinética. 3. Son fluidos, no poseen forma definida, ni memoria

de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.

4. En el frío se contrae (exceptuando el agua). 5. Posee fluidez a través de pequeños orificios. 6. Puede presentar difusión. 7. Son poco compresibles. GAS Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen propio. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases las fuerzas gravitatorias y de atracción entre partículas resultan insignificantes. Es considerado en algunos diccionarios como sinónimo de vapor, aunque no hay que confundir sus conceptos, ya que el término de vapor se refiere estrictamente para aquel gas que se puede condensar por presurización a temperatura constante. Los gases se expanden libremente hasta llenar el recipiente que los contiene, y su densidad es mucho menor que la de los líquidos y sólidos. Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real. En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.

En un gas, las moléculas están en estado de caos y muestran poca respuesta a la gravedad. Se mueven tan rápidamente que se liberan unas de otras. Ocupan entonces un volumen mucho mayor que en los otros estados porque dejan espacios libres intermedios y están enormemente separadas unas de otras. Por eso es tan fácil comprimir un gas, lo que significa, en este caso, disminuir la distancia entre moléculas. El gas carece de forma y de volumen, porque se comprende que donde tenga espacio libre allí irán sus moléculas errantes y el gas se expandirá hasta llenar por completo cualquier recipiente.

El estado gaseoso presenta las siguientes características:

Cohesión casi nula.

No tienen forma definida.

Su volumen es varia

ACTIVIDAD COMPLEMENTARIA

1. Realiza en mapa conceptual en tu cuaderno con la información de tu guía de trabajo.

2. Realiza diez ejemplos de sustancias en los diferentes estados

3. Define que se entiende por estado de agregación

4. Cuáles son las características de los sólidos, de los gases y del estado líquido.

5. Investiga que otro tipo de estados de la materia existen da ejemplos. Realiza los gráficos de tu guía

6. Define cada uno de los siguientes términos en tu glosario en ingles fermiónico y cohesión

A. Sublimación B. Condensación C. Fusión D. Evaporación E. Solidificación F. Fermionico

G. Coheccion H. compresibles I. Incompresibles. J. Resistencia K. Fragmentación

2 GASES

ESTADO GASEOSO

Se denomina gas (palabra inventada

Por el científico flamenco Jan Baptista van Helmont en el siglo XVII, sobre el latín chaos) al estado de agregación de la materia en el cual, bajo ciertas condiciones de temperatura y presión, sus moléculas interaccionan solo débilmente entre sí, sin formar enlaces moleculares, adoptando la forma y el volumen del recipiente que las contiene y tendiendo a separarse, esto es, expandirse, todo lo posible por su alta energía cinética. Los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades: a) Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven sus moléculas. b) Los gases ocupan completamente el volumen del recipiente que los contiene. c) Los gases no tienen forma definida, adoptando la de los recipientes que las contiene. d) Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras. e) A temperatura y presión ambientales los gases pueden ser elementos como el hidrógeno, el oxígeno, el nitrógeno, el cloro, el flúor y los gases nobles, compuestos como el dióxido de carbono o el propano, o mezclas como el aire. f) Los vapores y el plasma comparten propiedades con los gases y pueden formar mezclas homogéneas, por ejemplo vapor de agua y aire, en conjunto son conocidos como cuerpos gaseosos, estado gaseoso o fase gaseosa. En 1648, el químico Jan Baptist van Helmont, considerado el padre de la química neumática, creó el vocablo gas (durante un tiempo se usó también "estado aeriforme"), a partir del término griego kaos (desorden)

para definir las características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos, también llamados fluidos elásticos, fluidos compresibles o aires, y se utiliza para designar uno de los estados de la materia.

HISTORIA

La principal característica de los gases respecto de los sólidos y los líquidos, es que no pueden verse ni tocarse, pero también se encuentran compuestos de átomos y moléculas.

La causa de la naturaleza del gas se encuentra en sus moléculas, muy separadas unas de otras y con movimientos aleatorios entre sí. Al igual que ocurre con los otros dos estados de la materia, el gas también puede transformarse (en líquido) si se somete a temperaturas muy bajas. A este proceso se le denomina condensación en el caso de los vapores y licuefacción en el caso de los gases perfectos.

La mayoría de los gases necesitan temperaturas muy bajas para lograr condensarse. Por ejemplo, en el caso del oxígeno, la temperatura necesaria es de -183 °C.

Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, cuando los científicos empezaron a darse cuenta de que en las relaciones entre la presión, el volumen y la temperatura de una muestra de gas, en un sistema cerrado, se podría obtener una fórmula que sería válida para todos los gases. Éstos se comportan de forma similar en una amplia variedad de condiciones, debido a la buena aproximación que tienen las moléculas que se encuentran más separadas, y hoy en día la ecuación de estado para un gas ideal se deriva de la teoría cinética. Ahora las leyes anteriores de los gases se consideran como casos especiales de la ecuación del gas ideal, con una o más de las variables mantenidas constantes.

Empíricamente, se observan una serie de relaciones proporcionales entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834

El estado gaseoso es un estado disperso de la materia, es decir, que las moléculas del gas están separadas unas de otras por distancias mucho mayores del tamaño del diámetro real de las moléculas. Resuelta entonces, que el volumen ocupado por el gas(V) depende de la presión (P), la temperatura (T) y de la cantidad o número de moles ( n).

Las propiedades de la materia en estado gaseoso son:

1. Se adaptan a la forma y el volumen del recipiente que los contiene. Un gas, al cambiar de recipiente, se expande o se comprime, de manera que ocupa todo el volumen y toma la forma de su nuevo recipiente.

2. Se dejan comprimir fácilmente. Al existir espacios intermoleculares, las moléculas se pueden acercar unas a

Otras reduciendo su volumen, cuando aplicamos una presión.

3. Se difunden fácilmente. Al no existir fuerza de atracción intermolecular entre sus partículas, los gases se esparcen en forma espontánea.

4. Se dilatan, la energía cinética promedio de sus moléculas es directamente proporcional a la temperatura aplicada.

VARIABLES QUE AFECTAN EL COMPORTAMIENTO DE LOS GASES

1. PRESIÓN Es la fuerza ejercida por unidad de área. En los gases esta fuerza actúa en forma uniforme sobre todas las partes del recipiente. La presión atmosférica es la fuerza ejercida por la atmósfera sobre los cuerpos que están en la superficie terrestre. Se origina del peso del aire que la forma. Mientras más alto se halle un cuerpo menos aire hay por encima de él, por consiguiente la presión sobre él será menor.

2. TEMPERATURA Es una medida de la intensidad del calor, y el calor a su vez es una forma de energía que podemos medir en unidades de calorías. Cuando un cuerpo caliente se coloca en contacto con uno frío, el calor fluye del cuerpo caliente al cuerpo frío. La temperatura de un gas es proporcional a la energía cinética media de las moléculas del gas. A mayor energía cinética mayor temperatura y viceversa. La temperatura de los gases se expresa en grados kelvin.

3. CANTIDAD La cantidad de un gas se puede medir en unidades de masa, usualmente en gramos. De acuerdo con el sistema de unidades SI, la cantidad también se expresa mediante el número de moles de sustancia, esta puede

Calcularse dividiendo el peso del gas por su peso molecular. 4. VOLUMEN Es el espacio ocupado por un cuerpo. 5. DENSIDAD Es la relación que se establece entre el peso molecular en gramos de un gas y su volumen molar en litros.

GAS REAL Los gases reales son los que en condiciones ordinarias de temperatura y presión se comportan como gases ideales; pero si la temperatura es muy baja o la presión muy alta, las propiedades de los gases reales se desvían en forma considerable de las de gases ideales.

DIFERENCIA ENTRE GAS IDEAL Y REAL.

LOS Gases que se ajusten a estas suposiciones se llaman gases ideales y aquellas que no se les llaman gases reales, o sea, hidrógeno, oxígeno, nitrógeno y otros.

1. - Un gas está formado por partículas llamadas moléculas. Dependiendo del gas, cada molécula está formada por un átomo o un grupo de átomos. Si el gas es un elemento o un compuesto en su estado estable, consideramos que todas sus moléculas son idénticas.

2. - Las moléculas se encuentran animadas de movimiento aleatorio y obedecen las leyes de Newton del movimiento. Las moléculas se mueven en todas direcciones y a velocidades diferentes. Al calcular las propiedades del movimiento suponemos que la mecánica newtoniana se puede aplicar en el nivel microscópico. Como para todas nuestras suposiciones, esta mantendrá o desechara, dependiendo de sí los hechos experimentales indican o no que nuestras predicciones son correctas.

3. - El número total de moléculas es grande. La dirección y la rapidez del movimiento de cualquiera de las moléculas pueden cambiar bruscamente en los choques con las paredes o con otras moléculas. Cualquiera de las moléculas en particular, seguirá una trayectoria de zigzag, debido a dichos choques. Sin embargo, como hay muchas moléculas, suponemos que el gran número de choques resultante mantiene una distribución total de las velocidades moleculares con un movimiento promedio aleatorio.

4. - El volumen de las moléculas es una fracción despreciablemente pequeña del volumen ocupado por el gas. Aunque hay muchas moléculas, son extremadamente pequeñas. Sabemos que el volumen ocupado por una gas se puede cambiar en un margen muy amplio, con poca dificultad y que, cuando un gas se condensa, el volumen ocupado por el gas comprimido hasta dejarlo en forma líquida puede ser miles de veces menor. Por ejemplo, un gas natural puede licuarse y reducir en 600 veces su volumen.

5. - No actúan fuerzas apreciables sobre las moléculas, excepto durante los choques. En el grado de que esto sea cierto, una molécula se moverá con velocidad uniformemente los choques. Como hemos supuesto que las moléculas sean tan pequeñas, la distancia media entre ellas es grande en comparación con el tamaño de una de las moléculas. De aquí que supongamos que el alcance de las fuerzas moleculares es comparable al tamaño molecular.

6. - Los choques son elásticos y de duración despreciable. En los choques entre las moléculas con las paredes del recipiente se conserva el ímpetu y (suponemos)la energía cinética. Debido a que el tiempo de choque es despreciable comparado con el tiempo que transcurre entre el choque de moléculas, la energía cinética que se convierte en energía potencial durante el choque, queda disponible de nuevo como energía cinética, después de un tiempo tan corto, que podemos ignorar este cambio por completo .

OTROS ESTADOS DE LA MATERIA

Durante muchos siglos se consideró que solo existían tres estados de la materia: sólido, líquido y gas (los tres presentes y estables en nuestro mundo). Y es el agua la sustancia que mejor los representa, por ser la única que existe de forma natural en los tres estados Pero el desarrollo de nuevas tecnologías, para producir en los laboratorios condiciones cada vez más extremas y energéticas, ha permitido que en los últimos años se hayan descubierto otros cinco estados (y un último candidato, que acaba de aparecer en 2018).

PLASMA El estado plasma es la forma en la que se presentan los gases contenidos en el interior de las luces de neón, los tubos fluorescentes y, por supuesto, las pantallas de plasma. También es el estado que caracteriza a las auroras boreales o a los rayos. De hecho, se estima que plasma. EJEMPLÓ FIGURA # |1 Un globo de plasma en una habitación oscura. Un plasma es un gas ionizado a alta temperatura, formado por cationes (moléculas o átomos con carga positiva) y electrones libres (con carga negativa), entre los que se dan importantes fuerzas electrostáticas. Aunque en su conjunto la carga eléctrica total sea nula, en su interior las partículas tienen carga. Esto hace que, a diferencia de los gases, los plasmas sean conductores de la electricidad y puedan ser confinados en campos magnéticos.

PLASMA DE QUARK-GLUONES (QGP)

Es el estado en el que (se asume) se encontraba toda la materia del universo justo una millonésima de segundo después del Big Bang y justo antes de comenzar a enfriarse y cambiar a otros estados menos energéticos. En ese instante —caracterizado por una temperatura y energía extremas—, toda la materia se encontraría como una densa sopa de partículas fundamentales: quarks y gluones, desplazándose a velocidades próximas a las de la luz. Así, las fuerzas atractivas entre ellos son tan débiles que permiten a unos y a otros mantener su individualidad y desplazarse libremente. Las primeras evidencias de la existencia del estado QGP se alcanzaron en 2003 y fueron confirmadas en 2005 en los aceleradores del CERN. Allí se constató que el Plasma de quark-gluones no se comportaba como un gas ideal (tal y como se presumía) sino más bien como un superfluido, con una viscosidad mínima. Hasta el momento, el QGP solo se obtiene en instalaciones muy concretas y durante un tiempo muy limitado, y aún se están estudiando sus aplicaciones.

.LÍQUIDO CUÁNTICO DE ESPINES

El físico y ganador del Nobel Philip Warren Anderson fue el primero en predecir la existencia del líquido cuántico de espines en la década de 1970. Pero no fue hasta 2016 que se demostró su existencia real. Lo curioso es que, bajo determinadas condiciones de presión y temperatura, algunos minerales presentan regiones en este estado. Entre ellos, la herbersmithita. Bajo determinadas condiciones de presión y temperatura, la herbersmithita presenta regiones en estado líquido cuántico de espines. FIGURA # 2.El espín es una propiedad de los electrones y demás partículas subatómicas. De una forma intuitiva, es como si cada electrón contuviese una minúscula brújula interna. En la mayoría de los materiales (y en los estados de la materia) los espines de los electrones se alinean entre sí. Sin embargo, en el estado líquido cuántico de espines, los espines de los electrones nunca llegan a alinearse, sino que se mantienen en una constante fluctuación incluso a temperaturas cercanas al cero absoluto, mientras que en la que en los restantes estados de la materia, el espín se congela a esa temperatura. El estado líquido cuántico de espines le confiere a la materia unas características magnéticas singulares, cuya aplicación se está investigando.

ESTADO DEGENERADO Bajo presiones extremas, como las que se dan en el núcleo de algunas estrellas, las partículas son comprimidas en un espacio mínimo. Dado que dos partículas no pueden ocupar el mismo espacio en el mismo momento, esto provoca que los átomos degeneren y pierdan su estructura: los electrones se salen de sus órbitas y comienzan a moverse a velocidades cada vez más cercanas a la de la luz, para ejercer una fuerza expansiva que compense la presión externa Bajo presiones extremas, como las que se dan en el núcleo de algunas estrellas, las partículas son comprimidas en un espacio mínimo. Crédito: NASA FIGURA # 3. Si ésta sigue aumentando y supera el denominado límite de Chandrasekar, entonces la presión externa se hace insostenible y los núcleos atómicos también degeneran, pierden su estructura, colapsando en una acumulación de neutrones y protones

CONDENSADO BOSE-EINSTEIN

En 1924 Satyendra Bose y Albert Einstein predijeron la existencia de un nuevo estado de la materia al aplicar la estadística a la mecánica cuántica. Según ambos físicos, cuando la materia se enfría a temperaturas apenas por encima del cero absoluto, en algunos casos las partículas que la constituyen caen todas al mismo nivel de energía. Esa situación vulnera los principios de la física cuántica: las partículas se vuelven indistinguibles unas de otras y pasan a formar un “superátomo”. Esta imagen muestra los átomos en un condensado de Bose-Einstein (BEC) empujados por la luz del láser. Crédito: National Institute of Standards and Technology. Pero no fue hasta 1995 que Cornell, Wieman y Ketterle consiguieron producir un condensado de Bose-Einstein gracias al empleo de los nuevos y más potentes láseres y electroimanes. Desde entonces, se ha comprobado que este estado se caracteriza por presentar superfluidez y superconductividad. Y también porque es capaz de ralentizar la velocidad de la luz, que lo atraviesa hasta velocidades de apenas unos metros por segundo.

HIELO SUPERIÓNICO El agua como principio y fin. El agua es la única sustancia presente en la naturaleza en los tres estados clásicos. Y es también la sustancia en la que se ha descubierto, a principios de 2018, una nueva forma o estado de ordenación: el hielo superiónico. Para ello se sometieron cristales de hielo a una presión 2 millones de veces superior a la presión atmosférica y a una temperatura cercana a los 5.000 ºC. Esa brutal presión fuerza al hielo a adoptar un empaquetamiento muy compacto. Pero, al mismo tiempo, la elevada temperatura derrite los enlaces de la molécula de agua. El resultado es que en el hielo superiónico conviven dos fases: una líquida y una sólida. Los átomos de oxígeno adoptan una estructura cristalina, a través de la cual fluyen núcleos de hidrógeno. Se cree que el hielo superiónico puede existir en grandes cantidades en planetas gigantes gaseosos y helados como Urano. Se cree que el

hielo superiónico puede existir en grandes cantidades en planetas gigantes gaseosos y helados como Urano o Neptuno, en cuyo interior sí se dan las condiciones apropiadas para su formación. De confirmarse que otras sustancias sometidas a condiciones similares también adoptan esta ordenación, estaríamos ante un nuevo estado de la materia. Crédito: NASA/

ACTIVIDAD PROPUESTA

1. Que es un gas .Da 10 ejemplos de gases comunes 2. Cuáles son sus características 3. Realiza un breve resumen de la historia de los gases UTILIZANDO PARA ESTO UNA LINEA DE TIEMPO 4. Qué factores pueden afectar un gas y de qué forma explica detalladamente 5. Que clases de gases existen en que se diferencian 6. En qué consiste la teoría cinética de los gases 7. Investiga cuales son las unidades de presión, volumen, temperatura, y sus equivalencias 8. En que se asemejan los Gases los líquidos y los sólidos 9. Porque se denominan fluidos 10. Elabora un folleto donde representes la teoría cinética de líquidos, sólidos y gases. 11. Donde menciones sus características y propiedades 12. Realiza un cuadro sinoptico sobre el 5 estado de la materia condensado de Bose- Einstein 13. Que otros estados se presentan en la materia defiéndelos y da ejemplos de cada uno .